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Abstract

We address the problem of graph rewriting as the underlying operational semantics of rule-based
programming languages. We define a new optimal graph rewriting strategy in the setting of
orthogonal constructor-based graph rewriting systems. For this purpose, we first characterize a
subset of graphs, called admissible graphs. A graph is admissible if none of its defined operations
belongs to a cycle. We then prove the confluence, as well as the confluence modulo bisimilarity
(unraveling), of the admissible graph rewriting relation. Finally, we define a sequential graph
rewriting strategy by using Antoy’s definitional trees. We show that the resulting strategy
computes only needed redexes and develops optimal derivations w.r.t. the number of steps.
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Abstract

We address the problem of graph rewriting as the underlying operational semantics of rule-based
programming languages. We define a new optimal graph rewriting strategy in the setting of
orthogonal constructor-based graph rewriting systems. For this purpose, we first characterize a
subset of graphs, called admuissible graphs. A graph is admissible if none of its defined operations
belongs to a cycle. We then prove the confluence, as well as the confluence modulo bisimilarity
(unraveling), of the admissible graph rewriting relation. Finally, we define a sequential graph
rewriting strategy by using Antoy’s definitional trees. We show that the resulting strategy
computes only needed redexes and develops optimal derivations w.r.t. the number of steps.

1 Introduction

Graph rewriting is being investigated in various areas nowadays (see for instance [Cou93, ET96,
SPvE93]). In this paper, we consider graph rewriting as the underlying operational semantics of
rule-based (functional or logic) programming languages (e.g. [PvE93, AEHT96]). There are many
reasons that motivate the use of graphs. They actually allow sharing of subexpressions which leads
to efficient computations. They also permit to go beyond the processing of first-order terms by
handling efficiently real-world data types represented by cyclic graphs.

Using a graph rewriting system (GRS) is not an easy task. Indeed, the classical properties of
term rewriting systems (TRS) cannot be lifted without caution to GRSs. One of these properties is
confluence. Let us consider the rule I'(a,a,z) — 2 where a is a constant and z is a variable. This
rule, which constitutes an orthogonal TRS, generates a confluent rewrite relation over (finite or
infinite) terms whereas it generates a non confluent rewrite relation over graphs as it is witnessed by
the following counter-example [KKSV94]. The graph K (cf. figure 1) rewrites into two syntactically
different graphs K; and K. But, Ky and K5 cannot rewrite to a same graph. It is well-known
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Figure 1:

that this source of nonconfluency of GRSs comes from the so-called “collapsing rules” in orthogonal
GRSs. A rewrite rule is collapsing if its right-hand side is a variable. However, collapsing rules
are very often used in programming and thus cannot be prohibited in any programming discipline.
Most of access functions are defined by means of collapsing rules, e.g.,



car (cons (x,u)) -> x

cdr (cons (x,u)) ->u

left-tree (bin-tree (1,x,r)) -> 1
right-tree (bin-tree (1,x,r)) -> r

In practice, many programming languages are constructor-based, i.e., operators called construc-
tors, which are intended to construct data structures are distinguished from operators called defined
operators which are defined by means of rewrite rules. In this paper, we follow this discipline and
consider orthogonal constructor-based GRSs. We investigate the induced rewrite relation over a
particular class of graphs called admissible graphs. An admissible graph is a graph whose cycles do
not include defined functions. We give a sufficient (syntactic) condition which ensures that the set
of admissible graphs is closed under rewriting. Then, we show the confluence of admissible graph
rewriting relation even in the presence of an arbitrary amount of collapsing rules.

It is notorious that finite graphs represent rational terms. Sometimes, one would like to equate
two graphs if they represent the same rational term. In this case we say that the two graphs are
bisimilar (if we refer to the theory of concurrency). We show the confluence modulo bisimilarity of
the considered GRSs. This result is mandatory to prove the completeness of narrowing [EJ97].

