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Abstract. Powerful methods and algorithms are known to learn regu-
lar languages. Aiming at extending them to more complex grammars,
we choose to change the way we represent these languages. Among the
formalisms that allow to define classes of languages, the one of string-
rewriting systems (SRS) has outstanding properties. Indeed, SRS are ex-
pressive enough to define, in a uniform way, a noteworthy and non trivial
class of languages that contains all the regular languages, {anbn : n ≥ 0},
{w ∈ {a, b}∗ : |w|a = |w|b}, the parenthesis languages of Dyck, the lan-
guage of Lukasewitz, and many others. Moreover, SRS constitute an
efficient (often linear) parsing device for strings, and are thus promising
and challenging candidates in forthcoming applications of Grammatical
Inference. In this paper, we pioneer the problem of their learnability. We
propose a novel and sound algorithm which allows to identify them in
polynomial time. We illustrate the execution of our algorithm through-
out a large amount of examples and finally raise some open questions
and research directions.
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1 Introduction

Whereas for the case of learning regular languages there are now a number of
positive results and algorithm, things tend to get harder when the entire class of
context-free languages is considered [10, 17]. Typical approaches have consisted
in learning special sorts of grammars [20], by using genetic algorithms or arti-
ficial intelligence ideas [16], and by compression techniques [13]. Yet more and
more attention has been drawn to the problem: One example is the Omphalos

context-free language learning competition [19].
An attractive alternative when blocked by negative results is to change the

representation mode. In this line, little work has been done for the context-free
case: One exception is pure context-free grammars which are grammars where
both the non-terminals and the terminals come from a same alphabet [8].

? This work was supported in part by the IST Programme of the European Commu-
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In this paper, we investigate string-rewriting systems (SRS). Invented in
1914 by Axel Thue, the theory of SRS (also called semi-Thue systems) and its
extension to trees and to graphs was paid a lot of attention all along the 20th

century (see [1, 3]). Rewriting a string consists in replacing substrings by others,
as far as possible, following laws called rewrite rules. For instance, consider
strings made of a and b, and the single rewrite rule ab → λ. Using this rule
consists in replacing a substring ab by the empty string, thus in erasing ab. It
allows to rewrite abaabbab as follows:

abaabbab → abaabb → abab → ab → λ

Other rewriting derivations may be considered but they all lead to λ. Actually,
it is rather clear on this example that a string will rewrite to λ iff it is a
“parenthetic” string, i.e., a string of the Dyck language. More precisely, the
Dyck language is completely characterized by this single rewrite rule and the
string λ, which is reached by rewriting all other strings of the language. This
property was first noticed in a seminal paper by Nivat [14] which was the starting
point of a large amount of work during the three last decades.

We use this property, and others to introduce a class of rewriting systems
which is powerful enough to represent in an economical way all regular languages
and some typical context-free languages: {anbn : n ≥ 0}, {w ∈ {a, b}∗ : |w|a =
|w|b}, the parenthesis languages of Dyck, the language of Lukasewitz, and many
others. We also provide a learning algorithm called LARS (Learning Algorithm
for Rewriting Systems) which can learn systems representing these languages
from string examples and counter-examples of the language.

In section 2 we give the general notations relative to the languages we consider
and discuss the notion of learning. We introduce our rewriting systems and their
expressiveness in section 3 and develop the properties they must fulfill to be
learnable in section 4. The general learning algorithm is presented and justified
in section 5. We report in section 6 some experimental results and conclude.

2 Learning Languages

An alphabet Σ is a finite nonempty set of symbols called letters. A string w over
Σ is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of
w. In the following, letters will be indicated by a, b, c, . . ., strings by u, v, . . . , z,
and the empty string by λ. Let Σ∗ be the set of all strings. We assume a fixed
but arbitrary total order ≤ on the letters of Σ. As usual, we extend ≤ to Σ∗ by
defining the hierarchical order [15], denoted £, as follows:

∀w1, w2 ∈ Σ∗, w1 ¢ w2 iff






|w1| < |w2| or
|w1| = |w2| and ∃u, v1, v2 ∈ Σ∗,∃x1, x2 ∈ Σ
such that w1 = ux1v1, w2 = ux2v2 and x1 < x2.

