
Mach Learn (2007) 66:7–31

DOI 10.1007/s10994-006-9593-8

LARS: A learning algorithm for rewriting systems∗

Rémi Eyraud · Colin de la Higuera ·
Jean-Christophe Janodet

Received: 5 July 2005 / Revised: 2 May 2006 / Accepted: 22 June 2006 / Published online: 4 August 2006

Springer Science + Business Media, LLC 2007

Abstract Whereas there is a number of methods and algorithms to learn regular languages,

moving up the Chomsky hierarchy is proving to be a challenging task. Indeed, several theo-

retical barriers make the class of context-free languages hard to learn. To tackle these barriers,

we choose to change the way we represent these languages. Among the formalisms that allow

the definition of classes of languages, the one of string-rewriting systems (SRS) has outstand-

ing properties. We introduce a new type of SRS’s, called Delimited SRS (DSRS), that are

expressive enough to define, in a uniform way, a noteworthy and non trivial class of lan-

guages that contains all the regular languages, {anbn : n ≥ 0}, {w ∈ {a, b}∗ : |w|a = |w|b},
the parenthesis languages of Dyck, the language of Lukasiewicz, and many others. Moreover,

DSRS’s constitute an efficient (often linear) parsing device for strings, and are thus promising

candidates in forthcoming applications of grammatical inference. In this paper, we pioneer

the problem of their learnability. We propose a novel and sound algorithm (called LARS)

which identifies a large subclass of them in polynomial time (but not data). We illustrate the

execution of our algorithm through several examples, discuss the position of the class in the

Chomsky hierarchy and finally raise some open questions and research directions.

Keywords Learning context-free languages . Rewriting systems

∗This work was supported in part by the IST Program of the European Community, under the PASCAL

Network of Excellence, IST-2002-506778. This publication only reflects the authors’ views.

Editor: Georgios Paliouras and Yasubumi Sakakibara

R. Eyraud (�) . C. de la Higuera . J.-C. Janodet

EURISE, Université Jean Monnet de Saint-Etienne, 23 rue Paul Michelon, 42023 Saint-Etienne, France

e-mail: remi.eyraud@univ-st-etienne.fr

C. de la Higuera

e-mail: cdlh@univ-st-etienne.fr

J.-C. Janodet

e-mail: janodet@univ-st-etienne.fr

Springer

8 Mach Learn (2007) 66:7–31

1. Introduction

Grammatical inference is concerned with finding some grammatical description of a language

when given only examples of strings from this language, with perhaps some additional

information about the structure of the strings, some counter-examples or the possibility of

interrogating an oracle. Most work in grammatical inference has taken place in the area of

learning regular grammars or finite state automata. Some positive learning results have been

obtained, and there are now several good algorithms to deal with the case of learning from an

informant (both positive and negative examples are provided) (Lang, Pearlmutter, & Price,

1998), or of learning a regular distribution from positive examples (Carrasco & Oncina, 1994;

Thollard, Dupont, & de la Higuera, 2000).

On the other hand things tend to get harder when the larger class of context-free languages

is considered (Lee, 1996; Sakakibara, 1997). In that case there are known negative results

showing the difficulty of the task: for instance characteristic samples (needed for identifica-

tion) may not be of polynomial size (de la Higuera, 1997) and it is believed that context-free

grammars cannot be identified, in the framework of active learning, from a minimum adequate
teacher: such a teacher is allowed to make equivalence and membership queries (Angluin,

2001). But as the problem of extracting some representation other than that which is provided

by a regular grammar or an automaton is of crucial importance in a number of fields (natural

language processing or computational biology, for instance) there have been several attempts

to try to solve a relaxed version of the learning problem.

A first line of research has consisted in limiting the class of context-free grammars to be

learned: even linear grammars (Takada, 1988), deterministic linear grammars (de la Higuera

& Oncina, 2002), or very simple grammars (Yokomori, 2003) have been proved learnable.

If to the idea of simplifying the class of grammars we add that of using queries there are

positive results concerning the class of simple deterministic languages. A language is simple

deterministic when it can be recognized by a deterministic push-down automaton by empty

store, that only uses one state. All languages in this class are thus necessarily deterministic, λ-

free and prefix. Ishizaka (1995) learns these languages using 2-standard forms: his algorithm

makes use of membership queries and extended equivalence queries.

If one accepts the loss of theoretical proofs of convergence, then heuristics using genetic

algorithms or artificial intelligence ideas (Vanlehn & Ball, 1987; Giordano, 1994; Adriaans

& Vervoort, 2002; Petasis et al., 2004), or compression techniques (Wolf, 1978; Nevill-

Manning, & Witten, 1997) have been proposed.

In the field of computational linguistics efforts have been made to learn context-free

grammars from more informative data, such as trees (Charniak, 1996) following theoretical

results by Sakakibara (1992). Learning from structured data has been a line followed by

many: learning tree automata (Knuutila & Steinby, 1994; Fernau, 2002; Habrard, Bernard, &

Jacquenet,), or context-free grammars from bracketed data (Sakakibara, 1990) allows one to

obtain better results, either with queries (Sakakibara, 1992), regular distributions (Kremer,

1997; Carrasco, Oncina, & Calera-Rubio, 2001; Rico-Juan, Calera-Rubio, & Carrasco, 2002),

or negative information (Garcı́a & Oncina, 1993). This has also led to different studies

concerning the probability estimation of such grammars (Lari & Young, 1990; Calera-Rubio

& Carrasco, 1998).

In 2003 there has been renewed interest in the topic (de la Higuera et al., 2003): the

OMPHALOS context-free language learning competition (Starkie, Coste, & van Zaanen, 2004)

was launched, where state of the art techniques were unable to solve even the easiest tasks.

The method (Clark, 2006) that obtained best results used a variety of information about

Springer

Mach Learn (2007) 66:7–31 9

the distributions of the symbols, substitution graphs and context. The approach is mainly

empirical and does not provide a convergence theorem.

The progress made contrasts with the theoretical barriers: most theoretical results are

negative and show that the entire class of context-free languages is hard to learn in a variety

of settings (probabilistic or not, with additional information or not) (Lee, 1996; Sakakibara,

1997; de la Higuera & Oncina, 2006).

An attractive alternative when blocked by negative results is to change the representation

mode. In this line, little work has been done for the context-free case: one exception is pure
context-free grammars, which are grammars where both the non-terminals and the terminals

come from the same alphabet (Koshiba, Mäkinen, & Takada, 2000; Emerald, Subramanian,

& Thomas, 1998).

In this paper, we investigate string-rewriting systems (SRS’s) as an alternative way to

describe and manipulate context-free languages. The theory of SRS’s (also called semi-Thue

systems) was invented in 1914 by Axel Thue and extended since to trees and graphs, a lot of

attention has been paid to it throughout the 20th century (see Book & Otto, 1993; Dershowitz

& Jouannaud, 1990). Rewriting a string consists of replacing substrings by others, as far as

possible, following laws called rewrite rules. For instance, consider strings made of a and b,

and the single rewrite rule ab � λ. Using this rule consists of replacing some substring ab
by the empty string, thus of erasing ab. It allows abaabbab to rewrite as follows:

abaabbab � abaabb � abab � ab � λ

Other rewriting derivations may be considered but they all lead to λ. Actually, it is rather clear

on this example that a string will rewrite to λ if and only if it is a “parenthetic” string, i.e., a

string from the Dyck language. More precisely, the Dyck language is completely characterized

by this single rewrite rule and the string λ, which is reached by rewriting all other strings

of the language. This property was first noticed in Nivat’s seminal paper (Nivat, 1970),

which has been the starting point of a large amount of work during the last three decades.

We use this property, and others, to introduce a class of rewriting systems that is powerful

enough to represent in an economical way all regular languages and some typical context-free

languages: {anbn : n ≥ 0}, {w ∈ {a, b}∗ : |w|a = |w|b}, the parenthesis languages of Dyck,

the language of Lukasiewicz, and many others. We also provide a learning algorithm called

LARS (Learning Algorithm for Rewriting Systems) that can learn systems representing a

subclass of these languages from string examples and counter-examples of the language.

In Section 2 we give the general notations relative to the languages we consider and

discuss the notion of learning. We introduce our rewriting systems and their expressiveness

in Section 3 and develop the properties they must fulfill to be learnable in Section 4. The

general learning algorithm is presented in Section 5 and justified in Section 6. We report in

Section 7 some experimental results and conclude.

2. Learning languages

An alphabet � is a finite nonempty set of symbols called letters. A string w over � is a finite

sequence w = a1a2 . . . an of letters. Let |w| denote the length of w and |w|x the number of

occurrences of letter x in w. In the following, letters will be indicated by a, b, c, . . . , strings

by u, v, . . . , z, and the empty string by λ. Let �∗ be the set of all strings. We assume a fixed

but arbitrary total order < on the letters of �. As usual, we extend < to �∗ by defining

the hierarchical or length-lexicographic order (Oncina & Garcı́a, 1992), denoted by �, as

Springer

10 Mach Learn (2007) 66:7–31

follows:

∀w1, w2 ∈ �∗, w1 � w2 iff

⎧⎨⎩
|w1| < |w2| or

|w1| = |w2| and ∃u, v1, v2 ∈ �∗, ∃x1, x2 ∈ �

s.t. w1 = ux1v1, w2 = ux2v2 and x1 < x2.

The order � is total and strict over �∗, and if � = {a, b} and a < b, then λ � a � b � aa �
ab � ba � bb � aaa � . . .

