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2 Laboratoire Hubert Curien, Université Jean Monnet18 rue du Professeur Benoît Lauras, 42000 Saint-Étienne, Frane{dlh,janodet,frederi.tantini}�univ-st-etienne.frAbstrat. During the 80's, Angluin introdued an ative learning pa-radigm, using an Orale, apable of answering both membership andequivalene queries. However, pratial evidene tends to show that ifthe former are often available, this is usually not the ase of the latter.We propose new queries, alled orretion queries, whih we study in theframework of Grammatial Inferene. When a string is submitted to theOrale, either she validates it if it belongs to the target language, or sheproposes a orretion, i.e., a string of the language lose to the querywith respet to the edit distane. We also introdue a non-standard lassof languages: The topologial balls of strings. We show that this lassis not learnable in Angluin's Mat model, but is with a linear numberof orretion queries. We ondut several experiments with an Oralesimulating a human Expert, and show that our algorithm is resistant toapproximate answers.Keywords: Grammatial Inferene, Orale Learning, Corretion Que-ries, Edit Distane, Balls of Strings.1 IntrodutionDo you know how many Nabodonosaur were kings of Babylon? And do youknow when Arnold Shwartzeneger was born? A few years ago, just 2 deadesago, you would have had to onsult enylopedias and Who's Who ditionariesin order to get answers to suh questions. At that time, you may have neededthis information in order to partiipate to quizzes and ompetitions organisedby famous magazines during the summers, but beause of these questions, youmight possibly have missed the very �rst prize. Why?. . . Nowadays, everythinghas hanged: You naturally use the Web, launh your favourite searh engine,
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type 2 keywords, follow 3 links and note down the answers. In this parti-ular ase, you disover. . . that no king of Babylon was alled Nabodonosaurbut 2 Nabuhodonosor 's reigned there many enturies ago. Again, the dayArnold Shwartzeneger was born is not lear, but it is easy to hek that ArnoldShwarzenegger was born in 1947, July 30th.So you would probably win today the great ompetitions of the past. Indeed,the atual searh engines are able to propose orretions when a keyword isnot frequent. Those orretions are most often reliable beause the refereneditionary is built from the billions of web pages indexed all over the world.Hene, a searh engine is playing the role of an imperfet but powerful orale,able to validate a relevant query by returning relevant douments, but also toorret any suspet query. Suh an orale is able to answer to what we shall allorretion queries.The �rst goal of this paper is to show, from a theoretial standpoint, thatorretion queries allow to get new hallenging results in the �eld of AtiveLearning. In this framework developed by Angluin in the 80's [1℄, a Learner(He) has aess to an Orale (She) that knows a onept he must disover; Tothis purpose, he submits di�erent kinds of queries (e.g., Corretion Queries) andshe has to answer without lying. The game ends when he guesses the onept.Query-based learners are often interesting from a pratial viewpoint. For in-stane, instead of requiring a human expert to label huge quantities of data,this expert ould be asked by the Learner, in an interative situation, to pro-vide a small amount of targeted information. The seond goal of this paper isto provide evidene that orretion queries are suitable for this kind of real-lifeappliations. Assuming that the Orale is a human expert, however, introduesnew onstraints. On the one hand, it is inoneivable to ask a polynomial numberof queries: This may still be too muh for a human. So the learning algorithmshould aim at minimising the number of queries even if we must pay for it witha worse time omplexity. On the other hand, a human being (or even the Web)is fallible. Therefore the learning algorithm should also aim at learning funtionsor languages from approximate orretions.In the above Web example, the distane used by the searh engine to �nda losest string is a variant of the edit distane whih measures the minimumnumber of deletion, insertion or substitution operations needed to transformone string into another [2, 3℄. This distane and variants where eah elementaryoperation may have a di�erent weight have been used in many �elds inludingComputational Biology [4℄, Language Modelling [5℄ and Pattern Reognition [6℄.Edit distane appears in spei� Grammatial Inferene problems, in partiularwhen one wants to learn languages from noisy data [7℄. The lasses of languagesstudied there are not de�ned following the Chomsky Hierarhy. Indeed, even theeasiest level of this hierarhy, the lass of regular languages, is not at all robust tonoise, sine the parity funtions (whih an be de�ned as regular languages) arenot learnable in the presene of noise [8℄. In this paper also, in order to avoid thisdi�ulty, we shall onsider only speial �nite languages, that seem elementary



