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Abstract Narrowing constitutes the basis of the operational semantics
of modern declarative languages which integrate functional and logic
programming paradigms. Efficient implementations of these languages
consider first-order terms as graphs. In this paper, we investigate nar-
rowing in the setting of graph rewriting systems. We take the full ad-
vantage of graph structures by allowing maximal sharing of subexpres-
sions and extend the completeness results of the best known narrowing
strategies such as needed narrowing or parallel narrowing to the case of
constructor-based weakly admissible graph rewrite systems. The result-
ing graph narrowing strategies share the same optimality results as the
corresponding ones for first-order terms and in addition develop shorter
derivations.

1 Introduction

The operational semantics of modern declarative programming lan-
guages which integrate functional and logic programming paradigms (e.g.,
Curry [14]) are mainly based on narrowing. Classical declarative lan-
guages encode data by means of first-order terms. In this setting, optimal
narrowing strategies have been proposed [2, 3]. However, in practice, for
efficiency reasons as well as expressivity, the implementation of declara-
tive programming languages encodes data as graphs (e.g., [19]).

There are many advantages in using graphs in declarative languages.
They represent real-world data types as in classical imperative program-
ming languages. Graph structures allow also to optimize the storage of
information by sharing common subexpressions. A graph g1 collapses (or
folds) into a graph g2 if g1 and g2 represent the same knowledge and
the size of g2 is smaller than the size of g1. A graph is called maximally
collapsed if it cannot be compressed any further.

Narrowing a graph, g, consists in rewriting an instance of it, σ(g) [7].
In this paper, we investigate the integration of graph collapsing and graph



narrowing. In other words, we would like to perform narrowing steps
over (possibly maximally) collapsed graphs. The motivation of this work
comes from the fact that non-tractable (exponential) computations over
terms may turn to tractable (polynomial) ones over graphs. Consider,
for instance, the case of the Fibonacci function [20] (see Fig. 1). It is
clear that the processing of collapsed graphs improves drastically the
operational semantics of functional logic programming languages.
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In Fig. 2, we show three different narrowing derivations starting with
the term C(A(X),A(O),A(O)) and using the rule A(O) → O. The first one
corresponds to a term narrowing derivation; its length is 3. The second
one corresponds to a simple graph narrowing derivation. Its length is 2.
The third one corresponds to a maximally collapsing graph narrowing
derivation. Its length is 1. The reader may notice that the more collapsed
are the graphs, the shorter are the narrowing derivations.

A first step towards the investigation of graph narrowing has been
done in [21, 17, 12] for acyclic graphs and in [7] for cyclic admissible
graphs. Integration of graph collapsing and graph narrowing has been
considered recently [17, 13] in the particular case of acyclic term graphs.
As for graph narrowing strategies, only basic narrowing was considered in
the literature [17, 13]. However, basic narrowing was the first term nar-
rowing strategy to be studied [15, 18]. It has not the optimality properties
of modern narrowing strategies such as needed narrowing [2] or parallel
narrowing [3].

In this paper, we take the full advantage of the graph structure and
investigate the first cyclic admissible graph collapsing narrowing relations
and strategies. For efficiency reasons, we establish our results in the set-
ting of weakly admissible graph rewriting systems, a restricted class of
constructor-based graph rewriting systems which is commonly used in



C

O

A A

OX

A

C

O

O O

A A

C

OO

O

A

C

O OO

n1:C

n5:O

n4:A

n3:X

n2:A

n1:C

n5:O

n4:A

n3:X

n2:A

n1:C

n5:O

n4:A

n1:C

n6:On6:O n7:O

n1:C

n7:O

;[1,R,{X 7→O}] ;[2,R,Id] ;[3,R,Id]

;[n2,R,{X7→n6:O}] ;[n4,R,Id]

I>;[n2,R,{X7→n6:O}]

Figure2.

functional logic languages. We show that collapsing narrowing is com-
plete. We also succeeded to generalize parallel term narrowing, and thus
needed narrowing, to collapsing graph narrowing.

