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Abstract

We focus on the Edit Distance and propose
an algorithm to learn the costs of the primi-
tive edit operations. The underlying model is
a probabilitic transducer computed by using
grammatical inference techniques, that is nei-
ther deterministic nor stochastic in the stan-
dard terminology. Moreover, this transducer
is conditional, thus independent from the dis-
tributions of the input strings.

Real world applications such as spell checking, speech
recognition, DNA analysis or plagiarism detection of-
ten use the Edit Distance (ED) (Wagner & Fischer,
1974), to compute similarities of string pairs. The ED
is historically defined as the smallest number of inser-
tions, deletions and substitutions required to change
one string into another.

The common feature of the majority of ED-based
methods is that they are static, in the sense of using
a priori fixed costs for the primitive edit operations,
that leaves little room for adaptation to the string con-
text. Nevertheless, in many real domains, the level of
an edit cost should be able to depend not only on the
pair of symbols handled but also on the context where
the operation occurs. For instance, in computational
biology and especially in regular expression analysis,
a given edit operation involving the same two sym-
bols can highly depend on its location in the DNA
sequence. In handwriting, it is experimentally known
that the probability to unintentionally delete a charac-
ter of a word is higher for symbols after the first one.
Thus, an estimate of similarity between two strings
can vary a lot depending on the specific domain under
consideration.
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One solution would consist in manually assigning costs
to edit operations that reflect the likelihood of the cor-
responding transformations. But the setting up of this
strategy is difficult and seems to be not realistic over-
all for applications with a low level of expertise. While
the main improvements about the ED have above all
dealt, so far, with its algorithmic complexity, some
recent work tried to overcome the previously men-
tioned drawbacks by automatically learning the primi-
tive edit costs, rather than hand-tuning them for each
domain. Several probabilistic models have been pro-
posed to learn a stochastic ED in the form of stochas-
tic transducers (Ristad & Yianilos, 1998; Bilenko &
Mooney, 2003; Oncina & Sebban, 2006), conditional
random fields (CRF) (McCallum et al., 2005), or pair-
Hidden Markov Models (pair-HMM) (Durbin et al.,
1998). These models provide a probability distribu-
tion over the edit operations and thus over the string
pairs. The stochastic ED between two sequences can
then be computed from the negative logarithm of the
probability of the string pair.

Although these methods have provided some signif-
icant improvements on pattern recognition tasks in
comparison with the classic non-learned ED, they
share at least one of the following two drawbacks
(sometimes both). The first one is a statistical bias
of the inferred model. Actually, the majority of these
approaches aim at learning a generative model rather
than a discriminative classifier (Bouchard & Triggs,
2004). In other words, they learn a joint probability
distribution p(x, y) over the pairs of strings (x, y), and
thus, the resulting conditional density p(y|x), required
in classification tasks, is a biased classifier depending
on the input distribution p(x). A solution, as proposed
in (McCallum et al., 2005; Oncina & Sebban, 2006),
consists in directly learning a conditional distribution,
called a discriminative classifier. The second drawback
is a limitation on the expressive power of the model.
Actually, the structure of the learned model (i.e., the
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number of states in the transducer, in the CRF or in
the pair-HMM) is always a priori fixed in the proposed
approaches. The goal is to learn the parameters (the
edit costs) assuming that the fixed structure is able
to capture the most important configurations which
can arise from the alignment of two sequences. Since
determining such a structure depends on the domain,
this often constitutes a tricky task that can result in a
bad adaptation of the model to the string context.

In this work, we propose to take into account both
these problems, by learning not only the structure
but also the parameters of a so-called conditional edit
transducer. The motivations that justify the learn-
ing of such a transducer are the following. First, we
think that an efficient way to model a stochastic ED
actually consists in viewing it as a stochastic trans-
duction between the input X and output Y alphabets
(Oncina & Sebban, 2006; Ristad & Yianilos, 1998). In
other words, it means that the relation constituted by
a set of (input,output) strings can be compiled in the
form of a 2-tape automaton, called a stochastic finite-
state transducer. The interpretation of the string edit
distance as a stochastic transduction naturally leads
to two possible string distances (Ristad & Yianilos,
1998): the first one describes the most likely transduc-
tion between the two strings, while the second is de-
fined by aggregating all transductions between them.
In this paper, we focus on the first stochastic distance,
a so-called Viterbi Edit Distance (Ristad & Yianilos,
1998). We motivate this choice by the fact that we can
use an adaptation of the well known Viterbi algorithm
for learning the structure and the parameters of the
conditional edit transducer.

Actually, stochastic transducers suffer from the lack
of training algorithms (Eisner, 2002) which generally
only learn the parameters of an imposed structure,
using the Expectation Maximization algorithm (EM)
(Dempster et al., 1977). However, we claim that
this drawback can be efficiently overcome using gram-
matical inference algorithms, that constitutes the sec-
ond motivation of our work. Basically, a transduc-
tion between two strings x ∈ X∗ and y ∈ Y ∗, in
the specific domain of the ED, can be rewritten us-
ing an adapted Viterbi algorithm in the form of an
optimal sequence of edit operations z = z1...zn, zi ∈
(X ∪{λ})× (Y ∪{λ}) \ {(λ, λ)} (where λ is the empty
string). Thus, we can exploit grammatical inference al-
gorithms for learning over this new alphabet the struc-
ture of the model (and its parameters) in the form of
a probabilistic finite state automaton, by using the
well-known Alergia algorithm (Carrasco & Oncina,
1994). In order to learn a discriminative model, the au-
tomaton must be corrected at each step to satisfy con-

straints of conditional distribution. The conditional
edit transducer is then deduced from the automaton
by splitting each transition according to the input and
output alphabets.
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