By a language L over � we mean every subset L ⊆ �∗. Many classes of languages

have been investigated in the literature. In general, the definition of a class L relies on a

class R of abstract machines, here called representations, that characterize all and only the

languages of L. The relationship is given by the naming function L : R → L such that: (1)

∀R ∈ R,L(R) ∈ L and (2) ∀L ∈ L, ∃R ∈ R such that L(R) = L . Two representations R1

and R2 are equivalent iff L(R1) = L(R2). In this paper, we will investigate the class REG

of regular languages characterized by the class DFA of deterministic finite automata (dfa),

and the class CFL of context-free languages represented by the class CFG of context-free
grammars (cfg).

A deterministic finite automaton (dfa) is a quintuple A = 〈�, Q, q0, F, δ〉 where Q is

a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of accepting states and

δ : Q × � → Q is a transition function. The language recognized by A is L(A) = {w ∈
�∗ : δ(q0, w) ∈ F}, where δ denotes the extended transition function defined over Q × �∗.

We say that a language is regular if there exists a dfa that recognizes it. Let us remember that

given a dfa A, one can compute efficiently an equivalent dfa B that is minimal in the number

of states.

A context-free grammar (cfg) is a quadruple G = 〈�, V, P, S〉 where � is a finite alphabet

of terminal symbols, V is a finite alphabet of variables or non-terminals, P ⊆ V × (� ∪ V)∗

is a finite set of production rules, and S ∈ V is the axiom (start symbol). We will denote

uT v ⇒ uwv when (T, w) ∈ P . ⇒∗ is the reflexive and transitive closure of ⇒. If there exist

u0, . . . , uk such that ∀i , 0 ≤ i < k, ui ⇒ ui+1 we will write u0
k⇒ uk . We denote by L(G)

the language {w ∈ �∗ : S ⇒∗ w}.
We now turn to our learning problem. The size of a representation R, denoted by ‖R‖, is

polynomially related to the size of its encoding.

Definition 1. Let L be a class of languages represented by some class R of representations.

1. A sample S for a language L ∈ L is a pair S = 〈S+, S−〉 of two finite sets S+, S− ⊆ �∗

such that if w ∈ S+ then w ∈ L and if w ∈ S− then w /∈ L . The size of S is the sum of

the lengths of all the strings in S+ and S−.

2. An (L, R)-learning algorithm A is a program that takes as input a sample and outputs a

representation from R.

Finally, let us discuss what “learning” means. Obviously extracting some consistent gram-

mar is insufficient and therefore some type of convergence towards an ideal result is wanted.

The convergence can be statistical (which leads to PAC-learnability or similar definitions)

or not if we make no assumption about the way the data is obtained. We choose to base our-

selves on the paradigm of polynomial identification, as defined in Gold (1978), de la Higuera

(1997), since several authors showed that it was both relevant and tractable for grammatical

inference problems.

In this paradigm we first demand that the learning algorithm has a running time polynomial

in the size of the data from which it has to learn from. Next we want the algorithm to converge

in some way to a chosen target. Ideally the convergence point should be met very quickly,

Springer

Mach Learn (2007) 66:7–31 11

after having seen a polynomial number of examples only. As this constraint is usually too

hard, we want the convergence to take place in the limit, i.e., after having seen a finite number

of examples. The polynomial aspects are then taken into account of by the size of a minimal

learning or characteristic sample, whose presence should ensure identification. For more

details on these models we refer the reader to Gold (1978) and de la Higuera (1997). This

yields the following definition:

Definition 2 (Polynomial identification). A class L of languages is identifiable in polynomial
time and data for a class R of representations if and only if there exist an algorithm A and

two polynomials α() and β() such that:

1. Given a sample S = 〈S+, S−〉 for L ∈ L of size m, A returns a hypothesis H ∈ R in

O(α(m)) time and H is consistent with S;

2. For each representation R of size k of a language L ∈ L, there exists a finite characteristic

sample CS = 〈CS+, CS−〉 of size at most O(β(k)) such that, on all samples S = 〈S+, S−〉
for L that verify CS+ ⊆ S+ and CS− ⊆ S− , A returns a hypothesis H ∈ R which is

equivalent to R.

3. Defining languages with string-rewriting systems

String-rewriting systems are usually defined as sets of rewrite rules. These rules replace

substrings by others in strings. However, as we feel that this mechanism is not flexible

enough, we would like to extend it. Indeed, a rule that one would like to use at the beginning

or at the end of a string could also be used in the middle of this string and then have undesirable

side effects.

Therefore, we introduce two new symbols $ and £ that do not belong to the alphabet � and

will respectively mark the beginning and the end of each string. In other words, we are going

to consider strings from the set $�∗£. As for the rewrite rules, they will be partially marked,

and thus belong to �∗ = (λ + $)�∗(λ + £). Their forms will constrain their use either to the

beginning, or to the end, or to the middle, or even to the string taken as a whole. Notice that

this solution is more permissive than the usual (undelimited) approaches but more restrictive

than the string-rewriting systems with variables introduced in McNaughton, Narendran, and

Otto (1988).

Definition 3 (Delimited SRS).

– A rewrite rule R is an ordered pair of strings R = (l, r), generally written R = l � r . l is

called the left-hand side of R and r its right-hand side.

– We say that R = l � r is a delimited rewrite rule iff l and r satisfy one of the four following

constraints:

1. l, r ∈ $�∗ (used to rewrite prefixes) or

2. l, r ∈ $�∗£ (used to rewrite whole strings) or

3. l, r ∈ �∗ (used to rewrite substrings) or

4. l, r ∈ �∗£ (used to rewrite suffixes).

Rules of types 1 and 2 will be called $-rules and rules of types 3 and 4 will be called

non-$-rules.

– By a delimited string-rewriting system (DSRS), we mean any finite set R of delimited

rewrite rules.

Springer

12 Mach Learn (2007) 66:7–31

Let |R| be the number of rules of R, and let ‖R‖ be the sum of the lengths of the strings R
is defined by: ‖R‖ = ∑

(l�r)∈R |lr |.
Given a DSRS R and two strings w1, w2 ∈ �∗, we say that w1 rewrites in one step into

w2, written w1 �R w2 or simply w1 � w2, iff there exist a rule (l � r) ∈ R and two strings

u, v ∈ �∗ such that w1 = ulv and w2 = urv. A string w is reducible iff there exists w′ such

that w � w′, and irreducible otherwise. E.g., the string $aabb£ is rewritten to $aaa£ with

rule bb£ � a£.

We immediately get the following property that states that $ and £ cannot appear, nor

move nor disappear in a string by rewriting:

Proposition 1. The set $�∗£ is stable w.r.t. �R, i.e., if w1 ∈ $�∗£ and w1 �R w2, then
w2 ∈ $�∗£.

Let �∗
R (or simply �∗) denote the reflexive and transitive closure of �R. We say that w1

reduces to w2 or that w2 is derivable from w1 iff w1 �∗
R w2.

Definition 4 (Language induced by a DSRS). Given a DSRS R and an irreducible string

e ∈ �∗, we define the language L(R, e) as the set of strings that reduce to e using the rules

of R:

L(R, e) = {w ∈ �∗ : $w£ �∗
R $e£}.

Deciding whether a string w belongs to a language L(R, e) or not consists in trying to obtain

e from w by a rewriting derivation. However, w may be the starting point of numerous

derivations, thus such a task may not be tractable. We will tackle these problems in the next

section but present some examples first.

Example . Let � = {a, b}.
– L({ab � λ}, λ) is the Dyck language. Indeed, since this single rule erases substring ab, we

get the following example of a derivation:

$aabbab£ � $aabb£ � $ab£ � $£

– L({ab � λ; ba � λ}, λ) is the language {w ∈ �∗ : |w|a = |w|b}, because every rewriting

step erases one a and one b.

– L({aabb � ab; $ab£ � $£}, λ) = {anbn : n ≥ 0}. For instance,

$aaaabbbb£ � $aaabbb£ � $aabb£ � $ab£ � $£

Notice that the rule $ab£ � $£ is necessary for deriving λ (last derivation step).

– L({$ab � $}, λ) is the regular language (ab)∗. Indeed,

$ababab£ � $abab£ � $ab£ � $£

Actually, we will see, following the mechanism from the above example, that all regular

languages can be induced by a DSRS.

4. On the expected properties of the DSRS’s

The aim of this section is to examine the properties that we should demand in order to manip-

ulate tractable DSRS’s. Two (usual) properties are particularly interesting: the termination

property (Section 4.1) and the confluence property (Section 4.2). Finally, we will see that

Springer

Mach Learn (2007) 66:7–31 13

both do not restrict too much the expressivity of the DSRS’s w.r.t. the language they induce

(Section 4.3).

4.1. The termination property

As already mentioned, a string w belongs to a language L(R, e) iff one can build a derivation

from w to e. However this definition is too loose and raises many difficulties. Firstly, it is

easy to imagine a DSRS such that a string can be rewritten indefinitely. E.g., the DSRS

R = {a � b; b � a; c � cc} induces the following derivations :

aa � ba � aa � ba � aa . . .

aca � acca � accca � acccca � acccccca � . . .

Actually, the termination of SRS’s is undecidable in general and the decidability of termina-

tion on subclasses of string-rewriting systems is still an active research topic (see Moczyd-

lowski & Geser, 2005 for instance). And in the context of the DSRS, there is no reason to

believe that the problem may be simpler than in the general setting.