The confluence of a rewrite relation allows to evaluate expressions in a deterministic and efficient
way by using rewriting strategies. Such strategies have been well investigated in the setting of
finite and infinite orthogonal TRSs (e.g., [O’D77, HL91, KKSV95]). In [Ant92], a strategy that
computes outermost needed redexes based on definitional trees has been designed in the framework
of orthogonal constructor-based TRSs. In this article, we show that Antoy’s strategy can be
extended to orthogonal constructor-based GRSs with the same nice properties. We particularly
prove that the resulting strategy is c-hyper-normalizing on the class of admissible graphs and
develops shortest derivations.

The rest of the paper is organized as follows. The next section contains some preliminaries on
graphs. In section 3, we introduce the framework of constructor-based GRS. Section 4 exhibits the
results concerning confluence and section 5 deals with confluence modulo bisimilarity. We define
our rewriting strategy in section 6 and list its properties.

2 Preliminaries on graphs

The aim of this section is to precise the definitions we use in our paper. Many different notations
are used in the literature to investigate graph rewriting : systems of equations [AK96], hypergraphs
[HP95], graphs [KKSV94] among others. We are mostly consistent with [BvEGT87].

2.1 Definition of graphs

Definition 1 (Signature)

A many-sorted signature ¥ = (S, Q) consists of a set .S of sorts and an S-indexed family Q = Wye g,
with Qg = W, 5)esvx58,s Of sets of operation symbols. We shall write f:s;...s, — s whenever
f € Qs 5,5 and say that f is of sort s, rank s, ...s, and profile sy ...s,,s. a

We consider a graph as a set of nodes and edges between the nodes. Each node is labeled with
an operation symbol or a variable. Let X = WscgAs be an S-indexed family of countable sets of
variables and N' = WgesNs, an S-indexed family of countable sets of nodes. Both X' and A are
fixed throughout the rest of the paper.

Definition 2 (Graph)
A (rooted) graph g over (X, N, X) is a tuple g = (N, L,, Sy, Roots,) such that :



1. N, is the set of nodes of ¢, i.e., N; = Wses(N;)s with (N,)s C Ns.

2. L,, the labeling function of g, is an S-indexed family of functions associating an operation
symbol or a variable to each node of g, i.e., L, = Wees(Ly)s with (Ly)s 1 (Ny)s = Qs U X,

3. 8, the successor function of g, is an S-indexed family of functions associating a (possibly
empty) string of nodes to each node of g, i.e., Sy = Wes(S,)s With (S,)s 1 (Ny)s — N such
that for every node n € (N), :

o if (L,)s(n ) f with f : s;...5; — s, then there exist ny,...,n; € N, such that
(Sy)s(n) =ny...ng and n; € (./V )s, for all 7 € 1..k.

o if (£,)s(n) = cwith c € Q. (cis aconstant), then (S,)s(n) = ¢ (i.e., n has no successor).
o if (£;)s(n) =2z with 2 € X (2 is a variable), then (S,)s(n) = «.

We write n € S;(m) if n is a successor of m.
4. Roots, is a nonempty set of distinguished nodes of g, called its roots : Roots, C N,.

5. Every variable of ¢ labels one and only one node, i.e., for all nodes ny,ng of ¢, if L,(n1) € X
and L,(n2) € X, then Ly(n1) = L,(n2) implies ny = ng.