The rest of the paper is organized as follows. We briefly introduce the
framework of weakly admissible graph rewriting systems in the next sec-
tion. Section 3 establishes the soundness and completeness of collapsing
narrowing in the setting of weakly admissible graph rewriting systems. In
Section 4, we generalize optimal term narrowing strategies to the frame-
work of graphs and list their main properties. Section 5 concludes the
paper. Due to the lack of space, several technical definitions and all the
proofs are omitted. They can be found in [8, 9].

2 Weakly Admissible Term Graph Rewriting Systems

The aim of this section is to precise the graphs and the graph rewriting
systems we consider. Our notations are similar to those of [6, 16]. We are
consistent with [7, 10].

Every node of a graph is labeled with an operation symbol or a
variable. For practical reasons, we assume in this paper that operation
symbols belong to many-sorted constructor-based signatures, i.e., triples
Σ = 〈S, C,D〉 where S is a set of sorts, C is a set of sorted constructor
symbols whose rôle consists in building data structures and D is a set of
sorted defined operations such that C ∩D = ∅. Let X be a set of variables



and N a set of nodes. We assume, in the sequel, that Σ, X and N are
given.

A graph g over 〈Σ,N ,X〉 is a tuple g = 〈Ng,Lg,Sg,Rootsg〉 such
that Ng is a set of nodes included in N , Lg : Ng → C ∪D ∪ X is a
labeling function which maps to every node of g an operation symbol or
a variable, Sg is a successor function which maps to every node of g a
string (possibly empty, for nodes labeled by either variables or constants)
of nodes and Rootsg is a nonempty set of distinguished nodes of g, called
its roots. We also assume two conditions of well-definedness. (1) All nodes
are accessible from at least one root, i.e., for all nodes n ∈ Ng, there exist
a root r ∈ Rootsg and a path from r to n. (2) Every variable x ∈ Vg,
where Vg stands for the variables occurring in graph g, labels one and
only one node of g. We call functional node a node labeled with a defined
operation. A graph g is said to be a constructor graph if none of its nodes
is a functional node. A subgraph of a graph g rooted by a node p, denoted
g|p, is built by considering p as a root and deleting all the nodes which
are not accessible from p in g. The sum of two graphs g1 and g2, denoted
g1 ⊕ g2, is the graph whose nodes and roots are those of g1 and g2 and
whose labeling and successor functions coincide with those of g1 and g2.

In this paper, we investigate graph narrowing for the class of what we
call admissible term graphs (atgs) [7]. A term graph g is a (possibly cyclic)
graph with one root denoted Rootg. We say that a term graph g is an atg
iff there exists no path from a node labeled with a defined operation to
itself in g. Hence, an atg corresponds, according to the imperative point of
view, to nested procedure (function) calls whose parameters are complex
constructor cyclic graphs (i.e., classical data structures).

Example 1. Figure 3 (at the end of the paper) shows several exam-
ples of graphs. For instance, the term graph H is given by (1) NH =
{n1, . . . , n5}, (2) RootH = n1, (3) LH is defined by LH(n1) =
LH(n4) = c, LH(n2) = LH(n5) = g and LH(n3) = z and (4)
SH is defined by SH(n1) = n2.n4 , SH(n2) = SH(n5) = n3.n3 ,
SH(n3) = ε and SH(n4) = n5.n1 . An equivalent description of H
is n1:c(n2:g(n3:z,n3),n4:c(n5:g(n3,n3),n1)), following the syntax
defined in [6]. In the following, we assume that c and s are construc-
tor symbols, g is a defined operation and x, y, z and u are variables.
As a consequence, all the term graphs of Fig. 3 are atgs. p:g(p,p) and
p:g(n:s(p),n) are not atgs (since g is a defined operation which belongs
to a cycle).



