Learning Balls of Strings with Correction
Queries*

Leonor Becerra Bonache!, Colin de la Higuera?, Jean-Christophe Janodet?,
and Frédéric Tantini?

! Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005 Tarragona, Spain
leonor.becerra@urv.cat
2 Laboratoire Hubert Curien, Université Jean Monnet
18 rue du Professeur Benoit Lauras, 42000 Saint-Etienne, France
{cdlh, janodet,frederic.tantini}@univ-st-etienne.fr

Abstract. During the 80’s, Angluin introduced an active learning pa-
radigm, using an Oracle, capable of answering both membership and
equivalence queries. However, practical evidence tends to show that if
the former are often available, this is usually not the case of the latter.
We propose new queries, called correction queries, which we study in the
framework of Grammatical Inference. When a string is submitted to the
Oracle, either she validates it if it belongs to the target language, or she
proposes a correction, i.e., a string of the language close to the query
with respect to the edit distance. We also introduce a non-standard class
of languages: The topological balls of strings. We show that this class
is not learnable in Angluin’s MAT model, but is with a linear number
of correction queries. We conduct several experiments with an Oracle
simulating a human Expert, and show that our algorithm is resistant to
approximate answers.

Keywords: Grammatical Inference, Oracle Learning, Correction Que-
ries, Edit Distance, Balls of Strings.

1 Introduction

Do you know how many Nabcodonosaur were kings of Babylon? And do you
know when Arnold Shwartzeneger was born? A few years ago, just 2 decades
ago, you would have had to consult encyclopedias and Who’s Who dictionaries
in order to get answers to such questions. At that time, you may have needed
this information in order to participate to quizzes and competitions organised
by famous magazines during the summers, but because of these questions, you
might possibly have missed the very first prize. Why?. .. Nowadays, everything
has changed: You naturally use the Web, launch your favourite search engine,

* This work was supported in part by the IST Programme of the European Commu-
nity, under the PAascaL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

type 2 keywords, follow 3 links and note down the answers. In this partic-
ular case, you discover. ..that no king of Babylon was called Nabcodonosaur
but 2 Nabuchodonosor’s reigned there many centuries ago. Again, the day
Arnold Shwartzeneger was born is not clear, but it is easy to check that Arnold
Schwarzenegger was born in 1947, July 30%".

So you would probably win today the great competitions of the past. Indeed,
the actual search engines are able to propose corrections when a keyword is
not frequent. Those corrections are most often reliable because the reference
dictionary is built from the billions of web pages indexed all over the world.
Hence, a search engine is playing the role of an imperfect but powerful oracle,
able to validate a relevant query by returning relevant documents, but also to
correct any suspect query. Such an oracle is able to answer to what we shall call
correction queries.

The first goal of this paper is to show, from a theoretical standpoint, that
correction queries allow to get new challenging results in the field of Active
Learning. In this framework developed by Angluin in the 80’s [1], a Learner
(He) has access to an Oracle (She) that knows a concept he must discover; To
this purpose, he submits different kinds of queries (e.g., Correction Queries) and
she has to answer without lying. The game ends when he guesses the concept.
Query-based learners are often interesting from a practical viewpoint. For in-
stance, instead of requiring a human expert to label huge quantities of data,
this expert could be asked by the Learner, in an interactive situation, to pro-
vide a small amount of targeted information. The second goal of this paper is
to provide evidence that correction queries are suitable for this kind of real-life
applications. Assuming that the Oracle is a human expert, however, introduces
new constraints. On the one hand, it is inconceivable to ask a polynomial number
of queries: This may still be too much for a human. So the learning algorithm
should aim at minimising the number of queries even if we must pay for it with
a worse time complexity. On the other hand, a human being (or even the Web)
is fallible. Therefore the learning algorithm should also aim at learning functions
or languages from approximate corrections.

In the above Web example, the distance used by the search engine to find
a closest string is a variant of the edit distance which measures the minimum
number of deletion, insertion or substitution operations needed to transform
one string into another [2,3]. This distance and variants where each elementary
operation may have a different weight have been used in many fields including
Computational Biology [4], Language Modelling [5] and Pattern Recognition [6].
Edit distance appears in specific Grammatical Inference problems, in particular
when one wants to learn languages from noisy data [7]. The classes of languages
studied there are not defined following the Chomsky Hierarchy. Indeed, even the
easiest level of this hierarchy, the class of regular languages, is not at all robust to
noise, since the parity functions (which can be defined as regular languages) are
not learnable in the presence of noise [8]. In this paper also, in order to avoid this
difficulty, we shall consider only special finite languages, that seem elementary

to formal language theoreticians, but are relevant for topologists and complex
for combinatorialists: the balls of strings.