6. Connectivity condition : Each node of ¢ is either a root or is accessible from a root (see
definition 3).

A graph g is called term graph iff it has one root Root, (i.e., Roots, = {Root,}). We write V(g)
for the set of variables appearing in g. |

Example 1 In figure 2, we give two examples of graphs. Their roots are pointed by arrows
without any antecedent. The left-hand graph, G, represents a cyclic list alternating the expressions
succ(0) + succ(0) and succ(0). G is a term graph, since it has just one root Roots = {x1}.
Nodes of G are Ng = {x1, ..., x5}. Its labeling function is defined by L;(x1) = L;(x5) = cons,
La(x2) = +, Lg(x3) = succ, et L5(x4) = 0. Its successor function is defined by Sg(x1) =
x2.x5 , Sg(x2) = x3.x3 , S;(x3) = x4, Si(x4) = ¢, S(x5) = x3.x1 . The right-hand graph,
T represents the classical rewriting rule succ(x)+y — succ(x+y) (cf. definition 20). T has two
roots Rootsy = {11,r1}.

x1:cons=>x5:¢ons
x2 + 11:+ ri:succ
x3 q/ucc 12: \I/ucc/xh—/r
x4:0 13:x 14: y
G

Figure 2: Two examples of graphs.

Definition 3 (Paths)
Let g be a graph and n; and ny two nodes of g. We say that ny is a successor of nq if Sy(nq) =
vy ...vg and there exists a j € 1..k such that v; = ny. A path C from a node n; to a node ny in



a graph g is a sequence of nodes of g, C' = [ug, u1, ..., ug], such that : wg = ny, up = ng, k < 1,
u; € J\fg for all 7 € 0..k, and wu; is a successor of u;_y for all 7 € 1..k.

We denote by Py(n1,nz) the (possibly empty) set of paths from ny to ny in the graph g. We say
that a node ny is accessible from a node nq in a graph g if there exists a path from n; to ny in g,
i.e., if Py(n1,ng) # 0.

By definition of a graph ¢, the connectivity condition says that each node is either a root or is
accessible from a root : Vn € N, n ¢ Roots, = 3Ir € Roots, such that P,(r,n) # 0. ]

Drawings and the formal definition of graphs are not always useful to give examples. Therefore,
we define a linear notation.

Definition 4 (Linear notation for graphs)
In the following grammar, the variable A (resp. n) ranges over the set QU X (resp. A'). The linear
notation of a graph is defined by :

GrapH == NobDE | NoDE + GRAPH

Nope = n:A(NODE,...,NODE) | n
If a graph is defined with a linear expression, its roots are always composed of the first node
appearing in the expression and the nodes appearing just after a +. |

Example 2 With this syntax, the graphs G and T’ of figure 2 are written :
G = xl:cons(x2:+(x3:succ(x4:0),x3),x5:cons(x3,x1)), T = 11:4(12:succ(13:x),14:y) +
ri:succ(r2:+(13,14)).

2.2 Subgraph, sum of graphs and graph replacement

A subgraph of a graph g rooted by a node p, denoted gy, is built by considering p as a root and
deleting all inaccessible nodes from p in g¢.

Definition 5 (Subgraph)
Let g be a graph and P a set of nodes of g. We define the subgraph of g rooted by P, denoted gp,
as the following graph :

o N, is the set of nodes of g accessible from nodes of P, i.e., N, = PU{n € N, | Ir €

P, Py(r,n) # 0}.
e lor all nodes n of g|p, Ly, (n) = Ly(n), i.e., Ly, is the restriction of £, to NV ,.
e Lor all nodes n of g|p, Sy, (n) = Sy(n), i.e., Sy, is the restriction of Sy to N, ..
e Roots,, = P.

Given two graphs gy and go, we say that gs is a subgraph of gy if there exists a set P of nodes of ¢¢
such that g; = g1 p. Finally, we abbreviate g1(,; by g1, O

Example 3 In figure 2, the subgraph of G rooted by x2 is Gy = x2:+(x3:succ(x4:0),x3) and
the subgraph of 1" rooted by {13,14} is T);13,14) = 13:x + 14:y.