Graph homomorphisms are essential for atgs rewriting and narrowing
since they allow to define matching and unification [7]. A homomorphism
h : g1 → g2 is a mapping from Ng1

to Ng2
such that Rootsg2

= h(Rootsg1
)

and for all nodes n ∈ Ng1
, if Lg1

(n) /∈ X then Lg2
(h(n)) = Lg1

(n) and
Sg2

(h(n)) = h(Sg1
(n)). We say that two atgs g1 and g2 are unifiable iff

there exist two graphs G and H and a homomorphism h : G → H such
that (1) g1 and g2 are both subgraphs of G and (2) h(g1) = h(g2). h is
called a unifier of g1 and g2. If g1 and g2 are unifiable, we can prove that
there exists a most general unifier in the following sense : there exists a
unifier h : G → H such that (1) G = g1 ⊕ g2, (2) h(g1) = h(g2) = H and
(3) for all unifiers h′ : G′ → H ′, there exists a homomorphism φ : H → H ′.

Example 2. Consider the subgraph H|n2 and the atg L of Fig. 3. Let υ be
the mapping from N(H

|n2)∪NL to N(I
|n2) such that υ(n2) = υ(l1) = n2,

υ(n3) = υ(l2) = υ(l4) = m1 and υ(l3) = υ(l5) = m2. υ is a homo-
morphism from the bi-rooted graph H|n2 ⊕ L to the subgraph I|n2 such
that υ(H|n2) = υ(L). Therefore, H|n2 and L are unifiable. Moreover, all
other unifiers of H|n2 and L must instantiate I|n2. Therefore, υ is a most
general unifier of H|n2 and L.

The next definition introduces the notion of admissible rewrite rule [7].
Such rules are tailored so that the set of atgs is closed under rewriting
and narrowing. An admissible rewrite rule is a bi-rooted graph of roots l
and r, denoted l → r, such that (1) the left-hand side, l, is a pattern, that
is to say, an atg which has a tree structure (i.e., linear first-order term)
with only one defined operation situated at its root, (2) the right-hand
side, r, is an atg, (3) l is not a subgraph of r and (4) Vr ⊆ Vl. The graphs
L → R and L′ → R′ of Fig. 3 are examples of admissible rewrite rules.
We say that two admissible rules l1 → r1 and l2 → r2 overlap iff their
left-hand sides are unifiable.

A constructor-based graph rewriting system (cGRS) is a pair SP =
〈Σ,R〉 where Σ is a constructor-based signature and R is a set of admis-
sible rules. We say that SP is a weakly admissible graph rewriting system
(WAGRS) iff R is a set of admissible rules such that if two rules l1 → r1

and l2 → r2 overlap, then their instantiated right-hand sides are equal up
to renaming of nodes.

Example 3. Consider the following cGRS :

(R1) l1:f(l2:a,l3:x) -> r1:c(l3:x,r1)

(R2) l1:f(l2:x,l3:s(l4:y)) -> r1:c(l3:s(l4:y),r1)

(R3) l1:g(l2:a,l3:a,l4:x) -> l4:x



(R4) l1:h(l2:a) -> l2:a

(R5) l1:i(l2:a,l3:x,l4:y) -> l2:a

(R6) l1:i(l2:x,l3:a,l4:y) -> l2:x

(R7) l1:i(l2:x,l3:y,l4:a) -> l2:x

The rules R1 and R2 (resp. R5, R6 and R7) overlap and their instantiated
right-hand sides are equal up to renaming of nodes. Therefore, this cGRS
is a WAGRS.

Due to the lack of space, we do not give the definition of the graph
rewriting relation → induced by the WAGRSs. It is the same as that
of [6, 16, 7]. We have proved in [8] that → is confluent (and confluent
modulo bisimilarity [5, 20]) w.r.t. atgs. We have also introduced in [8] a
new parallel graph rewriting relation, −→bb , which allows to reduce sev-
eral arbitrary redexes of an atg in one shot and to boost the efficiency of
rewriting. We have also defined in [8] the parallel graph rewriting strat-
egy Φ̄ : a partial function which takes an atg g and returns a set S of pairs
(p, R) such that g −→bb S g′ for some graph g′. Our strategy, Φ̄, extends
to WAGRSs the strategy designed in [1] for constructor-based weakly or-
thogonal first-order term rewriting systems. In Section 4, we will lift this
rewriting strategy to narrowing.