Hence, we study the problem of identifying balls of strings from correction
queries. After some preliminaries in Section 2, we prove that balls are not learn-
able with Angluin’s membership and equivalence queries (Section 3). Then, we
show in Section 4 that balls are learnable with a linear number of correction
queries. In Section 5, we study the effectiveness of our algorithm from an ex-
perimental standpoint, showing that it is robust when the answers of the Or-
acle are approximate. We conclude in Section 6. Due to the lack of space, we
have skipped most formal proofs. The interested reader may find them at http:
//labh-curien.univ-st-etienne.fr/"tantini/pub/bhjt07Long.pdf.

2 On Balls of Strings as Languages

An alphabet X is a finite nonempty set of symbols called letters. A string w =
aj ...an, is any finite sequence of letters. We write X* for the set of all strings
over X, and A for the empty string. Let |w| be the length of w and |w|, the
number of occurrences of a in w.

The edit distance d(w,w’) is the minimum number of edit operations needed
to transform w into w’ [2]. The edit operations are either (1) deletion: w = uav
and w' = wv , or (2) insertion: w = wv and W’ = wav, or (3) substitution: w = uav
and w' = ubv, where u,v € X* a,b € X and a # b. E.g., d(abaa, aab) = 2 since
abaa — aaa — aab and the rewriting of abaa into aab cannot be achieved with
less than 2 steps. Notice that d(w,w’) can be computed in O (Jw| - |w’|) time by
dynamic programming [3].

It is well-known that the edit distance is a metric [9], so it conveys to
XY* the structure of a metric space. The ball of centre o € X* and radius
r € IN, denoted B,(0), is the set of all strings whose distance is at most r
from o: By(0) = {w € X* : d(o,w) < r}. E.g., if ¥ = {a,b}, then By(ba) =
{a,b, aa, ba, bb, aba, baa, bab, bba} and B,.(\) = X'=" for all r € IN.

The latter example illustrates the fact that the number of strings in a ball
grows exponentially with the radius. This remark raises the problem of the rep-
resentation scheme that we should use to learn the balls. Basically, we need
representations whose size is reasonable, which is not the case of an exhaustive
enumeration, nor of the deterministic finite automata (DFA) since experiments
show that the corresponding minimum DFA is often exponential with r (but lin-
ear with |o|) [10], even if a formal proof of this property remains a challenging
combinatorial problem.

On the other hand, why not represent the ball B,.(0) by the pair (o, r) itself?
Indeed, its size is |o| + logr. Moreover, deciding whether w € B, (0) or not is
immediate: One only has to (1) compute d(o,w) and (2) check whether this
distance is < r, which is achievable in time O (|o| - |w| + log 7). Finally, when the

alphabet has at least 2 letters, (0,7) is a unique thus canonical representation
of B(0):

Theorem 1. If |X| > 2 and B,,(01) = By,(02), then 01 = 02 and r1 = ra.

Notice that if X' = {a}, then By(a) = Bs(\) = {\, a, aa, aaa} for instance.

Hence, representing the ball B,.(0) by the pair (o,7) is reasonable. However,
it is worth noticing that huge balls, whose radius is not polynomially related to
the length of the centre (e.g., r > 2/°), will pose tricky problems of complexity.
For instance, to learn the ball B,.(\) = <", one needs to manipulate at least
one string of length r + 1. Therefore, in the following, we will always consider
good balls only:

Definition 1. Given any fized polynomial q(), we say that a ball B,.(0) is g-good
if r < q(lo]).

3 Learning Balls from Queries

Query learning is a paradigm introduced by Angluin [1]. Her model brings a
Learner (he) and an Oracle (she) into play. The goal of the Learner is to identify
the representation of an unknown language, by submitting queries to the Oracle.
The latter knows the target language and answers properly to the queries (i.e.,
she does not lie). Moreover, the Learner is bound by efficiency constraints: (1)
He can only submit a polynomial number of queries (in the size of the target
representation) and (2) the available overall time must be polynomial in the size
of the target representation®.