The notion of replacement of a one-rooted subgraph by another term graph in a graph is essential
for graph rewriting. Figure 3 shows the different stages of the replacement by D, whose root is
r1, of the subgraph of GG rooted by x2. First, as G and D share nodes (x3 and x4), we must not
consider G and D as two different graphs but as one graph with two roots (H;y in fig. 3). This
operation is called the sum of graphs G and D. Second, we redirect all arrows pointing on x2
to point on r1 (Hz). This operation is called pointer redirection. Notice that x2 became a root.
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xl:cons>=xb5:¢ons ri:succ x1:cons= xE:gons x1:cons= x5:cons

x1:cong= x5:cons

I I I
I I I
x2:+ r2:+ | x2:% | / | ri:succ
Q/ N O O x2:+ N
x3:succ x3:succ I ri:succ l ri:succ l 2:4
v 4 v v A
| I I A
x4:0 x4:0 3y r3:¥ i
I \ | \ | x3\1/succ
a D | XS%succ | x3:succ | £4:0
I I I
x4:0 x4:0
H, Hsy G[x2 + D]

Figure 3: Calculus of a replacement.

Otherwise, the graph obtained after pointer redirection would not be connected. Finally, we ignore
all uninteresting nodes such as x2 (garbage collection). The result of the replacement by D of the
subgraph of G at node x2 is denoted G[x2 «+ D).

Formally, we first have to define the sum of graphs, which formalizes the fact that given two
graphs, we can consider them just as one, doing the union of their nodes and of their roots. Without
caution, the result of this calculus is not always a graph. This is the reason of the following technical
definition.

Definition 6 (Compatibility between two graphs)
Let g; and gy be two graphs. We say that g; and gy are compatible if :

1. Every node appearing both in g, and g, has the same label and the same successors : For all

n e Ngl mNgm [’gl (n) = [’92 (n) and Sgl (n) = Sg2 (TL)

2. Any variable appearing both in g, and g, labels a same node : For all z € V(g1) N V(g2), if
Ly, (n) =2 and Ly, (m) = z, then n = m.

O

Example 4 Consider the graphs ¢q, g, and g3 defined by g; = x1:£(x2:0), g, = x2:£(x1:0) and
g3 = x3:0. The node x1 is labeled with £ in g; whereas it is labeled with 0 in gy. Hence, ¢; and
g2 are not compatible. The reader may check that gy is compatible with ¢s, g3 is compatible with
g2. From this example, we notice that the property of compatibility is not transitive.

Definition 7 (Sum of compatible graphs)
Given two compatible graphs g, and gq, by the sum, g1 + g2, we mean the graph such that :

® Nyitg, = Ny UNG,.
o Lgi4g, =Ly U Ly,
o Spihg =8, ULS,,.
® Rootsy, 44, = Roots,, URoots,,.

a

'The union of functions f and g, fU g is to be considered as the union of the relations induced by these functions.
In our case f U g is still a function.



It is clear that a sum of graphs is a graph : the first condition of compatibility insures £, 44, and
Sy1+4, are functions and the second condition insures a variable can label at most one node in the
sum of graphs.

We define below the notion of pointer redirection, which consists in substituting a node by
another one in a graph.

Definition 8 (Pointer redirection)
Let g be a graph and p , ¢ two (not necessarily distinct) nodes of the same sort. The pointer
redirection from p to ¢ in g is a function p : Ny — AN, such that p(p) = ¢ and p(n) = n for all nodes

n # p.
We define the graph p(g) obtained by pointer redirection p as the graph p(g) such that all nodes
having p as successor in ¢ have ¢ as successor in p(g) :

L] /\fp(g) = ./V'g.
° Ep(g) =L,.
e For all nodes n, if §;(n) = ¢, then S,,)(n) = ¢, else, if S;(n) = ny...nk, then S,,(n) =
o) .. p(e).
® Roots,,) = {p} U p(Roots,), that is to say if Roots, = {ni,...,n}, then Roots,,) =
{p,p(n1), ..., p(ng)}.
O
It is clear that p(g) is well defined : all conditions but connectivity are inherited from those of ¢ ;

connectivity is warranted by the fact that p € %otsp(g). When p ¢ /\fg, plg)=g.
We are now ready to define the notion of replacement.