By a language we mean any subset L ⊆ Σ∗. Many classes of languages
were investigated in the literature. In general, the definition of a class L re-
lies on a class R of abstract machines, here called representations, that char-
acterize all and only the languages of L: (1) ∀R ∈ R,L(R) ∈ L and (2) ∀L ∈
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L,∃R ∈ R such that L(R) = L. Two representations R1 and R2 are equivalent
iff L(R1) = L(R2). In this paper, we will investigate the class REG of regular
languages characterized by the class DFA of deterministic finite automata (dfa),
and the class CFL of context-free languages represented by the class CFG of
context-free grammars (cfg).

We now turn to our learning problem. The size of a representation R, denoted
by ‖R‖, is polynomially related to the size of its encoding.

Definition 1. Let L be a class of languages represented by some class R.

1. A sample S for a language L ∈ L is a finite set of ordered pairs 〈w, label(w)〉 ∈
Σ∗ × {+,−} such that if label(w) = + then w ∈ L and if label(w) = − then
w /∈ L. The size of S is the sum of the lengths of all strings in S.

2. An (L, R)-learning algorithm is a program that takes as input a sample of
labeled strings and outputs a representation from R.

Finally, let us recall what “learning” means. We choose to base ourselves
on the paradigm of polynomial identification, as defined in [6, 2], since many
authors showed that it was both relevant and tractable. Other paradigms are
known (e.g. PAC-learnability), but they are often either similar to this one or
inconvenient for Grammatical Inference problems.

In this paradigm we first demand that the learning algorithm has a run-
ning time polynomial in the size of the data from which it is learning from.
Next we want the algorithm to converge in some way to a chosen target. Ideally
the convergence point should be met very quickly, after having seen a polyno-
mial number of examples. As this constraint is usually too hard, we want the
convergence to take place in the limit, i.e., after having seen a finite number
of examples. The polynomial aspects then correspond to the size of a minimal
learning or characteristic sample, whose presence should ensure identification.
For more details on these models we refer the reader to [6, 2].

3 Defining Languages with String-Rewriting Systems

String-rewriting systems are usually defined as sets of rewrite rules. These rules
allow to replace factors by others in strings. However, as we feel that this mech-
anism is not flexible enough, we would like to extend it. Indeed, a rule that one
would like to use at the beginning (prefix) or at the end of a string could also
be used in the middle of this string and then have undesirable side effects.

Therefore, we introduce two new symbols $ and £ that do not belong to
the alphabet Σ and will respectively mark the beginning and the end of each
string. In other words, we are going to consider strings from the set $Σ∗£. As
for the rewrite rules, they will be partially marked (and thus belong to Σ∗ =
(λ+$)Σ∗(λ+£)). Their forms will constrain their uses either to the beginning,
or to the end, or to the middle, or to the string taken as a whole. Notice that this
solution is an intermediate approach between the usual one and string-rewriting
systems with variables introduced in [11].
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Definition 2 (Delimited SRS).

– A delimited rewrite rule is an ordered pair of strings (l, r), generally written
l → r, such that l and r satisfy one of the four following constraints:
1. l, r ∈ $Σ∗ (used to rewrite prefixes) or
2. l, r ∈ $Σ∗£ (used to rewrite whole strings) or
3. l, r ∈ Σ∗ (used to rewrite factors) or
4. l, r ∈ Σ∗£ (used to rewrite suffixes).

Rules of type 1 and 2 will be called $-rules and rules of type 3 and 4 will be
called non-$-rules.

– By a delimited string-rewriting system (DSRS), we mean any finite set R of
delimited rewrite rules.

Let |R| be the number of rules of R and ‖R‖ the sum of the lengths of the
strings R is made of: ‖R‖ =

∑
(l→r)∈R |lr|.

Given a DSRS R and two strings w1, w2 ∈ Σ∗, we say that w1 rewrites in
one step into w2, written w1 →R w2 or simply w1 → w2, iff there exists a rule
(l → r) ∈ R and two strings u, v ∈ Σ∗ such that w1 = ulv and w2 = urv.
A string w is reducible iff there exists w′ such that w → w′, and irreducible
otherwise. E.g., the string $aabb£ rewrites to $aaa£ with rule bb£ → a£ and
$aaa£ is irreducible. We get immediately the following property:

Proposition 1. The set $Σ∗£ is stable w.r.t. →R.