Between the different combinations of queries, one, called M AT (Minimally
Adequate Teacher), is sufficient to learn DrA [11]. Two kinds of queries are used:

Definition 2. Let A be a class of languages on X* and L € A a target lan-
guage known by the Oracle, that the Learner aims at guessing. In the case of
membership queries, the Learner submits a string w € X* to the Oracle; Her
answer, denoted MQ(w), is either YES if w € L, or NO if w ¢ L. In the case
of equivalence queries, the Learner submits (the representation of) a language
K € A to the Oracle; Her answer, denoted EQ(K), is either YEs if K = L, or
a string belonging to the symmetric difference (K \ L)U (L\ K)) if K # L.

Although MQ and EQ have established themselves as a standard combina-
tion, there are real grounds to believe that EQ are too powerful to exist or even
be simulated. As suggested in [11] we may be able to substitute them with a
random draw of strings that are then submitted as Mq (sampling), but there
are many cases where sampling is not possible as the relevant distribution is
unknown and/or inaccessible [12]. Besides, we will not consider Mq and EqQ

because they do not help to learn balls:

Theorem 2. Assume |X| > 2. Let m,n € IN and B<y,, = {B;(0) : 7 <m,o0 €
2* o] < n}. Any algorithm that identifies every ball of B<y, n, with EQ and MQ
necessarily uses (| X|™) queries in the worst case.

* The time complexity usually concerns the time spent after receiving each new ex-
ample, and takes the length of the information returned by the Oracle into account;
Thus, our constraint is stronger but not restrictive, if we focus on good balls only.

Proof. Following [13], we describe an Adversary who maintains a set S of all
possible balls. At the beginning, S = B<, . Her answer to the equivalence
query L = B,.(0) is the counterexample o. Her answer to the membership query
0 is NO. At each step, the Adversary eliminates many balls of S but only one
of centre o and radius 0. As there are 2(|X|") such balls in B<,, », identifying
them requires (]| X|™) queries. O

It should be noted that if the Learner is given one string from the ball, he
can learn using a polynomial number of MQ. We shall see that correction queries
(CQ), introduced below, allow to get round these problems:

Definition 3. Let L be a fized language and w a string submitted by the Learner
to the Oracle. Her answer, denoted CQ(w), is either YES if w € L, or a correc-
tion of w w.r.t. L if w ¢ L, that is a string w' € L at minimum edit distance
from w: CqQ(w) = one string of {w' € L: d(w,w") is minimum}.

Notice that the CQ can easily be simulated knowing the target language.
Moreover, we have seen in the introduction that they naturally exist in real-
world applications such as the search engines of the Web. Also, CQ are relevant
from a cognitive point of view: There is growing evidence that corrective input
for grammatical errors is widely available to children [14].

4 Identifying Balls using Corrections

In this section, we propose an algorithm that learns balls using a linear number of
CQ. First, when one submits a string outside of a ball to the Oracle, she answers
with a string that belongs to the ‘circle’ delimiting the ball. However, a string
often has a lot of different possible corrections, contrarily to what happens in
the plane. E.g., the possible corrections for the string aaaa w.r.t. the ball By (bb)
are {aa, aab, aba, baa, aabb, abab, abba, baab, baba, bbaa}. By definition of the Cq,
the Oracle will choose one of them arbitrarily, potentially the worst one w.r.t.
the Learner’s point of view. Nevertheless, the Oracle’s potential malevolence
is limited by the following result, that characterises the set of all the possible
corrections for a string:

Theorem 3. Let B,(0) be a ball and m & B,(0). Then the set of possible cor-
rections of m is ezxactly {z € X* : d(o,z) = r and d(z,m) = d(o,m) — r}.

Here is a geometric interpretation of the result above. Let us define the segment
[o,m] = {w € X* : d(o,w) + d(w,m) = d(o,m)} and the circle C,(0) = {w €
X* i d(o,w) = r}. Theorem 3 states that a string z is a possible correction of
m iff z € [o,m] N Cy(0). The fact that m has several possible corrections shows
that the geometry of X* is very different from that of IR?.