to formal language theoretiians, but are relevant for topologists and omplexfor ombinatorialists: the balls of strings.Hene, we study the problem of identifying balls of strings from orretionqueries. After some preliminaries in Setion 2, we prove that balls are not learn-able with Angluin's membership and equivalene queries (Setion 3). Then, weshow in Setion 4 that balls are learnable with a linear number of orretionqueries. In Setion 5, we study the e�etiveness of our algorithm from an ex-perimental standpoint, showing that it is robust when the answers of the Or-ale are approximate. We onlude in Setion 6. Due to the lak of spae, wehave skipped most formal proofs. The interested reader may �nd them at http://labh-urien.univ-st-etienne.fr/~tantini/pub/bhjt07Long.pdf.2 On Balls of Strings as LanguagesAn alphabet Σ is a �nite nonempty set of symbols alled letters. A string w =
a1 . . . an is any �nite sequene of letters. We write Σ∗ for the set of all stringsover Σ, and λ for the empty string. Let |w| be the length of w and |w|a thenumber of ourrenes of a in w.The edit distane d(w, w′) is the minimum number of edit operations neededto transform w into w′ [2℄. The edit operations are either (1) deletion: w = uavand w′ = uv , or (2) insertion: w = uv and w′ = uav, or (3) substitution: w = uavand w′ = ubv, where u, v ∈ Σ∗, a, b ∈ Σ and a 6= b. E.g., d(abaa, aab) = 2 sine
abaa −→ aaa −→ aab and the rewriting of abaa into aab annot be ahieved withless than 2 steps. Notie that d(w, w′) an be omputed in O (|w| · |w′|) time bydynami programming [3℄.It is well-known that the edit distane is a metri [9℄, so it onveys to
Σ∗ the struture of a metri spae. The ball of entre o ∈ Σ∗ and radius
r ∈ IN, denoted Br(o), is the set of all strings whose distane is at most rfrom o: Br(o) = {w ∈ Σ∗ : d(o, w) ≤ r}. E.g., if Σ = {a, b}, then B1(ba) =
{a, b, aa, ba, bb, aba, baa, bab, bba} and Br(λ) = Σ≤r for all r ∈ IN.The latter example illustrates the fat that the number of strings in a ballgrows exponentially with the radius. This remark raises the problem of the rep-resentation sheme that we should use to learn the balls. Basially, we needrepresentations whose size is reasonable, whih is not the ase of an exhaustiveenumeration, nor of the deterministi �nite automata (Dfa) sine experimentsshow that the orresponding minimum Dfa is often exponential with r (but lin-ear with |o|) [10℄, even if a formal proof of this property remains a hallengingombinatorial problem.On the other hand, why not represent the ball Br(o) by the pair (o, r) itself?Indeed, its size is |o| + log r. Moreover, deiding whether w ∈ Br(o) or not isimmediate: One only has to (1) ompute d(o, w) and (2) hek whether thisdistane is ≤ r, whih is ahievable in time O (|o| · |w| + log r). Finally, when thealphabet has at least 2 letters, (o, r) is a unique thus anonial representationof Br(o):Theorem 1. If |Σ| ≥ 2 and Br1

(o1) = Br2
(o2), then o1 = o2 and r1 = r2.



