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t. During the 80's, Angluin introdu
ed an a
tive learning pa-radigm, using an Ora
le, 
apable of answering both membership andequivalen
e queries. However, pra
ti
al eviden
e tends to show that ifthe former are often available, this is usually not the 
ase of the latter.We propose new queries, 
alled 
orre
tion queries, whi
h we study in theframework of Grammati
al Inferen
e. When a string is submitted to theOra
le, either she validates it if it belongs to the target language, or sheproposes a 
orre
tion, i.e., a string of the language 
lose to the querywith respe
t to the edit distan
e. We also introdu
e a non-standard 
lassof languages: The topologi
al balls of strings. We show that this 
lassis not learnable in Angluin's Mat model, but is with a linear numberof 
orre
tion queries. We 
ondu
t several experiments with an Ora
lesimulating a human Expert, and show that our algorithm is resistant toapproximate answers.Keywords: Grammati
al Inferen
e, Ora
le Learning, Corre
tion Que-ries, Edit Distan
e, Balls of Strings.1 Introdu
tionDo you know how many Nab
odonosaur were kings of Babylon? And do youknow when Arnold Shwartzeneger was born? A few years ago, just 2 de
adesago, you would have had to 
onsult en
y
lopedias and Who's Who di
tionariesin order to get answers to su
h questions. At that time, you may have neededthis information in order to parti
ipate to quizzes and 
ompetitions organisedby famous magazines during the summers, but be
ause of these questions, youmight possibly have missed the very �rst prize. Why?. . . Nowadays, everythinghas 
hanged: You naturally use the Web, laun
h your favourite sear
h engine,
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type 2 keywords, follow 3 links and note down the answers. In this parti
-ular 
ase, you dis
over. . . that no king of Babylon was 
alled Nab
odonosaurbut 2 Nabu
hodonosor 's reigned there many 
enturies ago. Again, the dayArnold Shwartzeneger was born is not 
lear, but it is easy to 
he
k that ArnoldS
hwarzenegger was born in 1947, July 30th.So you would probably win today the great 
ompetitions of the past. Indeed,the a
tual sear
h engines are able to propose 
orre
tions when a keyword isnot frequent. Those 
orre
tions are most often reliable be
ause the referen
edi
tionary is built from the billions of web pages indexed all over the world.Hen
e, a sear
h engine is playing the role of an imperfe
t but powerful ora
le,able to validate a relevant query by returning relevant do
uments, but also to
orre
t any suspe
t query. Su
h an ora
le is able to answer to what we shall 
all
orre
tion queries.The �rst goal of this paper is to show, from a theoreti
al standpoint, that
orre
tion queries allow to get new 
hallenging results in the �eld of A
tiveLearning. In this framework developed by Angluin in the 80's [1℄, a Learner(He) has a

ess to an Ora
le (She) that knows a 
on
ept he must dis
over; Tothis purpose, he submits di�erent kinds of queries (e.g., Corre
tion Queries) andshe has to answer without lying. The game ends when he guesses the 
on
ept.Query-based learners are often interesting from a pra
ti
al viewpoint. For in-stan
e, instead of requiring a human expert to label huge quantities of data,this expert 
ould be asked by the Learner, in an intera
tive situation, to pro-vide a small amount of targeted information. The se
ond goal of this paper isto provide eviden
e that 
orre
tion queries are suitable for this kind of real-lifeappli
ations. Assuming that the Ora
le is a human expert, however, introdu
esnew 
onstraints. On the one hand, it is in
on
eivable to ask a polynomial numberof queries: This may still be too mu
h for a human. So the learning algorithmshould aim at minimising the number of queries even if we must pay for it witha worse time 
omplexity. On the other hand, a human being (or even the Web)is fallible. Therefore the learning algorithm should also aim at learning fun
tionsor languages from approximate 
orre
tions.In the above Web example, the distan
e used by the sear
h engine to �nda 
losest string is a variant of the edit distan
e whi
h measures the minimumnumber of deletion, insertion or substitution operations needed to transformone string into another [2, 3℄. This distan
e and variants where ea
h elementaryoperation may have a di�erent weight have been used in many �elds in
ludingComputational Biology [4℄, Language Modelling [5℄ and Pattern Re
ognition [6℄.Edit distan
e appears in spe
i�
 Grammati
al Inferen
e problems, in parti
ularwhen one wants to learn languages from noisy data [7℄. The 
lasses of languagesstudied there are not de�ned following the Chomsky Hierar
hy. Indeed, even theeasiest level of this hierar
hy, the 
lass of regular languages, is not at all robust tonoise, sin
e the parity fun
tions (whi
h 
an be de�ned as regular languages) arenot learnable in the presen
e of noise [8℄. In this paper also, in order to avoid thisdi�
ulty, we shall 
onsider only spe
ial �nite languages, that seem elementary