Now, building the centre of a ball from strings on its periphery is difficult for
at least 2 reasons. On the one hand, (X*, d) is a metric space with no vector space
as an underlying structure. This is the same story as if we were trying to learn
the disks of the plane with just a compass but no ruler... On the other hand, the

Require: a string w = x1...2, € B;"**(0), the radius r
Ensure: the centre o of the ball B;(0)

1: c— 054 l;a «— xzp,
2: while ¢ < r do
3: Assume w =21...7, and let w’ = ax1... 25 1Tit1...Tn
4: if Cq(w') = YES then w «— w';c < c+ 1 end if
5 i+—i+4+1
6: end while
7: Assume w = ®1...2, and return T,11... 2,
Fig. 1. Algorithm EXTRACT_CENTRE
problem is formally hard: Given a finite set of strings W = {wy,...,w,} and a

constant K, deciding whether a string z € X* exists such that) . d(z,w) <
K (resp. maxyew d(z,w) < K) is N'P-hard [15].

Therefore, we must study the balls in more detail and make the best pos-
sible use of the CQ so as not to build the centres from scratch. We begin by
distinguishing the longest strings of any ball:

Definition 4. The upper border of a ball B.(0), denoted BI***(0), is the set of
all the strings that belong to B,.(0) and are of mazimum length: B***(0) = {z €
B, (o) : Yw € B,(0),|w| < |z|}.

E.g., let X = {a,b}, then B"**(ba) = {aba, baa, bab, bba}. The strings of
B™** (o) are remarkable because they are all built from the centre o by doing r
insertions. So from a string w € B"**(0), one ‘simply’ has to guess the inserted
letters and delete them to find o again. Some strings of B"**(0) are even more
informative. Indeed, let @ € X' be an arbitrary letter. Then a"o € BI"**(0). So,
if we know r, we can easily deduce o. We claim that CqQ allow us to get hold of
a”o from any string w € B["**(0) by swapping the letters (see Algorithm EX-
TRACT _CENTRE in Figure 1).

Consider B3**(bb) = {aabb, abab, abba, abbb, baab, baba, babb, bbaa, bbab, bbba,
bbbb}. Running EXTRACT _CENTRE on the string w = baab and radius r = 2
transforms, at each loop, the i*" letter of w to an a that is put at the beginning
and then submits it to the Oracle. ¢ counts the number of times this transfor-
mation is accepted. We get:

il w | w |CqQ(w)|w changes|c
1|baablaaab| baab no 0
2|baablabab| YES yes 1
3|abablaabb| YES yes 2

When ¢ = 2 = r, EXTRACT _CENTRE stops with w = aabb and returns o = bb.

Lemma 1. Given w € B (0) and r, Algorithm EXTRACT_ CENTRE returns
o using O (lo| + 1) CQ and a polynomial amount of time.

Hence, we are now able to deduce the centre of a ball as soon as we know its
radius and a string from its upper border. The following technical lemma is a
step towards finding this string (although we have no information about r and
lo| yet):

Lemma 2. Suppose X = {a1,...,a,}. Then every correction w of the string
m = (ay ...a,)* where k > |o| +r belongs to B (o).

Submitting (a; ...a,)* with a sufficiently large k is sure to be corrected by
a string from B***(0). So all that remains is to find such an interesting k. The
following lemma states that if one asks the Oracle to correct a string made of a
lot of a’s, then the correction contains precious informations on the radius and
the number of occurrences of a’s in the centre:

Lemma 3. Consider the ball B,(0) and let a € X and an integer j € IN such
that o/ ¢ B,(0). Let w = CQ(a?). If |w| < j, then |w|, = |o|s + 7.

Now, let us assume that the alphabet is ¥ = {ay,...,a,} and let j1,...,j, €
IN be large integers. Define k = Y7 | |CQ(a]")|q,- Then, Lemma 3 brings k =
Yo (lola; +7) = lo| + |X|-r > |o| + r. Thus we can plug k into Lemma 2 to
get a string w = CQ ((a1...a,)¥) € B™*(0). Moreover, we have |w| = |o| + 7
and k = |o| + | X| - r. So, we deduce that the radius is r = (k — |w])/(|X| — 1).

Let us summarise, by assuming that ¥ = {a1,...,a,} and that the target is
the ball B,.(0). (1) For each letter a;, the Learner asks for the correction of a]
where j is sufficiently large to get a correction whose length is smaller than j;
(2) We define k = > | |CQ(al')|,, and suppose the Learner gets the correction
w for the string m = (a1 ...a,)*; (3) From k and |w|, we deduce r; (4) The
Learner uses EXTRACT CENTRE on w and r in order to find o. In other words,
we are able to learn the balls with CQ (see Algorithm IDF_BALL in Figure 2).