Notie that if Σ = {a}, then B2(a) = B3(λ) = {λ, a, aa, aaa} for instane.Hene, representing the ball Br(o) by the pair (o, r) is reasonable. However,it is worth notiing that huge balls, whose radius is not polynomially related tothe length of the entre (e.g., r > 2|o|), will pose triky problems of omplexity.For instane, to learn the ball Br(λ) = Σ≤r, one needs to manipulate at leastone string of length r + 1. Therefore, in the following, we will always onsidergood balls only:De�nition 1. Given any �xed polynomial q(), we say that a ball Br(o) is q-goodif r ≤ q(|o|).3 Learning Balls from QueriesQuery learning is a paradigm introdued by Angluin [1℄. Her model brings aLearner (he) and an Orale (she) into play. The goal of the Learner is to identifythe representation of an unknown language, by submitting queries to the Orale.The latter knows the target language and answers properly to the queries (i.e.,she does not lie). Moreover, the Learner is bound by e�ieny onstraints: (1)He an only submit a polynomial number of queries (in the size of the targetrepresentation) and (2) the available overall time must be polynomial in the sizeof the target representation3.Between the di�erent ombinations of queries, one, alled Mat (MinimallyAdequate Teaher), is su�ient to learn Dfa [11℄. Two kinds of queries are used:De�nition 2. Let Λ be a lass of languages on Σ∗ and L ∈ Λ a target lan-guage known by the Orale, that the Learner aims at guessing. In the ase ofmembership queries, the Learner submits a string w ∈ Σ∗ to the Orale; Heranswer, denoted Mq(w), is either Yes if w ∈ L, or No if w /∈ L. In the aseof equivalene queries, the Learner submits (the representation of) a language
K ∈ Λ to the Orale; Her answer, denoted Eq(K), is either Yes if K = L, ora string belonging to the symmetri di�erene (

(K \ L) ∪ (L \ K)
) if K 6= L.Although Mq and Eq have established themselves as a standard ombina-tion, there are real grounds to believe that Eq are too powerful to exist or evenbe simulated. As suggested in [11℄ we may be able to substitute them with arandom draw of strings that are then submitted as Mq (sampling), but thereare many ases where sampling is not possible as the relevant distribution isunknown and/or inaessible [12℄. Besides, we will not onsider Mq and Eqbeause they do not help to learn balls:Theorem 2. Assume |Σ| ≥ 2. Let m, n ∈ IN and B≤m,n = {Br(o) : r ≤ m, o ∈

Σ∗, |o| ≤ n}. Any algorithm that identi�es every ball of B≤m,n with Eq and Mqneessarily uses Ω(|Σ|n) queries in the worst ase.3 The time omplexity usually onerns the time spent after reeiving eah new ex-ample, and takes the length of the information returned by the Orale into aount;Thus, our onstraint is stronger but not restritive, if we fous on good balls only.



Proof. Following [13℄, we desribe an Adversary who maintains a set S of allpossible balls. At the beginning, S = B≤m,n. Her answer to the equivalenequery L = Br(o) is the ounterexample o. Her answer to the membership query
o is No. At eah step, the Adversary eliminates many balls of S but only oneof entre o and radius 0. As there are Ω(|Σ|n) suh balls in B≤m,n, identifyingthem requires Ω(|Σ|n) queries. ⊓⊔It should be noted that if the Learner is given one string from the ball, hean learn using a polynomial number of Mq. We shall see that orretion queries(Cq), introdued below, allow to get round these problems:De�nition 3. Let L be a �xed language and w a string submitted by the Learnerto the Orale. Her answer, denoted Cq(w), is either Yes if w ∈ L, or a orre-tion of w w.r.t. L if w /∈ L, that is a string w′ ∈ L at minimum edit distanefrom w: Cq(w) = one string of {w′ ∈ L : d(w, w′) is minimum}.Notie that the Cq an easily be simulated knowing the target language.Moreover, we have seen in the introdution that they naturally exist in real-world appliations suh as the searh engines of the Web. Also, Cq are relevantfrom a ognitive point of view: There is growing evidene that orretive inputfor grammatial errors is widely available to hildren [14℄.4 Identifying Balls using CorretionsIn this setion, we propose an algorithm that learns balls using a linear number ofCq. First, when one submits a string outside of a ball to the Orale, she answerswith a string that belongs to the `irle' delimiting the ball. However, a stringoften has a lot of di�erent possible orretions, ontrarily to what happens inthe plane. E.g., the possible orretions for the string aaaa w.r.t. the ball B2(bb)are {aa, aab, aba, baa, aabb, abab, abba, baab, baba, bbaa}. By de�nition of the Cq,the Orale will hoose one of them arbitrarily, potentially the worst one w.r.t.the Learner's point of view. Nevertheless, the Orale's potential malevoleneis limited by the following result, that haraterises the set of all the possibleorretions for a string:Theorem 3. Let Br(o) be a ball and m 6∈ Br(o). Then the set of possible or-retions of m is exatly {z ∈ Σ∗ : d(o, z) = r and d(z, m) = d(o, m) − r}.Here is a geometri interpretation of the result above. Let us de�ne the segment
[o, m] = {w ∈ Σ∗ : d(o, w) + d(w, m) = d(o, m)} and the irle Cr(o) = {w ∈
Σ∗ : d(o, w) = r}. Theorem 3 states that a string z is a possible orretion of
m i� z ∈ [o, m] ∩ Cr(o). The fat that m has several possible orretions showsthat the geometry of Σ∗ is very di�erent from that of IR2.Now, building the entre of a ball from strings on its periphery is di�ult forat least 2 reasons. On the one hand, (Σ∗, d) is a metri spae with no vetor spaeas an underlying struture. This is the same story as if we were trying to learnthe disks of the plane with just a ompass but no ruler. . . On the other hand, the