On the other hand, although all the derivations induced by a DSRS are finite, they could be

of exponential lengths and thus computationally intractable. Indeed, consider the following

DSRS:

R =
⎧⎨⎩

1£ � 0£, 0£ � c1d£,

0c � c1, 1c � 0d,

d1 � 1d, dd � λ

⎫⎬⎭
All the derivations induced by R are finite. Indeed, assuming that d > 1 > 0 > c, the left-

hand side l is lexicographically greater than the right-hand side r for all rules l � r , so this

DSRS is strongly normalizing (Dershowitz & Jouannaud, 1990). However, if one uses it to

rewrite $1n£ into $0n£, then all encodings of non-negative integers between 2n − 1 and 0 will

be encountered at least once, so the corresponding derivation will be of exponential length.

E.g., when n = 4, we get:

$1111£

� $1110£

� $111c1d£ � $110d1d£ � $1101dd£ � $1101£

� $1100£

� $110c1d£ � $11c11d£ � $10d11d£ � $101d1d£ � $1011dd£ � $1011£

� $1010£

�∗ $1001£

� $1000£

�∗ $0111£ . . .

�∗ $0000£.

In order to tackle these problems, we first extend the hierarchical order � to the strings of

�∗, by defining the extended hierarchical order, denoted ≺, as follows:

∀w1, w2 ∈ �∗, if w1 � w2 then w1 ≺ $w1 ≺ w1£ ≺ $w1£ ≺ w2.

Therefore, if a < b, then λ � a � b � aa � ab � ba � bb � aaa � . . . , so λ ≺ $ ≺ £ ≺ $£ ≺
a ≺ $a ≺ a£ ≺ $a£ ≺ b ≺ · · ·. Notice that ≺ conveys �∗ the structure of a well-ordered

set, that is to say every subset of �∗ has a minimum.

Springer

14 Mach Learn (2007) 66:7–31

The following technical definition ensures that all the rewriting derivations induced by a

DSRS become finite and tractable in polynomial time.

Definition 5 (Hybrid DSRS). We say that a rule R = l � r is hybrid iff

1. R is a $-rule (i.e., l, r ∈ $�∗(λ + £)) and is length-lexicographic: r ≺ l, or

2. R is a non-$-rule (i.e., l, r ∈ �∗(λ + £)) and is length-reducing: |r | < |l|.

A DSRS R is hybrid iff all its rules are hybrid.

For instance, the rules aa � a and $ba � $ab are hybrid but ba � ab is not (since it is

a non-$-rule that is not length-reducing). Notice that hybridness is a syntactic property on

each rule of a DSRS, so checking whether a DSRS is hybrid or not is straightforward.

Theorem 1. All the derivations induced by a hybrid DSRS R are finite. Moreover, every
derivation starting from a string w has a length that is at most |w| · |R|.

Proof: Let w1 � w2 be a single rewriting step. There exist a rule l � r and two strings u, v ∈
�∗ such that w1 = ulv and w2 = urv. Notice that if |l| > |r | then l � r . Moreover, if l � r ,

then we deduce that w1 � w2. So if one considers any derivation u0 � u1 � u2 � · · ·, then

u0 � u1 � u2 � · · ·. As �∗ is a well-ordered set, there is no infinite and strictly decreasing

chain of the form u0 � u1 � u2 � · · ·. So every derivation induced by R is finite. Now let

n ≥ 0. Assume that for all strings w′ such that |w′| < n, the lengths of the derivations starting

from w′ are at most |w′| · |R|. Let w be a string of length n. We claim that the maximum

length of a derivation that would preserve the length of w cannot exceed |R| rewriting steps.

Indeed, all rules that can be used along such a derivation are of the form $l � $r , with

|l| = |r | and l � r ; when such a rule is used once, then it cannot be used a second time in the

same derivation. Otherwise, there would exist a derivation $lu£ � $ru£ � · · · � $lv£ with

|u| = |v| (since the length is preserved). As $ru£ �∗ $lv£ and |l| = |r | and |u| = |v|, we

deduce that r � l which is impossible since r ≺ l. So there are at most |R| rewriting steps

that preserve the length of w, and then the application of a rule produces a string w′ whose

length is < n. So by the induction hypothesis, the length of a derivation starting from w is

no more than |R| + |w′| · |R| ≤ |w| · |R|. �

4.2. The Church-Rosser property

A hybrid DSRS induces finite and tractable derivations. Nevertheless, many different irre-

ducible strings may be reached from one given string by rewriting. Therefore, answering the

problem “w ∈ L(R, e)?” requires computing all the derivations that start with w and check-

ing if one of them ends with e. In other words, such a DSRS is a kind of “nondeterministic”

(thus inefficient) parsing device. A usual way to circumvent this difficulty is to impose our

hybrid DSRS’s to also be Church-Rosser (Dershowitz & Jouannaud, 1990).

Definition 6 (Church-Rosser DSRS). We say that a DSRS R is Church-Rosser iff for all

strings w, u1, u2 ∈ �∗ such that w �∗ u1 and w �∗ u2, there exists w′ ∈ �∗ such that u1 �∗

w′ and u2 �∗ w′ (see Fig. 1).

Springer

Mach Learn (2007) 66:7–31 15

Fig. 1 The Church-Rosser

property is also called the

Diamond property

In the definition above, if w �∗ u1 and w �∗ u2 and u1 and u2 are irreducible strings, then

u1 = u2(= w′). So given a string w, there is no more than one irreducible string that can be

reached by a derivation starting with w, whatever the derivation is considered. However, the

Church-Rosser property is undecidable in general, so we constrain our DSRS’s to fulfill a

restrictive condition; the condition will be more restrictive than what is needed to be able to

obtain positive decidability results, but will be able to be verified easily:

Definition 7 (ANo DSRS).

– Two (non necessarily distinct) rules R1 = l1 � r1 and R2 = l2 � r2 are almost nonover-
lapping (ANo) iff :

1. Either l1 = l2 and then r1 = r2;

2. Or l1 is strictly included in l2 (see Fig. 2 (a)):

∃u, v ∈ �∗, ul1v = l2, uv �= λ,

and then ur1v = r2;

3. Or l2 is strictly included in l1:

∃u, v ∈ �∗, l1 = ul2v, uv �= λ,

and then r1 = ur2v;

4. Or a strict suffix of l1 is a strict prefix of l2 (see Fig. 2(b)):

∃u, v ∈ �∗, l1u = vl2, 0 < |v| < |l1|,

and then r1u = vr2;

Fig. 2 Two rules overlap when their left-hand sides overlap; part (a) of the diagram above shows Case 2 (and

symmetrically, Case 4) of the previous definition; part (b) illustrates Case 3 (and symmetrically, Case 5)

Springer

16 Mach Learn (2007) 66:7–31

5. Or a strict suffix of l2 is a strict prefix of l1:

∃u, v ∈ �∗, ul1 = l2v, 0 < |v| < |l1|,

and then ur1 = r2v;

6. Or when there is no overlapping, i.e. (li = uv and l j = vw ⇒ v = λ), for i, j ∈
{1, 2}, i �= j .

– We say that a DSRS R is almost nonoverlapping (ANo) iff its rules are pairwise almost

nonoverlapping.

Less formally, a system is ANo if whenever two rules that overlap can be applied on a string

w, they immediately rewrite w into the same string. Such condition is often used in the

framework of constructor-based term rewriting systems (O’Donnell, 1977).

Example . – The rules R1 = ab � λ and R2 = ba � λ are almost nonoverlapping since aba
reduces to a with both rules and bab reduces to b with both rules.

– On the contrary, the rules R3 = ab � a and R4 = ba � a are not ANo; indeed, aba rewrites

to aa with both rules but bab reduces to ba with R3 and to ab with R4.

– The single rule R5 = aa � b forms a non ANo DSRS since aaa can be rewritten into ab
and ba by using R5.

We get the following result:

Theorem 2. Every ANo DSRS is Church-Rosser.

Proof: Let us show that an ANo DSRS R induces a rewriting relation �R that is

subcommutative: let us write w1 �ε w2 iff w1 �R w2 or w1 = w2; we claim that for all

w, u1, u2, if w �R u1 and w �R u2, then there exists a string w′ such that u1 �ε w′ and

u2 �ε w′ (Klop, 1992). Indeed, assume that w �R u1 uses a rule R1 = l1 � r1 and w �R u2

uses a rule R2 = l2 � r2. If both rewriting steps are independent, i.e., w = xl1 yl2z for some

strings x, y, z, then u1 = xr1 yl2z and u2 = xl1 yr2z; obviously, u1 �R w′ and u2 �R w′ with

w′ = xr1 yr2z. Otherwise, R1 overlaps R2 (or vice-versa), and so u1 = u2, since R is ANo.

By an easy induction one can generalize this property to derivations: if w �∗
R u1 and w �∗

R u2

then there exists w′ such that u1 �∗
ε w′ and u2 �∗

ε w′, where �∗
ε is the reflexive and transi-

tive closure of �ε. Finally, as u1 �∗
ε w′ and u2 �∗

ε w′, we deduce that u1 �∗
R w′ and u2 �∗

R w′.
�

4.3. On the hybrid ANo DSRS’s

In the rest of this paper, we will consider only hybrid ANo DSRS’s. This allows the following

properties to hold:

1. For any string w, there is no more than one irreducible string that can be reached by a

derivation which starts with w, whatever derivation is considered. This irreducible string

will be called the normal form of w and denoted w↓ (or w↓R whenever there is an ambiguity

on the rewriting system R).

Springer

Mach Learn (2007) 66:7–31 17

2. No derivation can be prolonged indefinitely, so every string w has at least one normal

form. And whatever the way a string w is reduced, the rewriting steps produce strings that

are ineluctably closer and closer to w↓.