Require: The alphabet ¥ = {a1,...,an}
Ensure: The representation (o,7) of the ball B, (0)
tje—1Lk—0
: for i=1tondo
while |Cq(al)| > j do j « 2-j end while
k— k+ Ca(a?)].,
end for
w«+ Cq((araz . ..an)")
r e (e —) /(2] - 1)
0 <« ExTRACT _CENTRE(W, T)
return (o,7)

Fig. 2. Algorithm IpF_ BAaLL

For instance, consider the ball By(bb) defined over X' = {a,b}. IDF_ BALL
begins by looking for the corrections of @’ and b’ with a sufficiently large j. We
might observe: CQ(a) = YES, CQ(a?) = YEs, CQ(a*) = aabb, Cq(a®) = abba,

CQ(b®) = bbbb. So k = |abbal, + |bbbb|, = 2 + 4 = 6. Then Cq ((ab)®) =
Cq(abababababab) = baab, for instance, so r = (6 — 4)/(2 — 1) = 2. Finally,
EXTRACT CENTRE(baab, 2) returns bb. So the algorithm returns (bb, 2).

Theorem 4. Given any fized polynomial q(), the set of all g-good balls B, (o)
is identifiable with an algorithm using O (|X| + |o| +7) CQ and a polynomial
amount of time.

Proof. The identifiability is clear. Concerning the complexity, the corrections of
the strings a] requires O (|X] + log(|o] + 7)) CQ (lines 2-5). EXTRACT CENTRE
needs O (Jo| +r) CQ (line 8). O

Notice that the set of all the balls, that contains good balls but also huge ones
such that > 2/l for instance, is not polynomially identifiable with IpF_ BALL
since O (|X| + |o| + 1) > O(2/°l) for some of them.

5 Experiments with a Human-like Oracle

In this section, we would like to show the advantages of our approach. There-
fore, we have made several experiments that aim at studying the responses of
Ipr BaALL faced with an Oracle that could be human. As we said in introduc-
tion, our algorithm should not believe unwisely the answers he gets since they
can be approximate. We would like to show here that IDF_BALL withstands
such approximate (i.e., inaccurate, noisy) answers.

Designing the Approzimate Oracle

We begin by modelling a human expert by an Approximate Oracle. Firstly, we
assume that an expert can easily determine whether an example fulfils a concept
or not, thus here, whether w belongs to B,.(0) or not. Secondly, what is really
hard for the expert is to compute the correction of w when w & B, (0), and more
precisely, a string of the ball that is as close to w as possible.

Let X = d(w,CQh(w)) — d(w,CQ(w)) measure how far an approximate
correction is from a perfect one. Intuitively, an Approximate Oracle will often
provide corrections such that X = 0, sometimes X = 1 and rarely X > 2...To
formalise this idea, we introduce a confidence parameter 0 < p < 1, called the
accuracy level of the Oracle, that translates the quality of her answers, and use
a geometric distribution: We assume that Pr(X = k) = (1 —p)*p, for all k € IN.
Therefore, with probability (1 —p)¥p, the correction CQy(w) of a string w will be
in the target ball, at distance k of CQ(w). Basically, we get E(X) = (1/p)—1. So
when the Oracle is very accurate, say p = 0.8, then the average distance between
an approximate and a perfect correction is low (0.25). Conversely, an expert
with limited computation capacities, say p = 0.4, will often provide inaccurate
corrections, at distance ~ 1.5.

Our model of Approximate Oracle is simple. For instance, we do not suppose
that she has any memory, thus by submitting twice every string w, we would
probably get 2 different corrections, that could be used to correct the corrections!
However, we want here to study the resistance of IDF_BALL to approximate
answers, not to design the best possible algorithm, so our model is sufficient.