Fig. 1. Algorithm Extrat_Centreproblem is formally hard : Given a �nite set of strings W = {w1, . . . , wn} and aonstant K, deiding whether a string z ∈ Σ∗ exists suh that ∑

w∈W d(z, w) <
K (resp. maxw∈W d(z, w) < K) is NP-hard [15℄.Therefore, we must study the balls in more detail and make the best pos-sible use of the Cq so as not to build the entres from srath. We begin bydistinguishing the longest strings of any ball:De�nition 4. The upper border of a ball Br(o), denoted Bmax

r (o), is the set ofall the strings that belong to Br(o) and are of maximum length: Bmax
r (o) = {z ∈

Br(o) : ∀w ∈ Br(o), |w| ≤ |z|}.E.g., let Σ = {a, b}, then Bmax
1

(ba) = {aba, baa, bab, bba}. The strings of
Bmax

r (o) are remarkable beause they are all built from the entre o by doing rinsertions. So from a string w ∈ Bmax
r (o), one `simply' has to guess the insertedletters and delete them to �nd o again. Some strings of Bmax

r (o) are even moreinformative. Indeed, let a ∈ Σ be an arbitrary letter. Then aro ∈ Bmax
r (o). So,if we know r, we an easily dedue o. We laim that Cq allow us to get hold of

aro from any string w ∈ Bmax
r (o) by swapping the letters (see Algorithm Ex-trat_Centre in Figure 1).Consider Bmax

2
(bb) = {aabb, abab, abba, abbb, baab, baba, babb, bbaa, bbab, bbba,

bbbb}. Running Extrat_Centre on the string w = baab and radius r = 2transforms, at eah loop, the ith letter of w to an a that is put at the beginningand then submits it to the Orale. c ounts the number of times this transfor-mation is aepted. We get:
i w w′ Cq(w′) w hanges c
1 baab aaab baab no 0
2 baab abab Yes yes 1
3 abab aabb Yes yes 2When c = 2 = r, Extrat_Centre stops with w = aabb and returns o = bb.Lemma 1. Given w ∈ Bmax

r (o) and r, Algorithm Extrat_Centre returns
o using O (|o| + r) Cq and a polynomial amount of time.



Hene, we are now able to dedue the entre of a ball as soon as we know itsradius and a string from its upper border. The following tehnial lemma is astep towards �nding this string (although we have no information about r and
|o| yet):Lemma 2. Suppose Σ = {a1, . . . , an}. Then every orretion w of the string
m = (a1 . . . an)k where k ≥ |o| + r belongs to Bmax

r (o).Submitting (a1 . . . an)k with a su�iently large k is sure to be orreted bya string from Bmax
r (o). So all that remains is to �nd suh an interesting k. Thefollowing lemma states that if one asks the Orale to orret a string made of alot of a's, then the orretion ontains preious informations on the radius andthe number of ourrenes of a's in the entre:Lemma 3. Consider the ball Br(o) and let a ∈ Σ and an integer j ∈ IN suhthat aj 6∈ Br(o). Let w = Cq(aj). If |w| < j, then |w|a = |o|a + r.Now, let us assume that the alphabet is Σ = {a1, . . . , an} and let j1, . . . , jn ∈