An important consequence is that one has an immediate algorithm to check whether w ∈
L(R, e) or not: one only needs to (i) compute the normal form w↓ of w and (ii) check if w↓
and e are syntactically equal. As all the derivations have polynomial lengths, this algorithm

is polynomial in time.

Last but not least, notice that all the DSRS’s we used as examples at the end of Section 3,

that is to say 〈{ab � λ}, λ〉, 〈{ab � λ; ba � λ}, λ〉, 〈{aabb � ab; $ab£ � $£}, λ〉 and 〈{$ab �
$}, λ〉 satisfy the hybrid and ANo constraints. In particular, the last DSRS induces the regular

language (ab)∗ and the following result shows that all regular languages can be described

with a hybrid ANo DSRS:

Theorem 3. For each regular language L, there exist a hybrid ANo DSRS R and a string e
such that L = L(R, e).

Proof: One way to prove this result would consist in establishing the equivalence between

(1) the DSRS’s that are only made of $-rules and (2) the prefix grammars (Frazier & Page

Jr, 1994), since it is known that such grammars generate all and only the regular languages.

Below, we provide a direct proof, by using the characterization of regular languages through

automata. Let A = 〈�, Q, q0, F, δ〉 be the minimal dfa of L . For all states q ∈ Q, we define

the minimum string wq that allows q to be reached by parsing, i.e., wq is the string of

�∗ such that δ(q0, wq) = q and ∀w′ � wq , δ(q0, w
′) �= q . Let e be the minimum string that

reaches a final state (w.r.t. �) , i.e., e = minq∈F wq . LetR1 = {$wq x � $wq ′ : q, q ′ ∈ Q, x ∈
�, δ(q, x) = q ′, wq ′ �= wq x} and R2 = {$wq£ � $e£ : q ∈ F, wq �= e} and R = R1 ∪ R2.

It is clear that L(R, e) = L since ∀w ∈ �∗, δ(q0, w) = q ⇐⇒ $w �∗ $wq (by induction).

An example of this construction is given at the end of the proof.

We claim that R is a hybrid DSRS, i.e., the $-rules of R are all length-lexicographic. On

the one hand, if there exists a rule $wq x � $wq ′ in R1 then δ(q0, wq x) = q ′; as wq ′ is the

minimum string that reaches q ′ and δ(q0, wq x) = q ′, we get $wq ′ ≺ $wq x . One the other

hand, as e = minq∈F wq , all the rules of R2 are length-lexicographic.

Finally we claim that R is an ANo DSRS. Indeed, consider two rules R1 = $wq x � $wp

and R2 = $wq ′ y � $wp′ of R1. The only possible situation of overlapping is the one where

the left-hand side of one rule, say R1, contains the left-hand side of the other, say R2, that is

to say, there exists m ∈ �∗ such that wq ′ ymx = wq x . There are two cases:

– Either m = λ and then wq ′ y = wq , that yields δ(q ′, y) = q. But, by the definition of R2,

δ(q ′, y) = p′ and then p′ = q (since the dfa is deterministic), so wp′ = wq . Therefore,

rule R2 is $wq ′ y � $wq with wq ′ y = wq , that is in contradiction with the definition of the

rules.

– Or m �= λ and then wq ′ ym = wq . We deduce that q = δ(q0, wq) = δ(q0, wq ′ ym) =
δ(q ′, ym) = δ(p′, m) = δ(q0, wp′ m). However, the definition of R2 yields $wp′ ≺ $wq ′ y
that implies $wp′ m ≺ $wq ′ ym = $wq . Therefore, we get δ(q0, wp′ m) = q and $wp′ m ≺
$wq , that is impossible since wq is the minimum string that reaches state q.

Concerning the rules of R2, none of them can overlap another rule of R2 since their left-hand

sides are delimited with both $ and £. So the only possible case is that of an overlapping

between a rule of R1 and a rule of R2. However, the reader may check that this case is also

impossible for the same reason as in Case 2 above. �
Springer

18 Mach Learn (2007) 66:7–31

Fig. 3 The minimal dfa that

recognizes the language

(a + b)∗a(a + b)

Example . Consider the minimal dfa A that recognizes the language (a + b)a(a + b) (see

Fig. 3). A has four states {0, 1, 2, 3}, 0 is initial, 2 and 3 are final, and δ(0, b) = δ(3, b) =
0, δ(0, a) = δ(3, a) = 1, δ(1, a) = δ(2, a) = 2, δ(1, b) = δ(2, b) = 3. Therefore, w0 =
λ, w1 = a, w2 = aa and w3 = ab. So we get e = aa, R1 = {$b � $; $aaa � $aa; $aab �
$ab; $aba � $a; $abb � $} and R2 = {$ab£ � $aa£}. One can easily check that R1 ∪ R2

is a hybrid ANo DSRS.

5. Algorithm

In this section we present our learning algorithm (see Fig. 4) and its properties. The idea is to

enumerate the rules following the order �. We discard those that are useless or inconsistent

w.r.t. the data, and those that break the ANo condition.

The first thing LARS does is to compute all the substrings of S+ and to sort them w.r.t.

�. Left and right-hand sides of the rules will be chosen in this set. This assumption reduces

dramatically the search space without challenging LARS’s learning capacities. Then LARS

enumerates the elements of this set thanks to two for loops, which build the candidate

rules.

Fig. 4 The pseudo-code of LARS

Springer

Mach Learn (2007) 66:7–31 19

Function does appear verifies that the candidate left-hand side is a substring of at least

one string in the current I+. This precaution allows to discard rules that cannot be used

to rewrite at least one string of I+, thus rules that seem to have no effect but that could

be incorrect. Function is DSRS (resp. is hybrid, is ANo) checks if the candidate rule is

syntactically correct according to Definition 3 (resp. Definition 5 and 7). The last thing to

check is that the rule is consistent with the data, i.e., that it does not produce a string belonging

to both I+ and I−. This is easily done by computing the normal forms of the strings of

I+ and I−, which is the aim of function normalize (i.e., normali ze(X,S) = {w↓S : w ∈
X}).

Before running LARS on an example, we establish the following theorem:

Theorem 4. Given a sample S = 〈S+, S−〉 (with S+ ∩ S− = ∅) of size m, algorithm LARS

returns a hybrid ANo DSRS R and an irreducible string e such that S+ ⊆ L(R, e) and
S− ∩ L(R, e) = ∅. Moreover, its execution time is a polynomial of m.

Proof: The termination and polynomiality of LARS are straightforward (because the number

of substrings in F is polynomial in the number of positive examples). Moreover, the following

four invariant properties are maintained all along the double “for” loops: (1) R is a hybrid

ANo DSRS, (2) I+ contains all and only the normal forms of the strings of S+ w.r.t. R, (3)

I− contains all and only the normal forms of the strings of S− w.r.t. R and (4) I+ ∩ I− = ∅.

Clearly, these properties remain true before the “foreach” loop. The rules inferred during the

“foreach” loop are delimited by both a $ and a £ and so they are not pairwise overlapping;

moreover, as their left-hand sides are in normal form w.r.t. R, they are not overlapped by

any rule of R. So, at the end of the last “foreach” loop, it is clear that R is a hybrid ANo

DSRS. Moreover, (1) e is the normal form of all the strings of S+, so S+ ⊆ L(R, e) and

(2) the normal forms of the strings of S− are all in I− and e /∈ I−, so S− ∩ L(R, e) =
∅. �

To clarify the way the algorithm behaves, we run it on a toy example (summarized

in Table I). Suppose that LARS is fed with S+ = {$b£, $abb£, $abaabbb£, $ababb£} and

S− = {$λ£, $a£, $ab£, $aa£, $baab£, $bab£, $aab£, $abab£, $aabb£}. This sample cor-

responds to the context-free language of Lukasiewicz that can be described by the grammar

〈{a, b}, {S}, P, S〉 with P = {S → aSS; S → b}. The first step consists in building the sorted

set F of substrings of I+.

LARS starts with the substring λ, but no hybrid rule can be built using this left-hand side.

For the same reason the substrings $ and £ are discarded. As for string $£, it does not appear

in F .

So, the first relevant substring that LARS deals with is a. It appears in I+ and the only rule

that can be made from it is a � λ. This rule is rejected as, for instance, the string $ab£ is

reduced to $b£ which then belongs to both E+ and E−.

The next substring is $a and can be used only in the rule $a � $λ that is rejected because

it generates the same inconsistency as the previous one.

As the substrings a£ and $a£ do not appear in F , the next one is b. The first rule that

is built from this substring is b � λ. It is rejected because the positive example $b£ is then

reduced to a negative one, $λ£. b � a is length-lexicographic but not a $-rule, and is thus not

hybrid.

The substrings $b, b£, $b£ appear in I+ but the rules that can be made from them generate

a non empty intersection of E+ and E− (the same examples previously described can be used

to show their inconsistency).