to formal language theoreti
ians, but are relevant for topologists and 
omplexfor 
ombinatorialists: the balls of strings.Hen
e, we study the problem of identifying balls of strings from 
orre
tionqueries. After some preliminaries in Se
tion 2, we prove that balls are not learn-able with Angluin's membership and equivalen
e queries (Se
tion 3). Then, weshow in Se
tion 4 that balls are learnable with a linear number of 
orre
tionqueries. In Se
tion 5, we study the e�e
tiveness of our algorithm from an ex-perimental standpoint, showing that it is robust when the answers of the Or-a
le are approximate. We 
on
lude in Se
tion 6. Due to the la
k of spa
e, wehave skipped most formal proofs. The interested reader may �nd them at http://labh-
urien.univ-st-etienne.fr/~tantini/pub/bhjt07Long.pdf.2 On Balls of Strings as LanguagesAn alphabet Σ is a �nite nonempty set of symbols 
alled letters. A string w =
a1 . . . an is any �nite sequen
e of letters. We write Σ∗ for the set of all stringsover Σ, and λ for the empty string. Let |w| be the length of w and |w|a thenumber of o

urren
es of a in w.The edit distan
e d(w, w′) is the minimum number of edit operations neededto transform w into w′ [2℄. The edit operations are either (1) deletion: w = uavand w′ = uv , or (2) insertion: w = uv and w′ = uav, or (3) substitution: w = uavand w′ = ubv, where u, v ∈ Σ∗, a, b ∈ Σ and a 6= b. E.g., d(abaa, aab) = 2 sin
e
abaa −→ aaa −→ aab and the rewriting of abaa into aab 
annot be a
hieved withless than 2 steps. Noti
e that d(w, w′) 
an be 
omputed in O (|w| · |w′|) time bydynami
 programming [3℄.It is well-known that the edit distan
e is a metri
 [9℄, so it 
onveys to
Σ∗ the stru
ture of a metri
 spa
e. The ball of 
entre o ∈ Σ∗ and radius
r ∈ IN, denoted Br(o), is the set of all strings whose distan
e is at most rfrom o: Br(o) = {w ∈ Σ∗ : d(o, w) ≤ r}. E.g., if Σ = {a, b}, then B1(ba) =
{a, b, aa, ba, bb, aba, baa, bab, bba} and Br(λ) = Σ≤r for all r ∈ IN.The latter example illustrates the fa
t that the number of strings in a ballgrows exponentially with the radius. This remark raises the problem of the rep-resentation s
heme that we should use to learn the balls. Basi
ally, we needrepresentations whose size is reasonable, whi
h is not the 
ase of an exhaustiveenumeration, nor of the deterministi
 �nite automata (Dfa) sin
e experimentsshow that the 
orresponding minimum Dfa is often exponential with r (but lin-ear with |o|) [10℄, even if a formal proof of this property remains a 
hallenging
ombinatorial problem.On the other hand, why not represent the ball Br(o) by the pair (o, r) itself?Indeed, its size is |o| + log r. Moreover, de
iding whether w ∈ Br(o) or not isimmediate: One only has to (1) 
ompute d(o, w) and (2) 
he
k whether thisdistan
e is ≤ r, whi
h is a
hievable in time O (|o| · |w| + log r). Finally, when thealphabet has at least 2 letters, (o, r) is a unique thus 
anoni
al representationof Br(o):Theorem 1. If |Σ| ≥ 2 and Br1

(o1) = Br2
(o2), then o1 = o2 and r1 = r2.