3 Collapsing Narrowing

Collapsing graph narrowing have been investigated first in the setting of
acyclic term graphs [17, 13]. This section introduces collapsing narrowing
in the framework of atgs and WAGRSs [11].

Collapsing narrowing requires to fold atgs. We say that g1 collapses
(or folds) into g2, denoted g1 B g2, iff there exists a variable-preserving
homomorphism h : g1 → g2, that is to say, a homomorphism such that if
n ∈ Ng1

is labeled with a variable x ∈ Vg1
, then h(n) is also labeled with x

in g2. An algorithm which collapses atgs is called a collapsing strategy. By
collapsing strategy, we mean any total function I over the atgs such that
if I(g) = g′, then g B g′. We assume that I is a deterministic function up
to renaming of nodes. We shall use two noteworthy collapsing strategies
in the following. The first one is the identity. It has no effect when it is
applied on atgs. The second one, denoted I>, is the maximally collapsing
strategy [13]: I>(g1) = g2 iff (1) g1 B g2 and (2) for all atgs g, if g1 B g,
then g B g2.

Example 4. Consider the atgs I and H ′ of Fig. 3. There exists a variable-
preserving homomorphism h : I → H ′ such that h(n1) = h(n4) = p1,



h(n2) = h(n5) = p2, h(m1) = p3 and h(m2) = m2. So we deduce that
I B H ′. Moreover, as H ′ cannot be collapsed any further, we conclude
that I>(I) = H ′.

Seeking for a better readability, we deliberately use, in this paper,
substitutions within narrowing steps instead of homomorphisms [21, 7].
A substitution σ is a partial function from the set of variables X to a
set of term graphs. All the usual notions concerning term substitutions
such as the domain Dσ, the image Iσ, the identity Id, the restriction σ|V ,
the application σ(g) or the composition σ2 ◦ σ1 can be extended to graph
substitutions (see [9] for details). For example, σ(g) denotes the graph
built from g by replacing all the variables x ∈ Dσ by their images σ(x).
Hence, applying a substitution to a graph is roughly the same as applying
a substitution to a first-order term, except that it preserves the sharing
of subgraphs.

When narrowing an atg g using a rule l → r, one needs to compute a
unifier of a subgraph of g w.r.t. the left-hand side pattern l. This unifier
can be represented by a substitution instead of a homomorphism. Such a
substitution is computed as follows : Assume that g and l are unifiable,
i.e., there exist two graphs G and H and a homomorphism h : G → H
such that g and l are both subgraphs of G and h(g) = h(l). Then Dσ ⊆ Vg.
Moreover, a variable x is in Dσ iff it is assigned by h to a subgraph of
H which is not reduced to a single node labeled with x. This subgraph is
exactly σ(x). We say that σ is a most general unifier of g w.r.t. l iff the
unifier h : G → H is a most general unifier of g and l.

Example 5. In Example 2, we have shown that υ : (H|n2⊕L) → I|n2 was
a most general unifier of the atg H|n2 and the pattern L (see Fig. 3). The
only variable of H|n2 which is assigned by υ is z. Therefore, σ = {z 7→
m1:s(m2:u)} is a most general unifier of H|n2 w.r.t. L.

Now, we are ready to define collapsing narrowing :

Definition 1. A collapsing narrowing step from an atg g1 to an atg g2

using a functional node p, a rule l → r, a substitution σ and a collapsing
strategy I, is defined as follows :

g1 I;[p, l→r,σ] g2 ⇐⇒















σ is a unifier of g1|p w.r.t. l and

there exist a graph g′1 = I(σ(g1)) and
a homomorphism h : σ(g1) → g′1 such that
g′1 →[h(p), l→r] g2



We say that g1 I;[p, l→r,σ] g2 is a most general collapsing narrowing step
iff σ is a most general unifier of g1|p w.r.t. l. The usual graph narrowing
relation ; [7] is obtained when the collapsing strategy is the identity.
I>; denotes the maximally collapsing narrowing relation.