Springer

20 Mach Learn (2007) 66:7–31

Table 1 Summary of an execution of LARS. The 1st column contains the substrings in F : they are

vertically ordered as F is sorted. The 2nd column contains the output of the function does appear
on the current substring and the current set I+. The 3rd column contains the current rule and the 4th

one the output of the evaluation of the functions is hybrid and is ANo. The 5th column contains

the result of the test “E+ ∩ E− = ∅?”. The last two columns correspond to the content of the sets I+
and I−. The two inferred rules are written in bold

F[i] appear? current rule hybrid & ANo? E+ ∩ E− = ∅? I+ I−

a yes a � λ yes no

S+ S−

$a yes $a � $ yes no

b yes b � λ yes no

b � a yes no

$b yes $b � $ yes no

$b � $a yes no

b£ yes b£ � £ yes no

b£ � a£ yes no

$b£ yes $b£ � $£ yes no

$b£ � $a£ yes no

aa yes aa � λ yes no

aa � a yes no

aa � b no –

$aa yes $aa � $ yes no

$aa � $a yes no

$aa � $b yes no

ab yes
ab � λ yes no

ab � a yes no

ab � b yes no

ab � aa no –

$ab yes $ab � $ yes yes {$b£, {$£, $a£,
$aabbb£} $aa£,

ba no – – – $baab£,

$bab£,

bb yes

bb � λ yes no $aab£,

bb � a no – $aabb£}
bb � b yes no

bb � aa no –

bb � ab no –

bb � ba no –

aab yes aab � λ yes no

aab � a yes yes {$b£} {$£, $a£,

$aa£,

$ba£}

Springer

Mach Learn (2007) 66:7–31 21

Then LARS looks for rules made with aa as left-hand side. The rule aa � λ re-

duces the negative example $aab£ into $b£ that is a positive one. Similarly, the rule

aa � a (resp. aa � b) reduces $aabb£ into $abb£ (resp. $aa£ into $b£) and so they are

discarded.

The next substring of F that appear in I+ is ab. The rule ab � λ cannot be accepted as

it reduces, for example, the negative string $bab£ into the positive one $b£. For the same

reason, rule ab � a (which reduces both the positive example $abb£ and the negative one

$ab£ into $a£) and rule ab � b ($ab£ belongs to I− and $b£ to I+) are discarded. ab � aa
is rejected because it is a non-$-rule that is not length-reducing (thus the system would not

be hybrid).

We then consider the substring $ab that appears in I+. The rule $ab � $λ is accepted.

The normalization step gives I+ = {$b£, $aabbb£} and I− = {$λ£, $a£, $aa£, $baab£,

$bab£, $aab£, $aabb£}. The rule is then added to R that becomes {$ab � $λ}.
All the other possible rules made with $ab as left-hand side are rejected because they

cannot generate an ANo DSRS: their left-hand sides are equal to that of the rule of R but not

their right-hand sides.

The next substring in F is ba but it does not appear in I+ anymore (because of the

normalization process).

The substring bb can still be found in I+. But no rule can be induced from it as it would

break the ANo condition. Indeed, suppose that we are checking a rule bb � r , for some r .

The substring $abb can then be reduced into $ar and also into $b using the only rule of R.

Both these strings can definitely not be equal, so the ANo condition is broken by every rule

whose left-hand side is bb.

The next substring is aab that still appears in I+. The rule aab � λ is discarded whereas

the rule aab � a satisfies the needed conditions and is consistent, so the latter is accepted.

The normalization process yields I+ = {$b£} and I− = {$λ£, $a£, $aa£, $ba£}.
At this point there is only one string in I+, so LARS does not infer any new rule, and thus

ends and outputs 〈{$ab � $λ, aab � a}, $b£〉. Although it is not immediate, the reader may

check that this system does induce the expected language.

The above example of an execution of the algorithm LARS is summarized in Table 1.

Notice that, as no hybrid rule can be constructed with λ, $ or £ as left-hand side, we have

not put them in the first column of the table (they respectively correspond to the elements of

indices zero to two in the sorted Tabular F).

6. Learning hybrid ANo DSRS’s

In this section, we study the languages that LARS can learn. On the one hand, we provide

an identification result for a restricted class of languages, those that may be defined thanks

to closed DSRS’s. On the other hand, we show that LARS is able to learn a richer class and

address the question of the position of this class in the Chomsky hierarchy.

6.1. An identification result

LARS is a greedy algorithm that infers a DSRS incrementally. However, it does not consider

every hybrid rule. Indeed, a candidate rule is built from the substrings of the positive sample

only, so it necessarily rewrites at least one string of the target language; we will say that such

a rule is applicable to the language. Moreover, LARS keeps a rule only if it does not generate

Springer

22 Mach Learn (2007) 66:7–31

a contradiction between the positive and negative examples; we will say that such a rule is

consistent w.r.t. the language.

Definition 8 (Applicable and consistent rule). Let L ⊆ �∗ be a language and R = l � r a

hybrid rule. We say that:

– R is applicable to L iff there exist w ∈ $L£ and u, v ∈ �∗ such that w = ulv.

– R is consistent w.r.t. L iff ∀u, v ∈ �∗, (ulv ∈ $L£ ⇐⇒ urv ∈ $L£).

E.g., with respect to L = {anbn : n ≥ 0}, the rule bba � ba is not applicable since no

string of $L£ contains bba as a substring. Actually, describing L by using such a rule is

not relevant. On the other hand, the rule ab � a is not consistent w.r.t. L since it rewrites

$aabb£ ∈ $L£ into $aab£ /∈ $L£. Actually, a rule is consistent w.r.t. L if $L£ and (�∗ \ $L£)

are both stable by rewriting with this rule.

All the hybrid rules that could be used to describe a language L are necessarily consistent

w.r.t. L (and should be applicable to L). But such systems would probably not be ANo, so

LARS would not learn them. This is the reason why we introduce the following definition:

Definition 9 (Closed DSRS). Let L = L(R, e) be a language and Rmax the greatest1 rule of

R w.r.t. �. We say that R is closed iff

1. R is hybrid and ANo, and

2. for any hybrid rule R, if (i) R � Rmax and (ii) R is applicable to L and (iii) R is consistent

w.r.t. L , then R ∈ R.

We say that a language is closed if it can be induced by a closed DSRS.

Given a hybrid ANo DSRS, it is probably not possible to decide whether this system is

closed or not; the problem comes from the consistency property of a rule that seems to be

undecidable. Beyond these drawbacks, the closedness property yields the following result:

Theorem 5. Given a language L = L(T , e) such that T is closed, there exists a finite char-
acteristic sample C S = 〈C S+, C S−〉 such that, on S = 〈S+, S−〉 with C S+ ⊆ S+ and C S− ⊆
S−, algorithm LARS finds e and returns a hybrid ANo DSRS R such that L(R, e) = L(T , e).

Notice that the characteristic sample may not be of polynomial size as is required in (de la

Higuera, 1997).

We first define the characteristic sample for a closed language:

Definition 10 (Characteristic sample). Let L = L(T , e) be the target language. T is assumed

closed. We define the characteristic sample C S = 〈C S+, C S−〉 as follows:

1. $e£ ∈ C S+.

2. For any rule R = l � r ∈ T , there exist two strings ulv, u′rv′ ∈ $L£ ∩ C S+ for some

u, v, u′, v′ ∈ �∗.

3. For any hybrid rule R = l � r such that R � Rmax and R /∈ T (R is not consistent since T
is closed), if there exist α and β in �∗ such that αlβ ∈ $L£, then there exists u, v ∈ �∗ such

1 � is basically extended to ordered pairs of strings, thus to rules, as follows: ∀u1, u2, v1, v2 ∈ �∗, (u1, u2) �
(v1, v2) iff u1 ≺ v1 or (u1 = v1 and u2 � v2).

Springer

Mach Learn (2007) 66:7–31 23

that ulv ∈ ($�∗£ \ $L£) ∩ C S− and urv ∈ $L£ ∩ C S+, or urv ∈ ($�∗£ \ $L£) ∩ C S−
and ulv ∈ $L£ ∩ C S+.

4. For any R ⊆ T and all R = l � r ∈ T such that L(R, e) �= L but L(R ∪ {R}, e) = L ,

there exists w ∈ $L£ \ $L(R, e)£ such that w = ulv, w is in normal form w.r.t. R and

w ∈ C S+.

Before the proof of Theorem 5, we discuss informally the definition of the characteristic

sample above. The two first items ensure that LARS has all the elements needed in the sample:

the smallest string in the language and all the left and right hand sides of the rules of the target

are in the positive set of the characteristic sample. As the algorithm checks only the rules

whose left and right hand sides appear in the positive examples, these conditions are neces-

sary for identification. These conditions correspond to those required in most grammatical

inference algorithms, when identification in the limit is the issue.

The third item concerns the hybrid rules that are not consistent (but applicable) w.r.t the

target language. For such a rule l � r , we need two strings ulv and urv in the characteristic

sample, one positive, one negative, such that LARS rejects the rule (the intersection between

the set of normalized positive examples and the one of normalized negative examples is

then not empty). Although consistency is an equivalence property, we only need the rule to

rewrite either a positive example into a negative one, or a negative example in a positive one,

to reject it. The first choice above may have an undesirable side effect: it may unnecessarily

increase the size of the set of substrings F LARS works on. But it is not always possible to

find a negative example that is rewritten into a positive one using this rule. As the rule is

not consistent, at least one of the two cases hold, which allows us to define a characteristic

sample from which the rule will be rejected.

The last item is more technical: its goal is to prevent LARS to erase, during a normalization

step of the evaluation, the left-hand side of a needed rule, that is to say a rule such that the

target language cannot be induced without it.

Notice that the definition (and the following proof) show the existence of a characteris-

tic sample, but not its constructability: the last item requires the comparison between the

languages induced by two different hybrid ANo DSRS’s, which is probably an undecidable

problem. However, this is not a problem from a theoretical point of view. Indeed, it is known

since (de la Higuera, 1997) that polynomial identification in the limit (see Definition 2) is

equivalent to “semi-poly teachability”, as defined by Goldman & Kearns (1995). This last

notion requires the existence of a characteristic sample but not its constructability (that would

correspond to “teachability”).