In other words, $ and £ cannot disappear or move in a string by rewriting.
Let →∗

R (or simply →∗) denote the reflexive and transitive closure of →R.
We say that w1 reduces to w2 or that w2 is derivable from w1 iff w1 →∗

R w2.

Definition 3 (Language Induced by a DSRS). Given a DSRS R and an
irreducible string e ∈ Σ∗, we define the language L(R, e) as the set of strings
that reduce to e using the rules of R:

L(R, e) = {w ∈ Σ∗ : $w£ →∗
R $e£}.

Deciding whether a string w belongs to a language L(R, e) or not consists in
trying to obtain e from w by a rewriting derivation. However, w may be the
starting point of numerous derivations and so, such a task may be really hard.
(Nevertheless, remember that we introduced $ and £ to allow some control. . . )
We will tackle these problems in next section but present some examples first.

Example 1. Let Σ = {a, b}.

– L({ab → λ}, λ) is the Dyck language. Indeed, this single rule erases factors
ab, so we get the following example of derivation:

$aabbab£ → $aabb£ → $ab£ → $£

– L({ab → λ; ba → λ}, λ) is the language {w ∈ Σ∗ : |w|a = |w|b}, since every
rewriting step erases one a and one b.
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– L({aabb → ab; $ab£ → $£}, λ) = {anbn : n ∈ N}. For instance,

$aaaabbbb£ → $aaabbb£ → $aabb£ → $ab£ → $£

Notice that the rule $ab£ → $£ is necessary for λ to belong to the language.
– L({$ab → $}, λ) is the regular language (ab)∗. Indeed,

$ababab£ → $abab£ → $ab£ → $£

Actually, all regular languages can be induced by a DSRS:

Theorem 1. For each regular language L, there exist a DSRS R and a string
e such that L = L(R, e).

Proof (Hint). A DSRS that is only made of $-rules defines a prefix grammar [5].
It has been shown that this kind of grammars generates exactly the regular
languages.

4 Shaping Learnable DSRS

As already mentioned, a string w belongs to a language L(R, e) iff one can build
a derivation from w to e. However this raises many difficulties. Firstly, one can
imagine a DSRS such that a string can be rewritten indefinitely1. In other words,
an algorithm that would try to answer the problem may loop. Secondly, even if
all the derivations induced by a DSRS are finite, they could be of exponential
lengths and thus computationally intractable2.

We first extend the hierarchical order £ to the strings of Σ∗, by defining
the extended hierarchical order, denoted ¹, as follows: ∀w1, w2 ∈ Σ∗, if w1 ¢

w2 then w1 ≺ $w1 ≺ w1£ ≺ $w1£ ≺ w2. Therefore, if a < b, then λ ¢ a ¢ b ¢

aa¢ab¢ba¢bb¢aaa¢ . . ., so λ ≺ $ ≺ £ ≺ $£ ≺ a ≺ $a ≺ a£ ≺ $a£ ≺ b ≺ . . .
The following technical definition ensures that all the rewriting derivations are
finite and tractable in polynomial time.

Definition 4 (Hybrid DSRS). We say that a rule l → r is
(i) length-reducing iff |l| > |r| and (ii) length-lexicographic iff l Â r.
A DSRS R is hybrid iff (i) all $-rules (whose left hand sides are in $Σ∗(λ+£))
are length-lexicographic and (ii) all non-$-rules (whose left hand sides are in
Σ∗(λ + £)) are length-reducing.

Theorem 2. All the derivations induced by a hybrid DSRS R are finite. More-
over, every derivation starting from a string w has a length that is ≤ |w| · |R|.

1 Consider the derivations induced by {a → b; b → a; c → cc}. . .
2 Consider the DSRS {1£ → 0£; 0£ → c1d£; 0c → c1; 1c → 0d; d0 → 0d; d1 →

1d; dd → λ}. All the derivations it induces are finite; Indeed, assuming that d >

1 > 0 > c, the left hand side l is lexicographically greater than the right hand side
r for all rules l → r, so this DSRS is strongly normalizing [3]. However, it induces
the derivation $1111£ → $1110£ →∗ $1101£ → $1100£ →∗ $1011£ →∗ . . . →∗