IN be large integers. De�ne k =
∑n

i=1
|Cq(aji

i )|ai
. Then, Lemma 3 brings k =

∑n

i=1
(|o|ai

+ r) = |o| + |Σ| · r ≥ |o| + r. Thus we an plug k into Lemma 2 toget a string w = Cq (

(a1 . . . an)k
)

∈ Bmax
r (o). Moreover, we have |w| = |o| + rand k = |o| + |Σ| · r. So, we dedue that the radius is r = (k − |w|)/(|Σ| − 1).Let us summarise, by assuming that Σ = {a1, . . . , an} and that the target isthe ball Br(o). (1) For eah letter ai, the Learner asks for the orretion of aj

iwhere j is su�iently large to get a orretion whose length is smaller than j;(2) We de�ne k =
∑n

i=1
|Cq(aji

i )|ai
and suppose the Learner gets the orretion

w for the string m = (a1 . . . an)k; (3) From k and |w|, we dedue r; (4) TheLearner uses Extrat_Centre on w and r in order to �nd o. In other words,we are able to learn the balls with Cq (see Algorithm Idf_Ball in Figure 2).

Fig. 2. Algorithm Idf_BallFor instane, onsider the ball B2(bb) de�ned over Σ = {a, b}. Idf_Ballbegins by looking for the orretions of aj and bj with a su�iently large j. Wemight observe: Cq(a) = Yes, Cq(a2) = Yes, Cq(a4) = aabb, Cq(a8) = abba,



Cq(b8) = bbbb. So k = |abba|a + |bbbb|b = 2 + 4 = 6. Then Cq (

(ab)6
)

=Cq(abababababab) = baab, for instane, so r = (6 − 4)/(2 − 1) = 2. Finally,Extrat_Centre(baab, 2) returns bb. So the algorithm returns (bb, 2).Theorem 4. Given any �xed polynomial q(), the set of all q-good balls Br(o)is identi�able with an algorithm using O (|Σ| + |o| + r) Cq and a polynomialamount of time.Proof. The identi�ability is lear. Conerning the omplexity, the orretions ofthe strings aj
i requires O (|Σ| + log(|o| + r)) Cq (lines 2-5). Extrat_Centreneeds O (|o| + r) Cq (line 8). ⊓⊔Notie that the set of all the balls, that ontains good balls but also huge onessuh that r > 2|o| for instane, is not polynomially identi�able with Idf_Ballsine O (|Σ| + |o| + r) > O(2|o|) for some of them.5 Experiments with a Human-like OraleIn this setion, we would like to show the advantages of our approah. There-fore, we have made several experiments that aim at studying the responses ofIdf_Ball faed with an Orale that ould be human. As we said in introdu-tion, our algorithm should not believe unwisely the answers he gets sine theyan be approximate. We would like to show here that Idf_Ball withstandssuh approximate (i.e., inaurate, noisy) answers.Designing the Approximate OraleWe begin by modelling a human expert by an Approximate Orale. Firstly, weassume that an expert an easily determine whether an example ful�ls a oneptor not, thus here, whether w belongs to Br(o) or not. Seondly, what is reallyhard for the expert is to ompute the orretion of w when w 6∈ Br(o), and morepreisely, a string of the ball that is as lose to w as possible.Let X = d

(

w,Cqh(w)
)

− d
(

w,Cq(w)
) measure how far an approximateorretion is from a perfet one. Intuitively, an Approximate Orale will oftenprovide orretions suh that X = 0, sometimes X = 1 and rarely X ≥ 2. . . Toformalise this idea, we introdue a on�dene parameter 0 < p ≤ 1, alled theauray level of the Orale, that translates the quality of her answers, and usea geometri distribution: We assume that Pr(X = k) = (1− p)kp, for all k ∈ IN.Therefore, with probability (1−p)kp, the orretion Cqh(w) of a string w will bein the target ball, at distane k of Cq(w). Basially, we get E(X) = (1/p)−1. Sowhen the Orale is very aurate, say p = 0.8, then the average distane betweenan approximate and a perfet orretion is low (0.25). Conversely, an expertwith limited omputation apaities, say p = 0.4, will often provide inaurateorretions, at distane ≃ 1.5.Our model of Approximate Orale is simple. For instane, we do not supposethat she has any memory, thus by submitting twie every string w, we wouldprobably get 2 di�erent orretions, that ould be used to orret the orretions !However, we want here to study the resistane of Idf_Ball to approximateanswers, not to design the best possible algorithm, so our model is su�ient.