Example 6. In Example 2, we have shown that σ = {z 7→ m1:s(m2:u)}
was a most general unifier of H|n2 w.r.t. L. Moreover, by Example 4,
I>(σ(H)) = H ′ and h(n2) = p2. We can show that H ′ →[p2,L→R] H1

(see Fig. 3). So we conclude that H I>;[n2,L→R,σ] H1. A second ex-
ample of a collapsing narrowing step is presented in Fig. 3, namely
H1 I>;[q2,L′→R′, σ′] H2 where σ′ = {u 7→ m3:a}.

Narrowing is used to solve goals. A solution of a goal is often repre-
sented by a substitution. We say that a substitution σ is computed by a

narrowing derivation from an atg g1 to an atg g2 and write g1
∗

I;σ g2

iff there exists a derivation g1 I;[p1,R1, σ1] . . . I;[pk,Rk, σk] g2 and
σ = (σk ◦ . . . ◦ σ1)|Vg1

.

Example 7. In Fig. 3, the derivation
H I>;[n2,L→R,σ] H1 I>;[q2,L′→R′, σ′] H2 allows to compute the substi-

tution θ = (σ′ ◦ σ)|VH
= {z 7→ m1:s(m3:a)}.

Below, we recall the notions of soundness and completeness of nar-
rowing [7]. These definitions do not consider narrowing as an inference
rule for solving some particular goals but rather as a general computa-
tional model for arbitrary expressions (atgs). The traditional goals such
as equations can be represented as boolean expressions.

These definitions use two preorders
.
≤ defined on atgs and substitu-

tions. Two atgs g1 and g2 are bisimilar, denoted g1
.
= g2, iff they represent

the same (infinite) tree when one unravels them [4]. We write g1

.
≤ g2 iff

there exists a substitution θ such that θ(g1)
.
= g2. We extend

.
= and

.
≤

to substitutions : two substitutions σ1 and σ2 are bisimilar on a set V of
variables, denoted σ1

.
= σ2 [V ], iff σ1(x)

.
= σ2(x) for all x ∈ V . We write

σ1

.
≤ σ2 [V ] iff there exists a substitution θ such that θ ◦ σ1

.
= σ2 [V ].

Definition 2. We say that the narrowing relation I; is sound iff for all

atgs g, constructor graphs c and substitutions θ such that g
∗

I;θ c, there
exists a constructor graph s such that θ(g)

∗
→ s and s

.
= c.

We say that the narrowing relation I; is complete iff for all atgs g,
constructor graphs c and constructor substitutions θ such that θ(g)

∗
→ c,

there exist a constructor graph s and a substitution σ such that g
∗

I;σ s,
s

.
≤ c and σ

.
≤ θ [Vg].



Theorem 1. I;, thus ; and I>;, are sound and complete over the
WAGRSs.

Notice that we restricted Theorem 1 to the WAGRSs. Indeed, the
induced rewriting relation over atgs is always confluent [8]. Actually, we
proved in [7] that ; was sound and complete for general cGRSs, but this
is not the case for I>; (and hence for I;), as shown by the following
counter-example :

Example 8. The three following rules constitute a non confluent cGRS :
(R1) A(B(X)) → C(D,D), (R2) D → E and (R3) D → F. We assume
that A and D are defined operations and B, C, E, F and O are construc-
tor symbols. Let s = n1:A(n2:Y) and t = θ(s) = n1:A(n3:B(n4:O))

where θ = {Y 7→ n3:B(n4:O)}. It is easy to check that t
∗
→ t′ with t′ =

m1:C(m4:E,m5:F). Consider the maximally collapsing narrowing deriva-
tions starting with s. There is only one way to begin them : s I>;[n1,R1, σ]

s′ with σ = {Y 7→ q1:B(q2:Z)} and s′ = p1:C(p2:D,p2’:D). s′ maxi-
mally collapses into s′′ =p1:C(p2:D,p2). Then, s′′ narrows into either
s1 = p1:C(p3:E,p3) or s2 = p1:C(p4:F,p4) with the identity substitu-
tion. s1 and s2 are constructor atgs. It is clear that s1 6

.
≤ t′ and s2 6

.
≤ t′.