Behaviour of the Algorithm faced with an Approximate Oracle

Following Theorem 4, IDF _BALL systematically guesses the target ball with
the help of a Perfect Oracle. But of course, he is sometimes going to fail in front
of an Approximate Oracle. So, in order to assess the resistance of IDF_ BALL to
approximate corrections, we conduct the following experiment. For every accu-
racy level 0.5 < p < 1, we randomly choose a set of 100 balls B,.(0) such that
|o| + r = 200. More precisely, the radius r varies between 20 and 180 by step of
20, and we randomly choose 10 centres o of length 200 — r for each radius. Then
we ask IDF__BALL to learn them and compute the percentage of balls he is able
to retrieve, which we call the precision of the algorithm. We show the result in
Figure 3. We notice that IDF_ BALL is able to identify about 75% of the balls
faced with an accuracy level of p = 0.9. Of course, as one can expect, with lower
levels of accuracy, his performances quickly drop (15% for p = 0.5). We also
show, in Figure 4, the average distances between the centres of the target balls
and the centres of the learnt balls when he fails to retrieve them. We observe that
these distances are not that important: Even with an accuracy level of p = 0.5,
this distance is less than 4.

precision
distance between the centres

05 06 weuracy 09 1 uracy
Fig. 3. Precision of IpF_BALL faced with Fig.4. Average distances (and standard
an Approximate Oracle in function of the deviation) between the centres of the tar-
accuracy level p. Each point is assessed on get balls and the centres of the learnt balls,
100 balls. when IDF_ BALL fails in retrieving them.

Improving the Precision with a posteriori Heuristics
We have seen that IDF_BALL was able to assimilate the approximations of
the Oracle up to a certain level of accuracy. Moreover, the centre returned by
the algorithm is generally not far from the target one. Thus, it is reasonable to
think that we could improve the precision by mining the neighbourhood of the
learnt centre, using local edit modifications. This kind of approaches has been
pioneered by Kohonen in [16] and is surveyed in [17].
Suppose that the learnt ball is By (u). We test each neighbour (at distance
1) of u and examine if it is better (i.e. if & can be reduced) in such a way as to
contain all the corrections given up to now. This heuristics will be very good each

time v is at distance 1 from the target centre. But as soon as this distance grows,
IprF_BALL will fail again. In order to enhance the one-step heuristics, we can
iterate the process and design a second until-convergence heuristics by repeating
the local search until the size of the ball cannot be diminished anymore.

In order to show that the balls learnt by IDF BALL can be corrected a
posteriori, we compare, in a series of experiments, the precision of the algorithm
without any post-treatment, with the one-step heuristics and with the until-
convergence heuristics. We fix |o| + 7 = 200. The accuracy level varies from 0.5
to 1 and the radius, from 20 to 180. For each pair (accuracy, radius), we randomly
draw 50 centres of length 200 — r, and ask IDF_ BALL to retrieve them. We plot
the resulting precisions in Figure 5.

. . - e . until-convergence | —+—
precision . - . onhe-step.|--->--
: o " without |-~~~

accuracy

Fig. 5. Precision of IDF_ BALL with and without heuristics in function of accuracy and
radius when |o| + r = 200. For each pair (accuracy, radius), we compute the precision
over 50 balls.

Firstly, we must explain the bumpiness of the graph. Actually, each point
assesses the precision of IDF _BALL using a sample of 50 balls. However, the
number of balls of radius 100, for instance, is greater that 103°! So, whatever the
sample, we will definitively not get any relevant estimate of the true precision,
that explains the variance. On the other hand, this is not limiting since our
experiments still allow to compare the heuristics themselves: We can remark
that whatever the accuracy level, using the until-convergence heuristics is never
worse than the one-step heuristics, which is never worse than no post-treatment
at all. But it is also clear that our heuristics do not always improve the precision
of the algorithm: This depends on the ratio between the radius of the target
ball and the length of its centre. In order to detail this, we have extracted 2
transverse sections, shown in Figure 6, where we fix the radius.

unti-corvergence —+— until-corlvergence —+— '

-step --x--- one-step —-x--
without -+ without -+

,,,,,,,
,,,,,,

precision
precision

07 07
accuracy accuracy

Fig. 6. Precision of IDF_ BALL when |o|+7 = 200 for » = 120 (left) and r = 20 (right).
For each accuracy, we compute the average over 50 balls.

The left curves of Figure 6 describe the precision of IDF BALL for target
balls such that r = 120 and |o| = 80. In this case, we gain little using the
heuristics. Notice that these balls are not good for the identity polynomial. On
the other hand, the right curves of Figure 6 describe the precision for target balls
such that » = 20 and |o| = 180. Basically, our heuristics outperform the precision
w.r.t. the algorithm without any post-treatment, whatever the accuracy level of
the Oracle. Moreover, the benefit is all the more important as the accuracy level
is bad. For instance, when p = 0.6, the until-convergence heuristics is able to
dramatically boost the precision from 26% to 90%. So in this setting, with no
further enhancement, IDF_ BALL produces balls that are so close to the targets
that they can easily be improved using only basic local modifications.