Proof: Let L = L(T , e) be the target language. T is assumed closed and let Rmax denotes

the greatest rule of T w.r.t. �.

We now prove that if S+ ⊇ C S+ and S− ⊇ C S− then LARS returns a correct system. By

construction of the characteristic sample, F contains all the left and right-hand sides of the

rules of the target (Case 2 above). Assume now that LARS has been running during a certain

number of steps. Let R be the current hybrid ANo DSRS; by the closedness of T , R ⊆ T .

Let R = l � r be the next rule to be checked (i.e. l still appears in I+). We assume that

R ∪ {R} is hybrid ANo. Otherwise LARS discards it. Notice that this is not a problem since

if R ∪ {R} is not hybrid ANo, then T ∪ {R} cannot be hybrid ANo, so R cannot belong to

T (by the closedness property). There are two cases:

1. If R is inconsistent, then by Case 3 of the characteristic sample, there exist m and m ′,
one in S+, the other in S− such that m �R m ′. Suppose that m is in ($�∗£ \ $L£) ∩ C S−

Springer

24 Mach Learn (2007) 66:7–31

and m ′ in $L£ ∩ C S+ (the other case is symmetric). By the definition of I+ and I−, we

get u = m↓R∈ I− and u′ = m ′↓R∈ I+. As R ∪ {R} is ANo, it is Church-Rosser, so there

exists a string z such that u �R∪{R} z and u′ �R∪{R} z. Therefore z ∈ E+ ∩ E−, thus LARS

discards R.

2. If R is consistent, then consider the system S = R ∪ {T ∈ T : R ≺ T }. Notice that S is

made by the rules of T except the rule R and the consistent rules that could have belonged

to R but were discarded because they appeared to be useless when LARS considered them.

There are two subcases:

(a) L(S, e) = L and thus the rule R is not needed to get L . In this case, LARS adds R to

R since there is no way to reject it. (But notice that this rule could also be rejected

with no harm.)

(b) L(S, e) �= L and L(S ∪ {R}, e) = L . Then, by Case 4 of the characteristic sample,

there is a string w in C S+, that is in normal form w.r.t. S. As R ⊆ S, it is clear that

w ∈ I+. As w can be rewritten with R, R can be used at least once on a positive

string. So LARS adds R to R.

At the end of the execution of LARS, the current DSRS R contains all the rules of T
except those whose left-hand sides did not appear in I+ when LARS considered them. Never-

theless, such rules were not needed to identify L since otherwise, Case 4 of the characteristic

sample would have ensured that their left-hand side appears in I+. Finally, notice that e
is the only string that remains in I+, and so LARS returns the pair 〈R, e〉 that does satisfy

L(R, e) = L . �

6.2. LARS and the Chomsky Hierarchy

In the field of grammar induction, it is usual to discuss the position of the learned class

in the Chomsky Hierarchy. This hierarchy, introduced in Chomsky (1956), is composed

of four classes of languages: the regular, the context-free, the context-sensitive and the

recursively enumerable ones. The regular languages are included in the context-free ones, that

are contained in the context-sensitive ones. The class of recursively enumerable languages

includes all the others.

The results of this section are given in Fig. 5. The following remarks can be made.

First of all, we have seen that all closed languages are identifiable with LARS. Although

checking whether a DSRS is closed or not seems to be undecidable, this can be done by

hand on particular DSRS’s. For instance, it is easy to check that 〈{ab � λ, ba � λ}, λ〉 which

induces the context-free language {w ∈ {a, b}∗ : |w|a = |w|b} is closed. In addition, one can

Fig. 5 LARS and the languages

in the Chomsky hierarchy. LARS

denotes the class of languages

learnable by Algorithm 1 (LARS)

and ANo DRSR the class of

languages representable by

hybrid ANo DSRS’s

Springer

Mach Learn (2007) 66:7–31 25

Fig. 6 The minimal dfa of

L1 = {w ∈ {a, b}∗ :

|w|a mod 3 = |w|b mod 3}

also check that all the context-free languages described in Section 7.2 admit a closed DSRS.

So the closedness property is not too restrictive.

Secondly, LARS can also learn languages that are not closed because it is able to in-

fer DSRS’s that are not closed. For instance, consider 〈R, ab〉 with R = {$b � $, a£ �
£, abab � ab}, that induces the regular language L0 = b∗(ab)+a∗. The rule R = aa£ � £ is

consistent and applicable to L0; moreover, R ≺ (abab � ab) and R ∪ {R} is not ANo; so

R is not closed. However, LARS finds R! Actually the rule R erases a’s at the end of the

strings, that is also done by the rule a£ � £ ∈ R, so R is not needed to induce L0. Notice

that all the DSRS’s that induce L0 need a rule that deals with the substrings made of ab’s

and so, whatever is their greatest rule Rmax, R′ = a£ � £ and R are smaller than Rmax.

Therefore, there exists no closed DSRS that induces L0 (as R and R′ are both consistent and

applicable but not ANo). Hence, this example shows that the class of closed languages is

strictly contained in the class of languages that LARS is able to learn.

Concerning the regular languages, we have shown in Theorem 3 that they were all induced

with at least one hybrid ANo DSRS. Yet, LARS is not able to learn all of them. For example,

consider the language L1 = {w ∈ {a, b}∗ : |w|a mod 3 = |w|b mod 3} (see Fig. 6).

L1 is induced by e = λ and, for instance, one of the following hybrid DSRS’s:

R1 = {aa � b; ab � λ; ba � λ; bb � a}
R2 = {$aa � $b; $ab � $; $ba � $; $bb � $a}

Notice that R2 is ANo ; as for R1, it is Church-Rosser but not ANo. Notice also that L1 is

not a closed language because the rule aa � b is the smallest consistent and applicable rule

but is not ANo. On this language, by using a large amount of examples that allows LARS to

reject inconsistent rules, the algorithm begins to infer the following system:

R = {$aa � $b; $ab � $; ba � λ}.

R is a hybrid ANo DSRS made of rules coming from R1 and R2. No smaller consistent

and applicable rule can be inferred during the process. Moreover, R does not induce L1, in

particular because a lot of bb’s still appear as substrings of the sample. However, there is

definitely no rule that would erase them and could be added to R without breaking the ANo

condition, so no super hybrid ANo DSRS of R induces L1. In other words, L1 is a regular

language that LARS cannot learn.

As a consequence, it is clear that every context-free language is not learnable either.

However, we will see in the following section that LARS is still able to identify a lot of

important context-free languages, including some non-linear ones. Last but not least, we

conjecture that LARS is not able to learn any pure context-sensitive language, simply because

such languages can probably not be described with DSRS’s.

Springer

26 Mach Learn (2007) 66:7–31

7. Experimental results

An implementation of LARS in Java is available on-line at the URL http://eurise.
univ-st-etienne.fr/~eyraud/LARS: different fields must be filled with positive and neg-

ative examples, and then LARS can be run on them. The result of the evaluation is then given

on the webpage.

7.1. About grammatical inference experiments

Experiments in grammatical inference can be separated into three families:

– Identification experiments on large-scale competition-type benchmarks;

– Learning experiments on real-world data;

– Identification experiments on small (toy) examples.

The first case includes well known benchmarks based on the ABBADINGO or OMPHALOS

competitions (Lang, Pearlmutter, & Price, 1998; Starkie, Coste, & van Zaanen, 2004). Other

large benchmarks have been made available by Oliveira & Silva (2001) or the GOWACHIN

system (Lang, Pearlmutter, & Coste, 1998). Sizes of the alphabets, the grammars, the training

sets can vary, but correspond to limit situations w.r.t. the state of the art: in the case of the

ABBADINGO competition some of the problems have not been solved seven years after the

end of the competition! In all these cases the idea has been to get the researchers to push

their algorithms as far as possible in order to obtain the best possible classification rates. In

doing so other issues may have been forgotten such as the correctness of the algorithms (do

they converge?) or their intelligibility (in order to get better results some fine tuning often

becomes necessary).

In the second case the situation has not changed that much since the seventies: if there

is no target grammar to be exactly identified, we are in a situation of noisy learning, which

to date cannot be solved by grammatical inference with deterministic methods. Statistical

methods perform better, but there are many other questions that arise from the choice of

learning a distribution instead of a language.

When a new algorithm is presented it is reasonable to show (not prove!) that positive

results can be obtained in the proposed setting (learning with a teacher or with the help of a

characteristic sample implies that positive results depend on the fact that specific pieces of

data are present). On the other hand most new ideas in grammatical inference are presented

through experiments on smaller and more manageable benchmarks. The experiments do not

in that case have the same meaning: the point is to show what is happening, not to infer that

on some random data set the algorithms perform well.

We have chosen to test LARS mainly in this context. We have experimented with toy

examples only: these correspond nevertheless to languages that have been considered hard

by different authors (Nakamura & Matsumoto, 2005; Sakakibara & Kondo, 1999).

Nevertheless, the system has also been tested on the OMPHALOS competition training sets

and the results have been bad. There are two explanations for this: on one hand LARS is

a greedy algorithm that needs a restrictive learning sample to converge (data or evidence

driven methods would be more robust and still need to be investigated), and on the other

hand, there is no means to know if the unknown target languages admit rewriting systems

with the desired properties. Essentially LARS is provable: it makes its decisions (to create

rules) on the basis of the fact that there is no reason not to create the rule. A more pragmatic

view is to base such a decision on the fact that it seems a good idea to create a rule. But

Springer

Mach Learn (2007) 66:7–31 27

convergence, in the second setting, needs a statistical decision, and changes quite drastically

the type of results one can achieve.