So we conclude that I>;, thus I;, are not complete in the framework
of general cGRSs.

On the other hand, the maximally collapsing rewriting relation I>→
was shown to be not confluent in general (see [5]). However, from Theo-
rem 1, it follows that I>→ is confluent on the class of graphs which have
a constructor normal form (i.e., C-normalizable atgs).

Corollary 1. Let SP be a WAGRS. Then, I>→ is confluent over C-
normalizable atgs. I.e., constructor normal forms are unique when they
exist.

4 Collapsing Narrowing Strategies

Needed narrowing [2] and Parallel narrowing [3] are the best known nar-
rowing strategies for constructor-based weakly orthogonal term rewriting
systems and inductively sequential term rewriting systems respectively.
However, basic narrowing is the only known strategy for acyclic term
graph collapsing narrowing [17, 13]. In this section, we show that parallel
narrowing as well as needed narrowing can be extended to collapsing nar-
rowing in the setting of atgs. The resulting strategies, inherit all the nice



properties of the corresponding ones over terms but in addition develop
shorter derivations thanks to sharing of subexpressions.

Our first strategy, Λ̄, extends weakly needed narrowing [3] to atgs. Λ̄
is a sequential strategy, i.e., Λ̄ is a partial function which takes an atg
g and returns a set of tuples of the form (p, R, σ) such that g I;[p,R,σ]

g′ for some atg g′. We write g I;Λ̄ g′ the Λ̄-step from g to g′. Λ̄ is
based on the organization of WAGRSs as forests of definitional trees. A
definitional tree [1] is a hierarchical structure whose leaves are the rules
of a WAGRS used to define some operation. In the following definition,
branch and rule are uninterpreted symbols, used to construct the nodes
of a definitional tree.

Definition 3. Let SP = 〈Σ,R〉 be a cGRS. A tree T is a partial defini-
tional tree, or pdt, with pattern π iff one of the following cases holds :

– T = rule(π → r), where π → r is a variant of a rule of R.
– T = branch(π, o, T1, . . . , Tk), where o is a variable node of π, o

is of sort ζ, c1, . . . , ck (k > 0) are different constructors of the
sort ζ and for all j ∈ 1..k, Tj is a pdt with pattern π[o ←
p : cj(o1 : X1, . . . , on : Xn)], such that n is the number of arguments
of cj, X1, . . . , Xn are new variables and p, o1, . . . , on are new nodes.

We write pattern(T ) to denote the pattern argument of T . A definitional
tree T of a defined operation f is a finite pdt with a pattern of the form
p : f(o1 : X1, . . . , on : Xn) where n is the number of arguments of f ,
X1, . . . , Xn are new variables and p, o1, . . . , on are new nodes. A forest
of definitional trees (fdt) F of an operation f is a set of definitional trees
such that every rule defining f appears in one and only one tree in F .

Example 9. Consider the WAGRS of Example 3. A definitional tree Tf
of the operation g is given by :

Tg = branch(k12:g(k13:x6,k14:x7,k15:x8), k13,
branch(k12:g(k16:a,k14:x7,k15:x8), k14,

rule(k12:g(k16:a,k17:a,k15:x8) → k15:x8)))

Tg is represented in Fig. 4. Notice that the rules R1 and R2 (or R5, R6
and R7) of Example 3 cannot be represented in a single definitional tree
because they overlap. This is the reason why we introduced the notion
of fdts. In Fig. 4, we represent possible fdts Ff = {T 1

f , T 2
f }, Fg = {Tg},

Fh = {Th} and Fi = {T 1
i , T 2

i , T 3
i } corresponding to the operations f,

g, h and i defined in Example 3. The reader familiar with the formalism
used in [3] will notice that the use of forests departs from the definitional



trees with “OR-nodes”. The advantage of using forest structures stems
from the fact that every rewrite rule is represented only once. This is
unfortunately not the case when using “OR-nodes”.