6 Discussion and Conclusion

In this work, we have used correction queries to learn languages from an Oracle.
The intended setting is that of an inexact Oracle, and experiments show that
the algorithm we propose can learn a language sufficiently close to the target for
simple local modifications (with no extra queries) to be possible. In order to do
this, the languages we consider are balls of strings defined with the edit distance.
Studying them allowed us to catch a glimpse of the geometry of sets of strings,
which is very different from the Euclidean geometry. A number of questions and
research directions are left open by this work.

A first question concerns the distance we use. We have chosen to work with
the unitary edit distance, but in many applications, the edit operations can have
different weights. Preliminary work has allowed us to notice that the geometry
of sets of strings, thus the algorithmics, could change considerably depending
on the sorts of weights we used. For instance, with the substitutions costing less
than the insertions and the deletions, a much faster algorithm exists, requiring
only a number of queries in O (log(|o| + 1)) [18].

A second question concerns the inaccuracy model we are using: As noticed
in Section 5, with the current model it would be possible to repeat the same

CqQ various times, getting different corrections, but possibly being able, through
some majority vote scheme, to get the adequate correction with very little extra
cost. Just asking for persistent corrections is not enough to solve this problem:
A good model should require that if one queries from a close enough string (a®?°
instead of a'%%?) then the corrections should also remain close. Topologically, we
would expect the Oracle to be k-Lipschitz continuous (with 0 < k < 1).

Acknowledgement The authors wish to thank the anonymous reviewers as well
as Dana Angluin, Jose Oncina and Rémi Eyraud for their helpful comments.

References

1. Angluin, D.: Queries and concept learning. Machine Learning Journal 2 (1987)
319-342

2. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163(4) (1965) 845—848

3. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the
ACM 21 (1974) 168 178

4. Durbin, R.,; Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis.
Cambridge University Press (1998)

5. Amengual, J.C.; Sanchis, A.; Vidal, E., Benedi, J.M.: Language simplification
through error-correcting and grammatical inference techniques. Machine Learning
Journal 44(1) (2001) 143 159

6. Oncina, J., Sebban, M.: Learning stochastic edit distance: Application in hand-
written character recognition. Pattern Recognition 39(9) (2006) 1575-1587

7. Tantini, F., de la Higuera, C.; Janodet, J.C.: Identification in the limit of
systematic-noisy languages. In: Proc. of the 8th Int. Coll. in Grammatical In-
ference (ICGI'06), LNCS 4201 (2006) 19 31

8. Kearns, M.J., Li, M.: Learning in the presence of malicious errors. STAM Journal
of Computing 22(4) (1993) 807-837

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithmique du texte. Vuibert (2001)

10. Schulz, K.U., Mihov, S.: Fast string correction with levenshtein automata.
Int. Journal on Document Analysis and Recognition 5(1) (2002) 67 85

11. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75 (1987) 87-106

12. de la Higuera, C.: Data complexity issues in grammatical inference. In: Data
Complexity in Pattern Recognition. Springer-Verlag (2006) 153-172

13. Angluin, D.: Queries and concept learning. Machine Learning 2 (1988) 319-342

14. Becerra-Bonache, L., Yokomori, T.: Learning mild context-sensitiveness: Tow-
ards understanding children’s language learning. In: Proc. of the 7th Int. Coll. in
Grammatical Inference (ICGI'04), LNCS 3264 (2004) 53-64

15. de la Higuera, C.; Casacuberta, F.: Topology of strings: median string is NP-
complete. Theoretical Computer Science 230 (2000) 39 48

16. Kohonen, T.: Median strings. Information Processing Letters 3 (1985) 309 313

17. Martinez-Hinarejos, C.D., Juan, A., Casacuberta, F.: Use of median string for clas-
sification. In: Proc. of the 15th International Conference on Pattern Recognition.
Volume 2. (2000) 2903-2906

18. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Apprentissage
des boules de mots avec des requétes de correction (in french). In: Proc. of 9th
Conférence en Apprentissage, Presses Universitaires de Grenoble (2007)