Definition 9 (Replacement)

Let ¢ be a graph, u a term graph, such that g and u are compatible, and p a node of the same
sort as Root,. If p is a node of g, we define the replacement by u of the subgraph rooted by p in g,
denoted ¢[p ¢ u], in three stages :

1. Let H = g+ u.

2. Let p be the pointer redirection, defined on H, such that p(p) = Root, and p(n) = n for all
n # p. Let H = p(H) and ) = p(Rootsy).

3. glpul=H'y.
If p is not a node of g, then g[p « u] = g. O

Notice that if g is a graph and n is a node of g, then g[n + g),] = ¢

Example 5 We detailed in figure 3 the replacement by

D = ril:succ(r2:+(x4:0,x3:succ(x4))) of the subgraph rooted by x2 in the graph G =
x1:cons(x2:+(x3:succ(x4:0),x3),x5:cons(x3,x1)). The result is the graph G[x2 « D] =
x1:cons(rl:succ(r2:+(x4:0,x3:succ(x4))),x5:cons(x3,x1)).

The calculus of g[p « d] may have surprising results in some cases.

Example 6 Let ¢ = 11:4(12:0,13:0), d = r1:+(11:+4(12:0,13:0),r2:0), and p = 11. Then
the reader may check that ¢g[p « d] = r1:+(r1,r2:0), whereas he could expect to obtain g[p
d] = d. d is modified in g[p < d] because p is a common node to ¢ and d.



In the rest of this section, we give some technical properties concerning subgraphs and replace-
ment that we use later in the proofs. These properties have first been established in the framework
of first-order terms. Their use in our setting needs however some caution (cf. example 6). The
vocabulary used is mostly borrowed from [Hue80].

We first introduce new notations in order to compare the relative positions of two nodes in a
graph. Let ny, ny be two nodes of a graph g. We write ny < ng iff ny is accessible from ny in g, i.e.,
Py(n1,n9) # 0. We write ny =< ny iff ny < ny or n; = ny. We say n, and ny are disjoint, denoted
n1||ng, iff there exists no path from ny to ng nor from ng to ny in g, ie., =(ny < ng Vng < ny), or
equivalently, P, (n1,n2) = Py(n2,n1) = 0. Notice that < is not a partial order, but just a preorder.

Proposition 1 (Double subgraph)
Let g be a graph and n; and ny two nodes of g. If ny < ny, then (g),,)

|72 = Ilns-

Proposition 2 (Persistence)

Let ¢ be a graph, u a term graph compatible with ¢, n; and ny two nodes of g. If there is no path
from my to mq in ¢ and there exists a path from a root of g to ny which does not go through nq,

then (g[n1 <= u])|,, = gjn,. This proposition holds in particular when n;||n.

Proposition 3 (Embedding)
Let g be a graph, u a term graph compatible with g, n; and ny two nodes of g. If ny ¢ N, and
ny € Ny, then (g[n1 < u])),,, = Uy,

From the example 6, it appears that an expression such as (g[n; < u1])[n2 < u2] may be not
well defined. Indeed, suppose that g is a graph compatible with two term graphs u; and uy. Since g
is compatible with uy, g[n; < wq] is computable. However, this graph may be no more compatible
with ug.

Example 7 Let g = x1:£(x2:g(x3:0)), u; = x4:1 and uy = x5:h(x2:g(x3:0)) be three com-
patible term graphs. Then g[x3 + u1] = x1:£(x2:g(x4:1)). This graph is no more compatible
with wug, since x2 has not the same successors in g[x3 < u;] as in uy. The problem is that x3
appears both in ¢ and us.

The following proposition gives a sufficient condition to avoid the above problem.

Proposition 4 Let g be a graph, n; and ny two nodes, u; and uy two term graphs such that ¢, u;
and uy are compatible. If ny ¢ N,,, then g[n; < u;] and uy are compatible, thus (g[ny < u;])[n2 +
ug] is well defined.