The sequential graph narrowing strategy Λ̄ is a partial function that
operates on atgs in the presence of WAGRSs. Λ̄(g) returns, when it is
possible, a set of tuples (n, l → r, σ) such that g is narrowable at node n
using the rule l → r and the substitution σ. σ is a particular unifier of
g|n w.r.t. l, which is generally not a most general unifier of g|n w.r.t. l.
Actually, σ may assign some variables of g which are not variables of g|n.
Λ̄ uses an auxiliary function λ̄ which takes two arguments : an operation-
rooted atg and a pdt of this operation.

Definition 4. Λ̄ is the partial function such that Λ̄(g) = λ̄(g|p, T1) ∪
. . .∪ λ̄(g|p, Tn) where p is the leftmost-outermost functional node of g and
{T1, . . . , Tn} is a forest of definitional trees of the label of p in g.
Let g be an operation-rooted atg and T a pdt such that pattern(T ) unifies
with g at the root. λ̄(g, T ) is a set of triples of the form (p, R, σ), where
p is a non variable node of g, R is a rewrite rule and σ is a unifier of g|p
w.r.t the left-hand side of R. λ̄(g, T ) is defined as the smallest set such
that :

λ̄(g, T ) ⊇











































































{(p, R, σ)} if T = rule(π → r), p = Rootg, R = π → r and
σ is an mgu of g w.r.t. π ;

λ̄(g, Ti) if T = branch(π, o, T1, . . . , Tk) and
g and pattern(Ti) unify for some i ∈ 1..k ;

{(p, R, σ)} if T = branch(π, o, T1, . . . , Tk),
τ is a mgu of g w.r.t. π and
there exists a homomorphism h : π → τ(g),
h(o) is labeled with a defined operation f ,
F = {T ′

1 , . . . , T ′
k} is an fdt of f ,

S = λ̄(τ(g|h(o)), T
′
1 ) ∪ . . . ∪ λ̄(τ(g|h(o)), T

′
k),

(p, R, σ′) ∈ S and σ = σ′ ◦ τ .

Example 10. Consider the atg g of Fig. 4. By Definition 4,

Λ̄(g) = λ̄(g|n1, T 1
f ) ∪ λ̄(g|n1, T 2

f )

= λ̄(g|n2, Tg) ∪ λ̄(g|n6, T 1
i ) ∪ λ̄(g|n6, T 2

i ) ∪ λ̄(g|n6, T 3
i )

= {(n2, R3, σ1)} ∪ λ̄(g|n5, Th) ∪ λ̄(g|n7, Th) ∪ {(n6, R7, Id)}

= {(n2, R3, σ1), (n5, R4, σ2), (n7, R4, σ2), (n6, R7, Id)}

where the substitutions σ1 and σ2 are defined by
σ1 = {x 7→ r1 : a, y 7→ r2 : a} and σ2 = {y 7→ r3 : a}.



Theorem 2. I;Λ̄ is sound and complete over WAGRSs.

Each step of I;Λ̄ uses a single rewriting step. We can improve se-
quential narrowing by using a parallel rewriting step instead :

Definition 5. A parallel collapsing narrowing step from an atg g1 to an
atg g2 using the functional nodes p1, . . . , pn, the rules R1, . . . , Rn, the
substitution σ and the collapsing strategy I, is defined as follows :

g1 I;bb [p1,R1]...[pn,Rn],σ g2 ⇐⇒

{

σ(g1) I g′1 with h : σ(g1) → g′1 and
g′1 −→bb [h(p1),R1]...[h(pn),Rn] g2

The definition of a parallel collapsing narrowing step needs the compu-
tation of substitutions as well as the computation of the different positions
used to rewrite in parallel. In this paper, we consider that parallel rewrit-
ing is performed with the rewriting strategy Φ̄ defined in [8]. As for the
computation of substitutions, it is performed by the parallel narrowing
strategy ¯̄Λ which is defined below :

Definition 6. ¯̄Λ is the partial function such that :

¯̄Λ(g) =



























































∃(p, R, σ) ∈ Λ̄(g),
(∀(q, S, θ) ∈ Λ̄(g),

if θ
.
≤ σ [Vg] and θ 6= Id [Vg],

then σ
.
= θ [Vg])