Let us see, on an example, what can happen when running LARS on the first problem of the

OMPHALOS competition: it is given by a learning sample composed of 266 positive examples

and 535 negative ones. The alphabet is �1 = {a, b, c, d, e, f }. LARS infers first some trivial

rules: Rcurrent = {$b � $, c � λ, f � λ, be � e, db � d, dde � ed, bbde � bde}. The sec-

ond and the third rules completely erase two letters of the alphabet. The others contribute

to decreasing drastically the number of b’s. We do not know what the target language is,

but it does not seem reasonable to erase half of the letters if one wants to learn it. This

result is due to the small size of the learning sample in comparison to the complexity of the

target language: there do not exist pairs of positive and negative examples that would allow

the algorithm to reject these probably inconsistent rules. One of the consequences is that

the current learning set I+ contains 215 positives examples that are too close (w.r.t the edit

distance) to the negative ones: LARS is not able to infer any new interesting rule and then

adds 214 rules of the form $w£ � $e£ that rewrite each positive example w into the smallest

one e.

7.2. LARS on small grammars

We present in this section some specific languages for which rewriting systems exist, and on

which the algorithm LARS has been tested. In each case we describe the task and the size of

the learning sample to which the algorithm has been applied. We do not report any runtimes

here as all computations took less than one second: both the systems and the learning samples

were small.

Dyck languages

The language of all bracketed strings or balanced parentheses is classical in formal language

theory. It is usually defined by the rewriting system 〈{ab � λ}, λ〉. The language is context-

free and can be generated by the grammar 〈{a, b}, {S}, P, S〉 with P = {S → aSbS; S →
λ}. The language is learned in Sakakibara and Kondo (1999) from all positive strings of

length up to 10 and all negative strings of length up to 20. In Nakamura and Matsumoto

(2005) the authors learn it from all positive and negative strings within a certain length,

typically from five to seven. Algorithm LARS learns the correct grammar from both types

of learning samples but also from much smaller samples of about 20 strings. Alternatively,

Petasis et al. (2004) have tested their GRIDS system on this language, but when learning

from positive strings only. They do not identify the language. It should also be noted that

the language can be modified to deal with more than one pair of brackets and remains

learnable.

Language {anbn : n ∈ N}.

Language {anbn : n ∈ N} is a language often used as a context-free language that is not

regular. The corresponding system is 〈{aabb � ab; $ab£ � $λ£}, λ〉. Variants of this lan-

guage are {anbncm : m, n ∈ N} which is studied in Sakakibara and Kondo (1999), and

{ambn : 1 ≤ m ≤ n} from Nakamura and Matsumoto (2005). In all cases algorithm LARS

Springer

28 Mach Learn (2007) 66:7–31

has learned the intended system from as few as 20 examples, which is much less than for

previous methods.

Regular languages

We have run algorithm LARS on benchmarks for regular language learning tasks. There are

several such benchmarks. Those related to the ABBADINGO (Lang, Pearlmutter, & Price,

1998) tasks were considered too hard for LARS: as we have constructed a greedy algorithm

(in the line for instance of RPNI (Oncina & Garcı́a, 1992)), results when the required strings

are not present are bad. We turned to smaller benchmarks, as used in earlier regular inference

tasks Dupont (). These correspond to small automata, and thus from 1 to 6 rewriting rules.

In most cases LARS found a correct system, but when it did not, the language induced by the

inferred DSRS had no connection with the target language.

Other languages and properties

The language {a pbq :p ≥ 0, q ≥ 0, p �= q} is not a NTS language (Boasson, 1980) but

LARS outputs the correct system 〈{$b£ � $a£; aa£ � a£; $bb � $b; aab£ � a£; $abb �
$b; aabb � ab}, a〉 from as few as 20 examples. Notice that this language could not have

been described without the use of delimiters.

Languages {w ∈ {a, b}∗ : |w|a = |w|b} and {w ∈ {a, b}∗ : 2|w|a = |w|b} are used in

Nakamura and Matsumoto (2005). In both cases the languages can be learned by LARS

from less than 30 examples.

The language of Lukasiewicz is generated for instance by the grammar 〈{a, b}, {S}, P, S〉
with P = {S → aSS; S → b}. The intended system is 〈{abb � b}, b〉 but what LARS returned

was 〈{$ab � $λ; aab � a}, b〉, which is correct.

The language {ambmcndn :m, n ≥ 0} is not linear (but neither is the Dyck language) and

is recognized by the system 〈{aabb � ab; ccdd � cd, $abcd£ � $£}, λ〉.
On the other hand the language of palindromes ({w : w = wR}) does not admit a DSRS,

unless the center is some special character. Nakamura and Matsumoto (2005) identifies this

language, whereas LARS cannot.

System 〈{abk � b}, b〉 requires an exponential characteristic sample so learning this lan-

guage with LARS is a hard task.

8. Conclusion and future work

In this paper, we have investigated the problem of learning languages that can be defined

with string-rewriting systems (SRS’s). We have first tailored a definition of “hybrid almost

nonoverlapping delimited SRS’s”, proved that they were efficient (often linear) parsing de-

vices and showed that they define all regular languages as well as important context-free

languages (Dyck, Lukasiewicz, {anbn : n ≥ 0}, {w ∈ {a, b}∗ : |w|a = |w|b}, . . .). Then we

have provided an algorithm to learn them, LARS, and proved that it could identify, in poly-

nomial time (but not data), the languages whose DSRS had some “closedness” property.

Finally, after a discussion on the position of the class of “closed languages” in the Chomsky

hierarchy, we have shown that LARS was capable of learning several languages, both regular

and not.

However, much remains to be done on this topic. On the one hand, LARS suffers from

its simplicity, as it failed in solving the (hard) problems of the OMPHALOS competition. We

think that we could improve our algorithm either by pruning our exploration of the search

Springer

Mach Learn (2007) 66:7–31 29

space, or by studying more restrictive SRS’s (e.g., special or monadic SRS (Book & Otto,

1993)), or by investigating more sophisticated properties (such as basicity (Sénizergues,

1998)). On the other hand, other kinds of SRS’s can be used to define languages, such as

the CR-languages of McNaughton, Narendran, and Otto (1988), or the D0L systems (that

can generate deterministic context-sensitive languages). Notice also that the learnability of

term rewriting systems is being investigated (see for instance Rao, 2004; Togashi & Noguchi,

1990; Laird & Gamble, 1990). All these SRS’s may be the source of new attractive learning

results in Grammatical Inference.

Acknowledgments We thank Géraud Sénizergues (LaBRI, Bordeaux, France) for providing us with pointers

to the rewriting systems literature, as well as Alexander Clark (Royal Holloway University of London, UK)

for fruitful discussions. The efforts made by the anonymous referees also deserve to be acknowledged.

References

Adriaans, P., Fernau, H., & van Zaannen, M. (Eds.) (2002). Grammatical inference: Algorithms and applica-
tions, In Proceedings of ICGI ’02, vol. 2484 of LNAI, Berlin, Heidelberg: Springer-Verlag.

Adriaans, P., Vervoort, M. (2002). The EMILE 4.1 grammar induction toolbox. In P., Adriaans, H., Fernau, &

van, M. Zaannen (Eds.), Grammatical inference: Algorithms and applications, Proceedings of ICGI ’02,

vol. 2484 of LNAI (pp. 293-–295). Berlin, Heidelberg: Springer-Verlag.

Angluin, D. (2001). Queries revisited. In N. Abe, R. Khardon, & T. Zeugmann (Eds.), Proceedings of ALT
2001, number 2225 in LNCS, (pp. 12–31), Berlin, Heidelberg: Springer-Verlag.

Boasson, L. (1980). Grammaire à non-terminaux séparés. In Proc. 7th ICALP (pp. 105–118). LNCS 85.

Book, R., & Otto, F. (1993). String-rewriting systems. Springer-Verlag.

Calera-Rubio, J., & Carrasco, R. C. (1998). Computing the relative entropy between regular tree languages.

Information Processing Letters, 68(6), 283–289.

Carrasco, R. C., & Oncina, J. (Eds.) (1994). Grammatical inference and applications. In Proceedings of ICGI
’94, number 862 in LNAI, Berlin, Heidelberg: Springer-Verlag.

Carrasco, R. C., & Oncina, J. (1994) Learning stochastic regular grammars by means of a state merging

method. In R. C., Carrasco, & J. Oncina (Eds.), Grammatical inference and applications. Proceedings of
ICGI ’94, number 862 in LNAI, Berlin, (pp. 139–150), Heidelberg, Springer-Verlag.

Carrasco, R. C., Oncina, J., & Calera-Rubio, J. (2001). Stochastic inference of regular tree languages. Machine
Learning Journal, 44(1), 185–197.

Charniak, E. (1996). Tree-bank grammars. In AAAI/IAAI, (vol. 2, pp. 1031–1036).

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory,

3, 113–124.

Clark, A. (2006). Learning deterministic context free grammars: the omphalos competition. Published in this
special issue.

de la Higuera, C. (1997). Characteristic sets for polynomial grammatical inference. Machine Learning Journal,
27, 125–138.

de la Higuera, C., Adriaans, P., van Zaanen, M., & Oncina, J. (Eds.), (2003). In Proceedings of the Workshop
and Tutorial on Learning Context-free Grammars. ISBN 953-6690-39-X.

de la Higuera, C., & Oncina, J. (2002). Learning deterministic linear languages. In J., Kivinen, & R. H.,

Sloan, (Eds.), Proceedings of COLT 2002, number 2375 in LNAI, (pp. 185–200). Berlin, Heidelberg.