$0000£



6 Rémi Eyraud, Colin de la Higuera, Jean-Christophe Janodet

Proof. Let w1 → w2 be a single rewriting step. There exists a rule l → r and
two strings u, v ∈ Σ∗ such that w1 = ulv and w2 = urv. Notice that if |l| > |r|
then l Â r. Moreover, if l Â r, then we deduce that w1 Â w2. So if one has a
derivation w → u1 → u2 → . . ., then w Â u1 Â u2 Â . . .. As ¹ is a good order,
there is no infinite and strictly decreasing chain of the form w Â u1 Â u2 Â . . ..
So every derivation induced by R is finite. Now let n ∈ N. Assume that for all
strings w′ such that |w′| < n, the lengths of the derivations starting from w′ are
at most |w′| · |R|. Let w be a string of length n. We claim that the maximum
length of a derivation that would preserve the length of w cannot exceed |R|
rewriting steps. Indeed, all rules that can be used along such a derivation are of
the form $l → $r, with |l| = |r| and l Â r; When such a rule is used once, then
it cannot be used a second time in the same derivation. Otherwise, there would
exists a derivation $lu£ → $ru£ → . . . → $lv£ with |u| = |v| (since the length
is preserved). As $ru£ →∗ $lv£ and |l| = |r| and |u| = |v|, we deduce that r º l
which is impossible since r ≺ l. So there are at most |R| rewriting steps that
preserve the length of w, and then the application of a rule produces a string
w′ whose length is < n. So by induction hypothesis, the length of a derivation
starting from w is no more than |R| + |w′| · |R| ≤ |w| · |R|. ut

We saw that a hybrid DSRS induces finite and tractable derivations. Never-
theless, many different irreducible strings may be reached from one given string
by rewriting. Therefore, answering the problem “w ∈ L(R, e)?” will require to
compute all the derivations that start with w and check if one of them ends with
e. In other words, such a DSRS is a kind of “undeterministic” (thus inefficient)
parsing device. An usual way to circumvent this difficulty is to impose our hybrid
DSRS to be also Church-Rosser [3].

Definition 5 (Church-Rosser DSRS). We say that a DSRS R is Church-
Rosser iff for all strings w, u1, u2 ∈ Σ∗ such that w →∗ u1 and w →∗ u2, there
exists w′ ∈ Σ∗ such that u1 →∗ w′ and u2 →∗ w′.

In the definition above, if w →∗ u1 and w →∗ u2 and u1 and u2 are irreducible
strings, then u1 = u2(= w′). So given a string w, there is no more than one
irreducible string that can be reached by a derivation starting with w, whatever
the derivation is considered. However, the Church-Rosser property is undecidable
in general [3], so we constrain our DSRS to fulfill a restrictive condition:

Definition 6 (ANo DSRS). A DSRS R is almost nonoverlapping (ANo) iff
for all rules R1 = l1 → r1 and R2 = l2 → r2 of R:

i. if l1 = l2 then r1 = r2;
ii. if l1 is strictly included in l2: ∃u, v ∈ Σ∗, ul1v = l2, uv 6= λ, then ur1v = r2;
iii. if a strict suffix of l1 is a strict prefix of l2:

∃u, v ∈ Σ∗, l1u = vl2, 0 < |v| < |l1|, then r1u = vr2.

Notice that if R1 does not overlap R2, then R2 may still overlap R1.

Theorem 3. Every ANo DSRS is Church-Rosser. Moreover, every subsystem
of an ANo DSRS is an ANo DSRS, and thus Church-Rosser.
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Proof. Let us show that an ANo DSRS R induces a rewriting relation →R that
is subcommutative [7]. Let us write w1 →ε w2 iff w1 →R w2 or w1 = w2. We
claim that for all w, u1, u2, if w →R u1 and w →R u2, then there exists a string
w′ such that u1 →ε w′ and u2 →ε w′. Indeed, assume that w →R u1 uses a rule
R1 = l1 → r1 and w →R u2 uses a rule R2 = l2 → r2. If both rewriting steps
are independent, i.e., w = xl1yl2z for some strings x, y, z, then u1 = xr1yl2z
and u2 = xl1yr2z; Obviously, u1 →R w′ and u2 →R w′ with w′ = xr1yr2z.
Otherwise, R1 overlaps R2 (or vice-versa), and so u1 = u2, since R is ANo. An
easy induction allows to generalize this property to derivations: If w →∗