Noti
e that if Σ = {a}, then B2(a) = B3(λ) = {λ, a, aa, aaa} for instan
e.Hen
e, representing the ball Br(o) by the pair (o, r) is reasonable. However,it is worth noti
ing that huge balls, whose radius is not polynomially related tothe length of the 
entre (e.g., r > 2|o|), will pose tri
ky problems of 
omplexity.For instan
e, to learn the ball Br(λ) = Σ≤r, one needs to manipulate at leastone string of length r + 1. Therefore, in the following, we will always 
onsidergood balls only:De�nition 1. Given any �xed polynomial q(), we say that a ball Br(o) is q-goodif r ≤ q(|o|).3 Learning Balls from QueriesQuery learning is a paradigm introdu
ed by Angluin [1℄. Her model brings aLearner (he) and an Ora
le (she) into play. The goal of the Learner is to identifythe representation of an unknown language, by submitting queries to the Ora
le.The latter knows the target language and answers properly to the queries (i.e.,she does not lie). Moreover, the Learner is bound by e�
ien
y 
onstraints: (1)He 
an only submit a polynomial number of queries (in the size of the targetrepresentation) and (2) the available overall time must be polynomial in the sizeof the target representation3.Between the di�erent 
ombinations of queries, one, 
alled Mat (MinimallyAdequate Tea
her), is su�
ient to learn Dfa [11℄. Two kinds of queries are used:De�nition 2. Let Λ be a 
lass of languages on Σ∗ and L ∈ Λ a target lan-guage known by the Ora
le, that the Learner aims at guessing. In the 
ase ofmembership queries, the Learner submits a string w ∈ Σ∗ to the Ora
le; Heranswer, denoted Mq(w), is either Yes if w ∈ L, or No if w /∈ L. In the 
aseof equivalen
e queries, the Learner submits (the representation of) a language
K ∈ Λ to the Ora
le; Her answer, denoted Eq(K), is either Yes if K = L, ora string belonging to the symmetri
 di�eren
e (

(K \ L) ∪ (L \ K)
) if K 6= L.Although Mq and Eq have established themselves as a standard 
ombina-tion, there are real grounds to believe that Eq are too powerful to exist or evenbe simulated. As suggested in [11℄ we may be able to substitute them with arandom draw of strings that are then submitted as Mq (sampling), but thereare many 
ases where sampling is not possible as the relevant distribution isunknown and/or ina

essible [12℄. Besides, we will not 
onsider Mq and Eqbe
ause they do not help to learn balls:Theorem 2. Assume |Σ| ≥ 2. Let m, n ∈ IN and B≤m,n = {Br(o) : r ≤ m, o ∈

Σ∗, |o| ≤ n}. Any algorithm that identi�es every ball of B≤m,n with Eq and Mqne
essarily uses Ω(|Σ|n) queries in the worst 
ase.3 The time 
omplexity usually 
on
erns the time spent after re
eiving ea
h new ex-ample, and takes the length of the information returned by the Ora
le into a

ount;Thus, our 
onstraint is stronger but not restri
tive, if we fo
us on good balls only.