σ|Vg
such that and

(∃C ∈ Pathsg(Rootg, p),
∀(q, S, θ) ∈ Λ̄(g),

if θ
.
≤ σ [Vg] and q ∈ C,

then σ
.
= θ [Vg])



























































/
.
=

In the definition of ¯̄Λ(g), the first condition selects the least instan-
tiated substitutions among those of Λ̄(g) which are not the identity, in
addition to the identity substitution if there exists some triple (p, R, Id)
in Λ̄(g). The second condition allows to eliminate substitutions which are
below the identity in every path of the graph. Notice that this condition
departs from the one given in [3] due to the sharing of subgraphs. Lastly,
the set ¯̄Λ(g) is defined up to bisimilarity : if A denotes a set of substi-
tutions, A/

.
= denotes the “quotient” set of A by

.
= which consists of

substitution representatives of A up to renaming and bisimilarity.
The parallel narrowing step I;bb ¯̄Λ,Φ̄

induced by ¯̄Λ and Φ̄ is defined by

g1 I;bb ¯̄Λ,Φ̄,σ
g2 ⇐⇒ σ ∈ ¯̄Λ(g1), I (σ(g1)) = g′1 and g′1 −→bb Φ̄(g′

1
) g2



Example 11. Following Example 10, we now explain the computation of
¯̄Λ(g). In Fig. 4, we have sketched in the graph Π the relative positions
of the triples of Λ̄(g) in g. This “graph” has no formal semantics but
makes easier the understanding of ¯̄Λ(g). Substitutions in ¯̄Λ(g) are those
of Λ̄(g) which satify the conditions in Definition 6. σ1 must be eliminated

because σ2

.
≤ σ1 [Vg]. σ2 from triple (n7, R4, σ2) is discarded because the

only path from n1 to n7 (i.e., [n1, 2, n6, 2, n7]) contains the node n6 and

(n6, R7, Id) ∈ Λ̄(g) and Id
.
≤ σ2 [Vg]. σ2 from triple (n5, R4, σ2) is kept

since there exists a path C = [n1, 1, n2, 3, n5] such that for all (q, R, θ) ∈

Λ̄(g), if p ∈ C (e.g., n2), then σ2

.
≤ θ [Vg]. Id from triple (n6, R7, Id) is

kept for the same reason. Hence, we conclude that ¯̄Λ(g) = {Id, σ2}. By
the the definition of a parallel rewriting step [8] we get g I>;bb Λ̄,σ2

g′ with
g′ = p1:f(p2:g(n3:x,p3:a,p3),p3).

Theorem 3. I;bb ¯̄Λ,Φ̄
is sound and complete over WAGRSs.

5 Conclusion

We have investigated collapsing graph narrowing in the framework of
weakly admissible graph rewriting systems. We have first established its
completeness over WAGRSs. We have also defined parallel collapsing
graph narrowing strategy which is a conservative extension of the best
known term narrowing strategies [2, 3].

The parallel collapsing narrowing relation I;bb ¯̄Λ,Φ̄
inherits all optimal-

ity properties of parallel term narrowing [3]. Indeed, I;bb ¯̄Λ,Φ̄
computes

only needed graph narrowing derivations [7] in the case of inductively se-
quential graph rewriting systems, i.e., cGRSs such that the rewrite rules of
each defined operation may be stored within one definitional tree. More-
over, I;bb ¯̄Λ,Φ̄

normalizes deterministically ground graphs to their con-
structor normal form when it exists.

In addition to the above properties, graph structures induce new im-
provements for narrowing. Actually, thanks to the sharing of subexpres-
sion in graph structures, needed and parallel graph collapsing narrowing
develop shorter derivations than the corresponding term narrowing strate-
gies. Furthermore, the implementation of λ̄ is more efficient than its cor-
responding one for terms because λ̄ can avoid redundant computations
which occur when λ̄ has to revisit several times a same shared subgraph.
This kind of improvements are not possible for tree (term) structures.
Thus needed and parallel collapsing graph narrowing appear to be appro-
priate for good implementation of modern declarative languages such as
Curry [14].
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