Proof Assume that g[n; ¢ 4] and ug are not compatible, whereas g, u; and uz are compatible.
By definition of compatibility, there must exist a node p common to g[n, < w;] and ug such
that Syyu, (p) = Su, (P) but Sgpn, ) (p) # Suy(p). Suppose Syin, (p) = p1...pe. Let p be the
pointer redirection such that p(n;) = Root,, and p(n) = n for all n # ny. Then, by definition
of replacement, Sg[n1<—u1](p) = p(pl) .- p(pk) Since Su2 (p) = p1...px and Sg[n1<—u1](p) # SuQ (p)?
there exists ¢ € 1..k such that p(p;) # p;. Hence, there exists ¢ € 1.k such that p; = ny. Since
Su,(p) = p1...pk, then ny € N,,. Thus, if ny is not a node of uy, then g[n; < 1] and uy are
compatible.

O

Proposition 5 (Associativity)
Let g be a graph, u; and uy two term graphs such that g, u; and ug are compatible, ny and ny two
nodes of g such that ny ¢ N,,. Then (g[n1 + u1])[n2 < u2] = (g[ng < uz])[n1 < (wi[ng + uz])].



Proof Hint : the proof is done in three stages :

1. Let py(ny1) = Root,, and py(ny) = Root,, be two pointer redirections. Since ny ¢ N, ,
(g[n1 < u1])[ng < uz] is well defined. Then, we can show that
(9ln1 < wa])[ng < ua] = (p2(p1(g + ur + 2)))|, (o, (ROOLS,))-

2. Let p3(n1) = p2(Root,, ) be a new pointer redirection. (g[ng < uz])[n1 < (ui[ng < uz])] is
well defined because if g and u; are compatible, then g[ny < ug] and uy[ny < ug] remain
compatible. Then we can show that

(g[n2 < wa])[m1  wrlnz « u2]] = (ps(p2(g + w1 + u2)))|p3(p2(ROOth))'

3. Finally, we can show that for all p € N4, 4u,, p2(p1(p)) = p3(p2(p)). This proof is done by
analysis of the different cases for p.

Proposition 6 (Commutativity)
Let ¢g be a graph, uy and ugs two term graphs such that g, uq and uy are compatible, ny and ny two
nodes of g such that ny ¢ N, and ny € Ny, . Then (g[ny « u1])[ne < u2] = (g[n2 « ua])[n1 & wu4].

Proof Follows from Proposition 5 by taking into account the fact that ng is not a node of uy. O

Proposition 7 (Weak dominance)

Let g be a graph, u; and uy two term graphs such that ¢, w1, uy are compatible and n; and ny
two nodes of g such that n; ¢ N,, and every path from a root of g to ny go through ny, i.e.,
Vr € Rootsy, VC' € Py(r,n1),n2 € C. Then, (g[nq ¢ u1])[ng < ug] = g[ng « uy).

Proof Hint : Prove that with these hypothesis, n; is not a node of g[ng < wuz]. Then simplify
the expression of associativity. |

2.3 Homomorphisms

We now recall the notions about homomorphisms. They play almost the same réle as do substitu-
tions for first-order terms.

Definition 10 (Homomorphism)
Given two graphs g1 and gy, by a (rooted) homomorphism h : g — g2 from g, to g2, we mean any
mapping h = Wseshs, hy 1 (N, )s = (N, )s such that :

1. For every node of g; which is not labeled with a variable, h preserves the labeling and the
successor function : For all nodes n € (N, )5, (£,)s(n) ¢ X,

 (Lg,)s(hs(n)) = (Lgy)s(n)-
o (S5,)s(hs(n)) = hsy 5. ((Sg)s(n)), that is to say for all non variable nodes n, if

(S41)s(n) = €, then (Sy,)s(h S( ) =g, else if (8;,)s(n) = ny...ng, where n; € (N,)s, for
all i € 1..k, then (S,, ) (hs(n)) = hy ( 1) .. b, (ng).