R u1 and
w →∗

R u2 then there exists w′ such that u1 →∗
ε w′ and u2 →∗

ε w′, where →∗
ε is

the reflexive and transitive closure of →ε. Finally, as u1 →∗
ε w′ and u2 →∗

ε w′,
we deduce that u1 →∗

R w′ and u2 →∗
R w′. ut

Finally, we get the following properties with our DSRS: (1) For all strings w,
there is no more than one irreducible string that can be reached by a derivation
which starts with w, whatever the derivation is considered. This irreducible
string will be called the normal form of w and denoted w ↓. (2) No derivation
can be prolonged indefinitively, so every string w has at least one normal form.
And whatever the way a string w is reduced, the rewriting steps produce strings
that are ineluctably closer and closer to w ↓. An important consequence is that
one has an immediate algorithm to check whether w ∈ L(R, e) or not: One
only needs to (i) compute the normal form w ↓ of w and (ii) check if w ↓ and
e are syntactically equal. As all the derivations have polynomial lengths, this
algorithm is polynomial in time.

5 Learning Languages Induced by DSRS

In this section we present our learning algorithm and its properties. The idea is
to enumerate the rules following the order ¹. We discard those that are useless
or inconsistent w.r.t. the data, and those that break the ANo condition.

The first thing LARS does is to compute all the factors of S+ and to sort
them w.r.t. ¹. Left and right hand sides of the rules will be chosen in this set since
it is reasonable to think that the positive examples contain all information that
is needed to learn the target language. This assumption reduces dramatically
the search space. LARS then enumerates the elements of this set thanks to two
“for” loops, which allows to build the candidate rules.

Function is useful discards the rules that cannot be used to rewrite at least
one string of the current set I+ (and are thus useless). Function type returns
an integer in {1, 2, 3, 4} and allows to check if the candidate rule is syntactically
correct according to Def.2. Function is ANo avoids the rules that would produce
non ANo DSRS. Notice that a candidate rule that passes all these tests with
success ensures that the DSRS will be syntactically correct, hybrid and ANo.
The last thing to check is that the rule is consistent with the data, i.e., that it
does not produce a string belonging to both I+ and I−. This is easily performed
by computing the normal forms of the strings of I+ and I−, which is the aim of
function normalize.
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Algorithm 1: LARS (Learning Algorithm for Rewriting Systems)

Data : a sample 〈S+, S−〉

Result : 〈R, e〉 where R is a hybrid ANo DSRS and e is an irreducible string

begin

R ←− ∅; I+ ←− S+; I− ←− S−;
F ←− sort¹ {v : ∃u, w ∈ Σ∗, uvw ∈ I+};
for i = 1 to |F | do

if is useful(F [i],I+) then

for j = 0 to i − 1 do

if type(F [i]) = type(F [j]) then

S ←− R ∪ {F [i] → F [j]};
if is ANo(S) then

E+ ←− normalize(I+,S); E− ←− normalize(I−,S);
if E+ ∩ E− = ∅ then

R ←− S; I+ ←− E+; I− ←− E−;

e ←− min¹I+;
foreach w ∈ I+ do

if w 6= e then R ←− R∪ {w → e};

return 〈R, e〉;

end

Theorem 4. Given a sample 〈S+, S−〉 of size m, algorithm LARS returns a
hybrid ANo DSRS R and an irreducible string e such that S+ ⊆ L(R, e) and
S− ∩ L(R, e) = ∅. Moreover, its execution time is a polynomial of m.

Proof (Hint). The termination and polynomiality of LARS is straightforward.
Moreover, the following four invariant properties are maintained all along the
double “for” loops: (1) R is a hybrid ANo DSRS, (2) I+ contains all and only
the normal forms of the strings of S+ w.r.t. R, (3) I− contains all and only the
normal forms of the strings of S− w.r.t. R and (4) I+ ∩ I− = ∅. Clearly, these
properties remain true before the “foreach” loop. Now at the end of the last
“foreach” loop, it is clear that: (1) R is a hybrid ANo DSRS, (2) e is the normal
form of all the strings of S+, so S+ ⊆ L(R, e) and (3) the normal forms of the
strings of S− are all in I− and e /∈ I−, so S− ∩ L(R, e) = ∅. ut

We now establish an identification theorem for LARS. This theorem focuses
on languages that may be defined thanks to special DSRS that we define now.
We begin with the notion of consistent rule that characterizes the rules that
LARS will have to find.