Springer-Verlag.

de la Higuera, C., & Oncina, J. (2006). Learning context-free languages. Artificial Intelligence Reviews. (To

appear).

de Oliveira, A. L., & Silva, J. P. M. (2001). Efficient algorithms for the inference of minimum size DFAs.

Machine Learning Journal, 44(1), 93–119.

Dershowitz, N., & Jouannaud, J. (1990). Rewrite systems. In J. van Leeuwen (Ed.), Handbook of Theoretical
Computer Science: Formal Methods and Semantics, (vol. B, chap. 6, pp. 243–320). North Holland,

Amsterdam.

Dupont, P. (1994). Regular grammatical inference from positive & negative samples by genetic search: the GIG

method. In R. C., Carrasco, & J. Oncina, (Eds.), Grammatical inference and applications, Proceedings
of ICGI ’94, number 862 in LNAI (pp. 236–245). Berlin, Heidelberg: Springer-Verlag.

Springer

30 Mach Learn (2007) 66:7–31

Emerald, J. D., Subramanian, K. G., & Thomas, D. G. (1998). Learning a subclass of context-free languages.

In V., Honavar, & G. Slutski, (Eds.), Grammatical inference, Proceedings of ICGI ’98, number 1433 in

LNAI, (pp. 223–231). Berlin, Heidelberg: Springer-Verlag.

Fernau, H. (2002). Learning tree languages from text. In J., Kivinen, & R. H. Sloan, (Eds.), Proceedings of
COLT 2002, number 2375 in LNAI, (pp. 153–168). Berlin, Heidelberg. Springer-Verlag.

Frazier, M., & Page, C.D. Jr, (1994). Prefix grammars: An alternative characterisation of the regular languages.

Information Processing Letters, 51(2), 67–71.

Garcı́a, P., & Oncina, J. (1993). Inference of recognizable tree sets. Technical Report DSIC-II/47/93, Depar-

tamento de Lenguajes y Sistemas Informáticos, Universidad Politécnica de Valencia, Spain.

Giordano, J. Y. (1994). Inference of context-free grammars by enumeration: Structural containment as

an ordering bias. In R. C., Carrasco, & J. Oncina, (Eds.), Grammatical inference and applica-
tions, Proceedings of ICGI ’94, number 862 in LNAI, (pp. 212–221). Berlin, Heidelberg, Springer-

Verlag.

Gold, E. M. (1978). Complexity of automaton identification from given data. Information and Control, 37,

302–320.

Goldman, S. A., & Kearns, M. (1995). On the complexity of teaching. Journal of Computer and System
Sciences, 50(1), 20–31.

Habrard, A., Bernard, M., & Jacquenet, F. (2002). Generalized stochastic tree automata for multi-relational data

mining. In P., Adriaans, H., Fernau, & M. van Zaannen. (Eds.), Grammatical inference: Algorithms and
applications, Proceedings of ICGI ’02, vol. 2484 of LNAI, (pp. 120–133). Berlin, Heidelberg. Springer-

Verlag.

Honavar, V., & Slutski, G. (Eds.) (1998). Grammatical inference, Proceedings of ICGI ’98, number 1433 in

LNAI, Berlin, Heidelberg. Springer-Verlag.

Ishizaka, H. (1995). Polynomial time learnability of simple deterministic languages. Machine Learning Jour-
nal, 5, 151–164.

Kivinen, J., & Sloan, R. H. (Eds.), (2002). In Proceedings of COLT 2002, number 2375 in LNAI, Berlin,

Heidelberg: Springer-Verlag.

Klop, J. W. (1992). Term rewriting systems. In S. Abramsky, D. Gabbay, & T. Maibaum, (Eds.), Handbook of
Logic in Computer Science, (vol. 2, pp. 1–112). Oxford University Press.

Knuutila, T., & Steinby, M. (1994). Inference of tree languages from a finite sample: an algebraic approach.

Theoretical Computer Science, 129, 337–367.

Koshiba, T., Mäkinen, E., & Takada, Y. (2000). Inferring pure context-free languages from positive data. Acta
Cybernetica, 14(3), 469–477.

Kremer, S. C. (1997). Parallel stochastic grammar induction. In Proceedings of the 1997 International Con-
ference on Neural Networks (ICNN ’97), (vol. I, pp. 612–616).

Laird, P., & Gamble, E. (1990). Ebg and term rewriting systems. In Algorithmic Learning Theory (pp. 425–

440).

Lang, K., Pearlmutter, B. A., & Coste, F. (1998). The Gowachin automata learning competition.

Lang, K., Pearlmutter, B. A., & Price, R. A. (1998). The Abbadingo one DFA learning competition.

In Proceedings of ICGI’98, (pp. 1–12). The abbadingo competition can be found at the address:

http://abbadingo.cs.unm.edu/

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998). Results of the Abbadingo one DFA learning competition

and a new evidence-driven state merging algorithm. In V., Honavar, & G. Slutski, (Eds.), Grammatical
Inference, Proceedings of ICGI ’98, number 1433 in LNAI, (pp. 1–12). Berlin, Heidelberg: Springer-

Verlag.

Lari, K., & Young, S. J. (1990). The estimation of stochastic context free grammars using the inside-outside

algorithm. Computer Speech and Language, 4, 35–56.

Lee, L. (1996). Learning of context-free languages: A survey of the literature. Technical Report TR-12-96,

Center for Research in Computing Technology, Harvard University, Cambridge, Massachusetts.

McNaughton, R., Narendran, P., & Otto, F. (1988). Church-Rosser Thue systems and formal languages. Journal
of the Association for Computing Machinery, 35(2), 324–344.

Moczydlowski, W., & Geser, A. (2005). Termination of single-threaded one-rule semi-thue systems. In Pro-
ceedings of the 16th International Conference on Rewriting Techniques and Applications, (pp. 338–352).

LNCS 3467.

Nakamura, K., & Matsumoto, M. (2005). Incremental learning of context-free grammars based on bottom-up

parsing and search. Pattern Recognition, 38(9), 1384–1392.

Nevill-Manning, C., & Witten, I. (1997). Identifying hierarchical structure in sequences: a linear-time algo-

rithm. Journal of Artificial Intelligence Research, 7, 67–82.

Nivat, M. (1970). On some families of languages related to the dyck language. In Proc. 2nd Annual Symposium
on Theory of Computing.

Springer

Mach Learn (2007) 66:7–31 31

O’Donnell, M. J. (1977). Computing in Systems Described by Equations, vol. 58 of LNCS. Springer.

Oncina, J., & Garcı́a, P. (1992). Identifying regular languages in polynomial time. In H. Bunke, (Ed.), Advances
in Structural and Syntactic Pattern Recognition, vol. 5 of Series in Machine Perception and Artificial
Intelligence, (pp. 99–108). World Scientific.

Petasis, G., Paliouras, G., Karkaletsis, V., Halatsis, C., & Spyropoulos, C. (2004). E-grids: Computationally

efficient grammatical inference from positive examples. Grammars, 7, 69–110.

Rao, M. R. K. Krishna. (2004). Inductive inference of term rewriting systems from positive data. In Agorithmic
Learning Theory, (pp. 69–82).

Rico-Juan, J. R., Calera-Rubio, J., & Carrasco, R. C. Stochastic k-testable tree languages and applications.

In Adriaans, P., Fernau, H., & van Zaannen, M. (Eds.), (2002). Grammatical inference: Algorithms and
applications, In Proceedings of ICGI ’02, vol. 2484 of LNAI, (pp. 199–212). Berlin, Heidelberg: Springer-

Verlag.

Sakakibara, Y. (1990). Learning context-free grammars from structural data in polynomial time. Theoretical
Computer Science, 76, 223–242.

Sakakibara, Y. (1992). Efficient learning of context-free grammars from positive structural examples. Infor-
mation and Computation, 97, 23–60.

Sakakibara, Y. (1997). Recent advances of grammatical inference. Theoretical Computer Science, 185, 15–

45.

Sakakibara, Y., & Kondo, M. (1999). Ga-based learning of context-free grammars using tabular representations.

In Proceedings of 16th International Conference on Machine Learning (ICML-99) (pp. 354–360).

Sénizergues, G. (1998). A polynomial algorithm testing partial confluence of basic semi-thue systems. Theor.
Comput. Sci., 192(1), 55–75.

Starkie, B., Coste, F., & van Zaanen, M. (2004). Omphalos context-free language learning competition. The

Omphalos competition is at the address: http://www.irisa.fr/Omphalos/

Takada, Y. (1988). Grammatical inference for even linear languages based on control sets. Information Pro-
cessing Letters, 28(4), 193–199.

Thollard, F., Dupont, P., & de la Higuera, C. (2000). Probabilistic DFA inference using Kullback-Leibler

divergence and minimality. In Proc. 17th International Conf. on Machine Learning, (pp. 975–982). San

Francisco, CA: Morgan Kaufmann.

Togashi, A., & Noguchi, S. (1990). Inductive inference of term rewriting systems realizing algebras. In

Algorithm Learning Theory, (pp. 411–424).

Vanlehn, K., & Ball, W. (1987). A version space approach to learning context-free grammars. Machine Learning
Journal, 2, 39–74.

Wolf, G. (1978). Grammar discovery as data compression. In Proceedings of AISB/GI Conference on Artificial
Intelligence, (pp. 375–379), Hamburg.

Yokomori, T. (2003). Polynomial-time identification of very simple grammars from positive data. Theor.
Comput. Sci., 1(298), 179–206.

Springer