2. For all nodes n € (N,)s, (Ly)s(n) € X, hs(n) € (Ny,)s.

3. The images of roots of g; are the roots of g2 : Rootsy,, = h(Roots,, ), i.e., if Roots,, =
{n1,...,n}, where n; € (Ny)s, for all i € 1.k, then Rootsy, = {hs,(n;) | i € 1..k}.



We say that h is a variable-preserving homomorphism if h is a homomorphism between two graphs
with variables treated as constants, i.e., £y, (h(n)) = Ly, (n) for every node n of gy, in particular
for every variable node n of g;. |

Example 8 In figure 4, we give an example of homomorphism A from a graph
L = 11:+(12:succ(13:x),14:y) to the subgraph of G rooted by x2. Formally, h is a mapping
from N, to 'M(G|x2) defined by h(11) = x2, h(12) = h(14) = x3 and h(13) = x4. h is not a

variable-preserving homomorphism since £,(13) = x whereas L5 (h(13)) = Lg(x4) # x.

/ﬁ \

~ s ~
I/ x2:+ \ / 11:+ N
/ \
\
! Q | B! e \
\ X3:succ | ~<— |12:sucec \
\ \l/ , I \l/ I
\ y |

N0 | 13:x 14y

—_ - - N 7

G

Figure 4: Example of homomorphism.

Given three graphs ¢;, g2 and g3 and two homomorphisms Ay : g1 — g2 and hy : g5 — g3, by
the composition of hy and hs, denoted hy o hy, we mean the mapping h : N, — N, such that
h(n) = hy(h1(n)) for all n € N,,. It is clear that hy o hy is a homomorphism from g; to gs. Finally,
given a graph g, the identity function on N, is a homomorphism from g to itself. An isomorphism
is a bijective homomorphism.

Definition 11 (Restriction of a homomorphism)

Let g1 and g2 be two graphs, & : g1 — g2 a homomorphism, and P a set of nodes of g1. Let hp
be the restriction of A to NglIP (h is seen as a function between nodes). hjp, which remains a
homomorphism from gy p to 92|n(p) 18 called the restriction of h to g1|p. a

Matching is essential for graph rewriting. An algorithm is given in appendix A.

Definition 12 (Matching)

Given a graph ¢, a term graph [ and a node n of g, we say that [ matches g at node n, denoted
I < g}, if there exists a homomorphism h : 1 — g),. h is called the maicher of [ on g at node n.
O

Example 9 The homomorphism A of figure 4 is a matcher of I on G at node x2.

Finally, a precise definition of a rewriting step requires the notion of “application” of a homo-
morphism h : g1 — g2 on a graph g, denoted h(g). This process corresponds to the application
of the extension of a substitution on a first-order term. Informally, computing h(g) consists in
replacing all shared subgraphs between g and g; by their corresponding subgraphs in g;. This is
done by pointer redirection.

Example 10 Consider the homomorphism A : I — G|x2 of example 8. Let
R = ril:succ(r2:+(13:x,14:y)). Computing h(R) consists in replacing all subgraphs shared



between R and L by their corresponding subgraphs in G/ xo. Here, R and L share subgraphs 13:x
and 14:y. Their corresponding graphs by A in G are respectively x4:0 and x3:succ(x4:0). Hence,
we obtain a graph hA(R) = ri:succ(r2:+(x4:0,x3:succ(x4))), i.e., the graph D of figure 3.

We now give a formal definition of h(g). First, we define the border between two graphs, i.e.,
the set of nodes where we shall execute the replacements.