Definition 7 (Consistent Rule). We say that a rule R = l → r is consistent
w.r.t. a language L ⊆ Σ∗ iff ∀u, v ∈ Σ∗, if ulv /∈ $L£, then urv /∈ $L£.
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Definition 8 (Closed DSRS). Let L = L(R, e) be a language and Rmax the
greatest3 rule of R w.r.t. ¹. We say that R is closed iff: (i) R is hybrid and ANo,
and (ii) for all length-lexicographic $-rules and all length-decreasing non-$-rules
S, if S ¹ Rmax and S /∈ R, then S is not consistent with L.

We do not know whether this property is decidable or not. This is a work in
progress. Nevertheless, this notion allows to get the following result:

Theorem 5. Given a language L = L(R, e) such that R is closed, there exists a
finite characteristic sample 〈CS+, CS−〉 such that, on 〈S+, S−〉 with CS+ ⊆ S+

and CS− ⊆ S−, algorithm LARS finds e and returns a hybrid ANo DSRS R′

such that L(R′, e) = L(R, e).

Notice that the polynomiality of the characteristic sets is not established.

Proof (Hint). Let L = L(T , e) be the target language. T is assumed closed. Let
us first define CS+ and CS−:

1. For all R ⊆ T and all R ∈ T such that L(R, e) 6= L but L(R∪ {R}, e) = L,
there exists w = ulv ∈ $L£ \ $L(R, e)£ such that w ∈ CS+, where R = l →
r. (Notice that if L(R, e) 6= L, then L(R, e) ⊂ L since R ⊆ T .)

2. For all rules l → r ∈ T , there exists u, v ∈ Σ∗ such that ulv ∈ $L£ ∩ CS+

and urv ∈ $L£ ∩ CS+.
3. For all length-lexicographic $-rules and all length-decreasing non-$-rules R =

l → r /∈ T , if T ∪ {R} is ANo, then there exists u, v ∈ Σ∗ such that
ulv ∈ (Σ∗ \ $L£) ∩ CS− and urv ∈ $L£ ∩ CS+.

We now prove that if S+ ⊇ CS+ and S− ⊇ CS− LARS returns a correct
system. By construction of the characteristic set, F contains all the left and
right hand sides of the rules of the target. Assume now that LARS has been
run during a certain number of steps; Let R be the current hybrid ANo DSRS.
As I+ is not empty, let m = min¹ I+ and R̂ = R ∪ {w → m : w ∈ I+, w 6= m}.

Notice that R̂ is also a hybrid ANo DSRS. Finally let L̂ = L(R̂,m).
Let R = l → r be the next rule to be checked, i.e., l = F [i] and r = F [j]. We

assume that R is well-typed and R∪ {R} is ANo, otherwise R does not belong
to T and LARS discards it. There are two cases:

1. If R is inconsistent, then there exists m = ulv ∈ (Σ∗ \ $L£) ∩ CS− and
m′ = urv ∈ $L£ ∩ CS+. So m ↓ bR

∈ I−, m′ ↓ bR
∈ I+ and LARS discards R.

2. If R is consistent, then consider system S = R̂ ∪ {T ∈ T : R ≺ T}. Either
L(S, e) = L and then rule R is not needed (but can be added with no harm).
Or L(S, e) 6= L and then there is a string w = ulv in CS+ (where R = l → r).

As w ↓ bR
∈ I+ and w ↓ bR

= u′lv′ (because R̂ ∪ {R} is Church-Rosser), this
means that l is a factor of a string I+, which is consistent, so LARS adds R
to R. ut

3 ¹ is basically extended to ordered pairs of strings, thus to rules, as follows:
∀u1, u2, v1, v2 ∈ Σ∗, (u1, u2) ¹ (v1, v2) iff u1 ≺ v1 or (u1 = v1 and u2 ¹ v2).
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6 Experimental results

We present in this section some specific languages for which rewriting systems
exist, and on which the algorithm LARS has been tested. In each case we de-
scribe the task, the learning set from which the algorithm has worked. We do not
report any runtimes here as all computations took less than one second: Both
the systems and the learning sets were small.