Proof. Following [13℄, we des
ribe an Adversary who maintains a set S of allpossible balls. At the beginning, S = B≤m,n. Her answer to the equivalen
equery L = Br(o) is the 
ounterexample o. Her answer to the membership query
o is No. At ea
h step, the Adversary eliminates many balls of S but only oneof 
entre o and radius 0. As there are Ω(|Σ|n) su
h balls in B≤m,n, identifyingthem requires Ω(|Σ|n) queries. ⊓⊔It should be noted that if the Learner is given one string from the ball, he
an learn using a polynomial number of Mq. We shall see that 
orre
tion queries(Cq), introdu
ed below, allow to get round these problems:De�nition 3. Let L be a �xed language and w a string submitted by the Learnerto the Ora
le. Her answer, denoted Cq(w), is either Yes if w ∈ L, or a 
orre
-tion of w w.r.t. L if w /∈ L, that is a string w′ ∈ L at minimum edit distan
efrom w: Cq(w) = one string of {w′ ∈ L : d(w, w′) is minimum}.Noti
e that the Cq 
an easily be simulated knowing the target language.Moreover, we have seen in the introdu
tion that they naturally exist in real-world appli
ations su
h as the sear
h engines of the Web. Also, Cq are relevantfrom a 
ognitive point of view: There is growing eviden
e that 
orre
tive inputfor grammati
al errors is widely available to 
hildren [14℄.4 Identifying Balls using Corre
tionsIn this se
tion, we propose an algorithm that learns balls using a linear number ofCq. First, when one submits a string outside of a ball to the Ora
le, she answerswith a string that belongs to the `
ir
le' delimiting the ball. However, a stringoften has a lot of di�erent possible 
orre
tions, 
ontrarily to what happens inthe plane. E.g., the possible 
orre
tions for the string aaaa w.r.t. the ball B2(bb)are {aa, aab, aba, baa, aabb, abab, abba, baab, baba, bbaa}. By de�nition of the Cq,the Ora
le will 
hoose one of them arbitrarily, potentially the worst one w.r.t.the Learner's point of view. Nevertheless, the Ora
le's potential malevolen
eis limited by the following result, that 
hara
terises the set of all the possible
orre
tions for a string:Theorem 3. Let Br(o) be a ball and m 6∈ Br(o). Then the set of possible 
or-re
tions of m is exa
tly {z ∈ Σ∗ : d(o, z) = r and d(z, m) = d(o, m) − r}.Here is a geometri
 interpretation of the result above. Let us de�ne the segment
[o, m] = {w ∈ Σ∗ : d(o, w) + d(w, m) = d(o, m)} and the 
ir
le Cr(o) = {w ∈
Σ∗ : d(o, w) = r}. Theorem 3 states that a string z is a possible 
orre
tion of
m i� z ∈ [o, m] ∩ Cr(o). The fa
t that m has several possible 
orre
tions showsthat the geometry of Σ∗ is very di�erent from that of IR2.Now, building the 
entre of a ball from strings on its periphery is di�
ult forat least 2 reasons. On the one hand, (Σ∗, d) is a metri
 spa
e with no ve
tor spa
eas an underlying stru
ture. This is the same story as if we were trying to learnthe disks of the plane with just a 
ompass but no ruler. . . On the other hand, the



Fig. 1. Algorithm Extra
t_Centreproblem is formally hard : Given a �nite set of strings W = {w1, . . . , wn} and a
onstant K, de
iding whether a string z ∈ Σ∗ exists su
h that ∑

w∈W d(z, w) <
K (resp. maxw∈W d(z, w) < K) is NP-hard [15℄.Therefore, we must study the balls in more detail and make the best pos-sible use of the Cq so as not to build the 
entres from s
rat
h. We begin bydistinguishing the longest strings of any ball:De�nition 4. The upper border of a ball Br(o), denoted Bmax

r (o), is the set ofall the strings that belong to Br(o) and are of maximum length: Bmax
r (o) = {z ∈

Br(o) : ∀w ∈ Br(o), |w| ≤ |z|}.E.g., let Σ = {a, b}, then Bmax
1

(ba) = {aba, baa, bab, bba}. The strings of
Bmax

r (o) are remarkable be
ause they are all built from the 
entre o by doing rinsertions. So from a string w ∈ Bmax
r (o), one `simply' has to guess the insertedletters and delete them to �nd o again. Some strings of Bmax

r (o) are even moreinformative. Indeed, let a ∈ Σ be an arbitrary letter. Then aro ∈ Bmax
r (o). So,if we know r, we 
an easily dedu
e o. We 
laim that Cq allow us to get hold of

aro from any string w ∈ Bmax
r (o) by swapping the letters (see Algorithm Ex-tra
t_Centre in Figure 1).Consider Bmax

2
(bb) = {aabb, abab, abba, abbb, baab, baba, babb, bbaa, bbab, bbba,

bbbb}. Running Extra
t_Centre on the string w = baab and radius r = 2transforms, at ea
h loop, the ith letter of w to an a that is put at the beginningand then submits it to the Ora
le. c 
ounts the number of times this transfor-mation is a

epted. We get:
i w w′ Cq(w′) w 
hanges c
1 baab aaab baab no 0
2 baab abab Yes yes 1
3 abab aabb Yes yes 2When c = 2 = r, Extra
t_Centre stops with w = aabb and returns o = bb.Lemma 1. Given w ∈ Bmax

r (o) and r, Algorithm Extra
t_Centre returns
o using O (|o| + r) Cq and a polynomial amount of time.