Behaviour of the Algorithm faed with an Approximate OraleFollowing Theorem 4, Idf_Ball systematially guesses the target ball withthe help of a Perfet Orale. But of ourse, he is sometimes going to fail in frontof an Approximate Orale. So, in order to assess the resistane of Idf_Ball toapproximate orretions, we ondut the following experiment. For every au-ray level 0.5 ≤ p ≤ 1, we randomly hoose a set of 100 balls Br(o) suh that
|o| + r = 200. More preisely, the radius r varies between 20 and 180 by step of20, and we randomly hoose 10 entres o of length 200− r for eah radius. Thenwe ask Idf_Ball to learn them and ompute the perentage of balls he is ableto retrieve, whih we all the preision of the algorithm. We show the result inFigure 3. We notie that Idf_Ball is able to identify about 75% of the ballsfaed with an auray level of p = 0.9. Of ourse, as one an expet, with lowerlevels of auray, his performanes quikly drop (15% for p = 0.5). We alsoshow, in Figure 4, the average distanes between the entres of the target ballsand the entres of the learnt balls when he fails to retrieve them. We observe thatthese distanes are not that important: Even with an auray level of p = 0.5,this distane is less than 4.
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time u is at distane 1 from the target entre. But as soon as this distane grows,Idf_Ball will fail again. In order to enhane the one-step heuristis, we aniterate the proess and design a seond until-onvergene heuristis by repeatingthe loal searh until the size of the ball annot be diminished anymore.In order to show that the balls learnt by Idf_Ball an be orreted aposteriori, we ompare, in a series of experiments, the preision of the algorithmwithout any post-treatment, with the one-step heuristis and with the until-onvergene heuristis. We �x |o| + r = 200. The auray level varies from 0.5to 1 and the radius, from 20 to 180. For eah pair (auray, radius), we randomlydraw 50 entres of length 200− r, and ask Idf_Ball to retrieve them. We plotthe resulting preisions in Figure 5.
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Fig. 6. Preision of Idf_Ball when |o|+r = 200 for r = 120 (left) and r = 20 (right).For eah auray, we ompute the average over 50 balls.The left urves of Figure 6 desribe the preision of Idf_Ball for targetballs suh that r = 120 and |o| = 80. In this ase, we gain little using theheuristis. Notie that these balls are not good for the identity polynomial. Onthe other hand, the right urves of Figure 6 desribe the preision for target ballssuh that r = 20 and |o| = 180. Basially, our heuristis outperform the preisionw.r.t. the algorithm without any post-treatment, whatever the auray level ofthe Orale. Moreover, the bene�t is all the more important as the auray levelis bad. For instane, when p = 0.6, the until-onvergene heuristis is able todramatially boost the preision from 26% to 90%. So in this setting, with nofurther enhanement, Idf_Ball produes balls that are so lose to the targetsthat they an easily be improved using only basi loal modi�ations.6 Disussion and ConlusionIn this work, we have used orretion queries to learn languages from an Orale.The intended setting is that of an inexat Orale, and experiments show thatthe algorithm we propose an learn a language su�iently lose to the target forsimple loal modi�ations (with no extra queries) to be possible. In order to dothis, the languages we onsider are balls of strings de�ned with the edit distane.Studying them allowed us to ath a glimpse of the geometry of sets of strings,whih is very di�erent from the Eulidean geometry. A number of questions andresearh diretions are left open by this work.A �rst question onerns the distane we use. We have hosen to work withthe unitary edit distane, but in many appliations, the edit operations an havedi�erent weights. Preliminary work has allowed us to notie that the geometryof sets of strings, thus the algorithmis, ould hange onsiderably dependingon the sorts of weights we used. For instane, with the substitutions osting lessthan the insertions and the deletions, a muh faster algorithm exists, requiringonly a number of queries in O (log(|o| + r)) [18℄.A seond question onerns the inauray model we are using: As notiedin Setion 5, with the urrent model it would be possible to repeat the same
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