Dyck Languages. The language of all bracketed strings or balanced parenthe-
ses is classical in formal language theory. It is usually defined by the rewriting
system 〈{ab → λ}, λ〉. The language is context-free and can be generated by
the grammar 〈{a, b}, {S}, P, S〉 with P = {S ⇒ aSbS;S ⇒ λ}. The language is
learned in [18] from all positive strings of length up to 10 and all negative strings
of length up to 20. In [12] the authors learn it from all positive and negative
strings within a certain length, typically from five to seven. Algorithm LARS

learns the correct grammar from both types of learning sets but also from much
smaller sets of about 20 strings. Alternatively [16] have tested their Grids sys-
tem on this language, but when learning from positive strings only. They do not
identify the language. It should also be noted that the language can be modified
to deal with more than one pair of brackets and remains learnable.

Language {a
n
b

n : n ∈ N}. Language {anbn : n ∈ N} is a language often
used as a context-free language that is not regular. The corresponding system is
〈{aabb → ab; $ab£ → $£}, λ〉. Variants of this language are {anbncm : m,n ∈ N}
which is studied in [18], or {ambn : 1 ≤ m ≤ n} from [12]. In all cases algorithm
LARS has learned the intended system from as few as 20 examples, which is
much less than for previous methods.

Regular languages. We have run algorithm LARS on benchmarks for regu-
lar language learning tasks. There are several such benchmarks. Those related
to the Abbadingo [9] tasks were considered too hard for LARS: As we have
constructed a deterministic algorithm (in the line for instance of Rpni [15]) re-
sults when the required strings are not present are bad. We turned to smaller
benchmarks, as used in earlier regular inference tasks [4]. These correspond to
small automata, and thus to from 1 to 6 rewriting rules. In most cases LARS

found a correct system, but when it did not the error was important.

Other languages and properties. Languages {w ∈ {a, b}∗ : |w|a = |w|b} and
{w ∈ {a, b}∗ : 2|w|a = |w|b} are used in [12]. In both cases the languages can be
learned by LARS from less than 30 examples.

Language of Lukasewitz is generated by grammar 〈{a, b}, {S}, P, S〉 with P =
{S ⇒ aSS+b}. The intended system is 〈{abb → b}, b〉 but what LARS returned
was 〈{$ab → λ; aab → a}, b〉, which is correct.
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Language {ambmcndn : m,n ∈ N} is not linear (but then Dyck isn’t either)
and is recognized by system 〈{aabb → ab; ccdd → cd}, abcd〉.

On the other hand the language of palindromes ({w : w = wR}) does not ad-
mit a DSRS, unless the centre is some special character. [12] learn this language
whereas LARS cannot.

System 〈{abk → b}, b〉 requires an exponential characteristic sample so learn-
ing this language with LARS is a hard task.

The system has also been tested on the Omphalos competition training
sets without positive results. There are two explanations to this: On one hand
LARS being a deterministic algorithm needs a restrictive learning set to converge
(data or evidence driven methods would be more robust and still need to be
investigated), and on the other hand, there is no means to know if the target
languages admit rewriting systems with the desired properties.

7 Conclusion and Future Work

In this paper, we have investigated the problem of learning languages that can be
defined with string-rewriting systems (SRS). We have first tailored a definition of
“hybrid almost nonoverlapping delimited SRS”, proved that they were efficient
(often linear) parsing devices and showed that they allowed to define all regular
languages as well as famous context-free languages (Dyck, Lukasewitz, {anbn :
n ≥ 0}, {w ∈ {a, b}∗ : |w|a = |w|b}, . . . ). Then we have provided an algorithm
to learn them, LARS, and proved that it could identify, in polynomial time (but
not data), the languages whose SRS had some “closedness” property. Finally, we
have shown that LARS was capable of learning several languages, both regular
and not.

However, much remains to be done on this topic. On the one hand, LARS
suffers from its simplicity, as it failed in solving the (hard) problems of the
Omphalos competition. We think that we could improve our algorithm either
by pruning our exploration of the search space, or by studying more restrictive
SRS (e.g., special or monadic SRS [1]), or by investigating more sophisticated
properties (such as basicity). On the other hand, other kind of SRS can be
used to define languages, such as the CR-languages of McNaugthon [11], or the
DL0 systems (that can generate deterministic context-sensitive languages). All
these SRS may be the source of new attractive learning results in Grammatical
Inference.
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