Hen
e, we are now able to dedu
e the 
entre of a ball as soon as we know itsradius and a string from its upper border. The following te
hni
al lemma is astep towards �nding this string (although we have no information about r and
|o| yet):Lemma 2. Suppose Σ = {a1, . . . , an}. Then every 
orre
tion w of the string
m = (a1 . . . an)k where k ≥ |o| + r belongs to Bmax

r (o).Submitting (a1 . . . an)k with a su�
iently large k is sure to be 
orre
ted bya string from Bmax
r (o). So all that remains is to �nd su
h an interesting k. Thefollowing lemma states that if one asks the Ora
le to 
orre
t a string made of alot of a's, then the 
orre
tion 
ontains pre
ious informations on the radius andthe number of o

urren
es of a's in the 
entre:Lemma 3. Consider the ball Br(o) and let a ∈ Σ and an integer j ∈ IN su
hthat aj 6∈ Br(o). Let w = Cq(aj). If |w| < j, then |w|a = |o|a + r.Now, let us assume that the alphabet is Σ = {a1, . . . , an} and let j1, . . . , jn ∈

IN be large integers. De�ne k =
∑n

i=1
|Cq(aji

i )|ai
. Then, Lemma 3 brings k =

∑n

i=1
(|o|ai

+ r) = |o| + |Σ| · r ≥ |o| + r. Thus we 
an plug k into Lemma 2 toget a string w = Cq (

(a1 . . . an)k
)

∈ Bmax
r (o). Moreover, we have |w| = |o| + rand k = |o| + |Σ| · r. So, we dedu
e that the radius is r = (k − |w|)/(|Σ| − 1).Let us summarise, by assuming that Σ = {a1, . . . , an} and that the target isthe ball Br(o). (1) For ea
h letter ai, the Learner asks for the 
orre
tion of aj

iwhere j is su�
iently large to get a 
orre
tion whose length is smaller than j;(2) We de�ne k =
∑n

i=1
|Cq(aji

i )|ai
and suppose the Learner gets the 
orre
tion

w for the string m = (a1 . . . an)k; (3) From k and |w|, we dedu
e r; (4) TheLearner uses Extra
t_Centre on w and r in order to �nd o. In other words,we are able to learn the balls with Cq (see Algorithm Idf_Ball in Figure 2).

Fig. 2. Algorithm Idf_BallFor instan
e, 
onsider the ball B2(bb) de�ned over Σ = {a, b}. Idf_Ballbegins by looking for the 
orre
tions of aj and bj with a su�
iently large j. Wemight observe: Cq(a) = Yes, Cq(a2) = Yes, Cq(a4) = aabb, Cq(a8) = abba,



Cq(b8) = bbbb. So k = |abba|a + |bbbb|b = 2 + 4 = 6. Then Cq (

(ab)6
)

=Cq(abababababab) = baab, for instan
e, so r = (6 − 4)/(2 − 1) = 2. Finally,Extra
t_Centre(baab, 2) returns bb. So the algorithm returns (bb, 2).Theorem 4. Given any �xed polynomial q(), the set of all q-good balls Br(o)is identi�able with an algorithm using O (|Σ| + |o| + r) Cq and a polynomialamount of time.Proof. The identi�ability is 
lear. Con
erning the 
omplexity, the 
orre
tions ofthe strings aj
i requires O (|Σ| + log(|o| + r)) Cq (lines 2-5). Extra
t_Centreneeds O (|o| + r) Cq (line 8). ⊓⊔Noti
e that the set of all the balls, that 
ontains good balls but also huge onessu
h that r > 2|o| for instan
e, is not polynomially identi�able with Idf_Ballsin
e O (|Σ| + |o| + r) > O(2|o|) for some of them.5 Experiments with a Human-like Ora
leIn this se
tion, we would like to show the advantages of our approa
h. There-fore, we have made several experiments that aim at studying the responses ofIdf_Ball fa
ed with an Ora
le that 
ould be human. As we said in introdu
-tion, our algorithm should not believe unwisely the answers he gets sin
e they
an be approximate. We would like to show here that Idf_Ball withstandssu
h approximate (i.e., ina

urate, noisy) answers.Designing the Approximate Ora
leWe begin by modelling a human expert by an Approximate Ora
le. Firstly, weassume that an expert 
an easily determine whether an example ful�ls a 
on
eptor not, thus here, whether w belongs to Br(o) or not. Se
ondly, what is reallyhard for the expert is to 
ompute the 
orre
tion of w when w 6∈ Br(o), and morepre
isely, a string of the ball that is as 
lose to w as possible.Let X = d

(

w,Cqh(w)
)

− d
(

w,Cq(w)
) measure how far an approximate
orre
tion is from a perfe
t one. Intuitively, an Approximate Ora
le will oftenprovide 
orre
tions su
h that X = 0, sometimes X = 1 and rarely X ≥ 2. . . Toformalise this idea, we introdu
e a 
on�den
e parameter 0 < p ≤ 1, 
alled thea

ura
y level of the Ora
le, that translates the quality of her answers, and usea geometri
 distribution: We assume that Pr(X = k) = (1− p)kp, for all k ∈ IN.Therefore, with probability (1−p)kp, the 
orre
tion Cqh(w) of a string w will bein the target ball, at distan
e k of Cq(w). Basi
ally, we get E(X) = (1/p)−1. Sowhen the Ora
le is very a

urate, say p = 0.8, then the average distan
e betweenan approximate and a perfe
t 
orre
tion is low (0.25). Conversely, an expertwith limited 
omputation 
apa
ities, say p = 0.4, will often provide ina

urate
orre
tions, at distan
e ≃ 1.5.Our model of Approximate Ora
le is simple. For instan
e, we do not supposethat she has any memory, thus by submitting twi
e every string w, we wouldprobably get 2 di�erent 
orre
tions, that 
ould be used to 
orre
t the 
orre
tions !However, we want here to study the resistan
e of Idf_Ball to approximateanswers, not to design the best possible algorithm, so our model is su�
ient.



Behaviour of the Algorithm fa
ed with an Approximate Ora
leFollowing Theorem 4, Idf_Ball systemati
ally guesses the target ball withthe help of a Perfe
t Ora
le. But of 
ourse, he is sometimes going to fail in frontof an Approximate Ora
le. So, in order to assess the resistan
e of Idf_Ball toapproximate 
orre
tions, we 
ondu
t the following experiment. For every a

u-ra
y level 0.5 ≤ p ≤ 1, we randomly 
hoose a set of 100 balls Br(o) su
h that
|o| + r = 200. More pre
isely, the radius r varies between 20 and 180 by step of20, and we randomly 
hoose 10 
entres o of length 200− r for ea
h radius. Thenwe ask Idf_Ball to learn them and 
ompute the per
entage of balls he is ableto retrieve, whi
h we 
all the pre
ision of the algorithm. We show the result inFigure 3. We noti
e that Idf_Ball is able to identify about 75% of the ballsfa
ed with an a

ura
y level of p = 0.9. Of 
ourse, as one 
an expe
t, with lowerlevels of a

ura
y, his performan
es qui
kly drop (15% for p = 0.5). We alsoshow, in Figure 4, the average distan
es between the 
entres of the target ballsand the 
entres of the learnt balls when he fails to retrieve them. We observe thatthese distan
es are not that important: Even with an a

ura
y level of p = 0.5,this distan
e is less than 4.
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es (and standarddeviation) between the 
entres of the tar-get balls and the 
entres of the learnt balls,when Idf_Ball fails in retrieving them.Improving the Pre
ision with a posteriori Heuristi
sWe have seen that Idf_Ball was able to assimilate the approximations ofthe Ora
le up to a 
ertain level of a

ura
y. Moreover, the 
entre returned bythe algorithm is generally not far from the target one. Thus, it is reasonable tothink that we 
ould improve the pre
ision by mining the neighbourhood of thelearnt 
entre, using lo
al edit modi�
ations. This kind of approa
hes has beenpioneered by Kohonen in [16℄ and is surveyed in [17℄.Suppose that the learnt ball is Bk(u). We test ea
h neighbour (at distan
e1) of u and examine if it is better (i.e. if k 
an be redu
ed) in su
h a way as to
ontain all the 
orre
tions given up to now. This heuristi
s will be very good ea
h



time u is at distan
e 1 from the target 
entre. But as soon as this distan
e grows,Idf_Ball will fail again. In order to enhan
e the one-step heuristi
s, we 
aniterate the pro
ess and design a se
ond until-
onvergen
e heuristi
s by repeatingthe lo
al sear
h until the size of the ball 
annot be diminished anymore.In order to show that the balls learnt by Idf_Ball 
an be 
orre
ted aposteriori, we 
ompare, in a series of experiments, the pre
ision of the algorithmwithout any post-treatment, with the one-step heuristi
s and with the until-
onvergen
e heuristi
s. We �x |o| + r = 200. The a

ura
y level varies from 0.5to 1 and the radius, from 20 to 180. For ea
h pair (a

ura
y, radius), we randomlydraw 50 
entres of length 200− r, and ask Idf_Ball to retrieve them. We plotthe resulting pre
isions in Figure 5.
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Fig. 5. Pre
ision of Idf_Ball with and without heuristi
s in fun
tion of a

ura
y andradius when |o| + r = 200. For ea
h pair (a

ura
y, radius), we 
ompute the pre
isionover 50 balls.Firstly, we must explain the bumpiness of the graph. A
tually, ea
h pointassesses the pre
ision of Idf_Ball using a sample of 50 balls. However, thenumber of balls of radius 100, for instan
e, is greater that 1030! So, whatever thesample, we will de�nitively not get any relevant estimate of the true pre
ision,that explains the varian
e. On the other hand, this is not limiting sin
e ourexperiments still allow to 
ompare the heuristi
s themselves: We 
an remarkthat whatever the a

ura
y level, using the until-
onvergen
e heuristi
s is neverworse than the one-step heuristi
s, whi
h is never worse than no post-treatmentat all. But it is also 
lear that our heuristi
s do not always improve the pre
isionof the algorithm: This depends on the ratio between the radius of the targetball and the length of its 
entre. In order to detail this, we have extra
ted 2transverse se
tions, shown in Figure 6, where we �x the radius.
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Fig. 6. Pre
ision of Idf_Ball when |o|+r = 200 for r = 120 (left) and r = 20 (right).For ea
h a

ura
y, we 
ompute the average over 50 balls.The left 
urves of Figure 6 des
ribe the pre
ision of Idf_Ball for targetballs su
h that r = 120 and |o| = 80. In this 
ase, we gain little using theheuristi
s. Noti
e that these balls are not good for the identity polynomial. Onthe other hand, the right 
urves of Figure 6 des
ribe the pre
ision for target ballssu
h that r = 20 and |o| = 180. Basi
ally, our heuristi
s outperform the pre
isionw.r.t. the algorithm without any post-treatment, whatever the a

ura
y level ofthe Ora
le. Moreover, the bene�t is all the more important as the a

ura
y levelis bad. For instan
e, when p = 0.6, the until-
onvergen
e heuristi
s is able todramati
ally boost the pre
ision from 26% to 90%. So in this setting, with nofurther enhan
ement, Idf_Ball produ
es balls that are so 
lose to the targetsthat they 
an easily be improved using only basi
 lo
al modi�
ations.6 Dis
ussion and Con
lusionIn this work, we have used 
orre
tion queries to learn languages from an Ora
le.The intended setting is that of an inexa
t Ora
le, and experiments show thatthe algorithm we propose 
an learn a language su�
iently 
lose to the target forsimple lo
al modi�
ations (with no extra queries) to be possible. In order to dothis, the languages we 
onsider are balls of strings de�ned with the edit distan
e.Studying them allowed us to 
at
h a glimpse of the geometry of sets of strings,whi
h is very di�erent from the Eu
lidean geometry. A number of questions andresear
h dire
tions are left open by this work.A �rst question 
on
erns the distan
e we use. We have 
hosen to work withthe unitary edit distan
e, but in many appli
ations, the edit operations 
an havedi�erent weights. Preliminary work has allowed us to noti
e that the geometryof sets of strings, thus the algorithmi
s, 
ould 
hange 
onsiderably dependingon the sorts of weights we used. For instan
e, with the substitutions 
osting lessthan the insertions and the deletions, a mu
h faster algorithm exists, requiringonly a number of queries in O (log(|o| + r)) [18℄.A se
ond question 
on
erns the ina

ura
y model we are using: As noti
edin Se
tion 5, with the 
urrent model it would be possible to repeat the same



Cq various times, getting di�erent 
orre
tions, but possibly being able, throughsome majority vote s
heme, to get the adequate 
orre
tion with very little extra
ost. Just asking for persistent 
orre
tions is not enough to solve this problem:A good model should require that if one queries from a 
lose enough string (a999instead of a1000) then the 
orre
tions should also remain 
lose. Topologi
ally, wewould expe
t the Ora
le to be k-Lips
hitz 
ontinuous (with 0 < k < 1).A
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