Definition 13 (Border)
Let g and ¢’ be two compatible graphs. We call border of g with respect to g’ the set
B(g,9") ={p e N;N Ny | p€ Roots, or g € (N, —Ny),p € Sy(q)}. |

Example 11 Consider the compatible graphs ¢ = x0:f(x1:+(x2:x,x3:y),x3) and ¢; =
x1:+(x2:x,x3:y). Then the border of g w.r.t. g; is the set B(g,¢91) = {x1,x3}.

Definition 14 (Application of a homomorphism on a graph)

Let g, g1 and gy be three compatible graphs, h : g1 — g2 a homomorphism and B = {py,...,p}
the border of g w.r.t. g;. We suppose that BN N, = (. The application of h on g, denoted h(g),
is defined by :

h(9) = glpr < g2pnpn)] - - [Pk = 9211p1)]
Thanks to proposition 6, the condition B N N,, = 0 is sufficient to insure the well definedness of
the expression g[p1 < g2)n(,)] - - [Pk < 9210 O

Example 12 Consider the three compatible graphs ¢ = x0:f(x1:+(x2:x,x3:y),x3), ¢ =
x1:+(x2:x,x3:y) and gy, = y1:+4(y2:0,y2), and the homomorphism A from the graph g; to the
graph go. The reader may check that B(g, g1) NNy, =0 and h(g) = x0:£(y1:+(y2:0,y2),y2).

2.4 Graph equalities

Homomorphisms are also used to define equality relations on graphs. We already used the syntactic
equality, denoted =, between graphs. Hereafter, we define two other equalities.

Definition 15 (Equality up to renaming of nodes)

Given two graphs g; and g9, we say that g, is equal to g2 up to renaming of nodes if there exists
a variable-preserving isomorphism ¢ : g1 — g2 between g; and go. We write g; ~¢ g2 or simply
g1~ g2- O

With this notion of renaming, one can change nodes and variable nodes of a graph, but not variables
names : the isomorphism is variable-preserving. Equality up to renaming of nodes is similar to
a-conversion in A-calculus.

We now define bisimilarity. Informally, two term graphs are bisimilar if they represent the
same infinite tree when one unravels them. Bisimilarity is called tree-equivalence in [BvEG*87].
Bisimilarity between term graphs without variable is studied in [AK96].

Definition 16 (Bisimilarity)
Let g, and gy be two term graphs. We say that g; and g9 are bisimilar, denoted g, = g5, if there
exists a graph ¢', and two variable-preserving homomorphisms A1 : g1 — ¢’ and hy : g2 — ¢'. |

Example 13 In figure 5, the left-hand and right-hand graphs are bisimilar, since there exists a
variable-preserving homomorphism from each of them to the middle graph.

Remark : In the definition of graph bisimilarity, h; and ho are variable-preserving homomor-
phisms. Therefore, two graphs with different sets of variables cannot be bisimilar. Bisimilarity
can be defined by another way : one can prove that two bisimilar term graphs represent the same
(infinite) tree when one unravels them [AK96].
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Figure 5: Three bisimilar graphs.

3 Constructor-based graph rewriting systems (cGRS)

This section introduces the class of GRSs we consider. For practical reasons, many declarative
languages use constructor-based signatures.

Definition 17 (Constructor-based signature)

By a constructor-based signature ¥, we mean a triple ¥ = (S,C, D) such that S is a set of sorts, C
is an S-indexed family of sets of constructor symbols, D is an S-indexed family of sets of defined
operations, CN'D = @ and (S,C W D) is a signature. O

Example 14 Figure 6 shows a constructor-based signature defining (cyclic) lists of naturals.

signature list-of-nat
sorts
list nat
constructors
0 : — nat
succ : nat — nat
nil : — list
cons : nat list — list
operations
+ : nat nat — nat
* : nat nat — nat
car : 1list — nat
cdr @ 1list — list
end signature

Figure 6: list-of-nat signature.

A graph g is called constructor if all its nodes are labeled either with variables or with constructor
symbols. A term graph is said operation-rooted (resp. constructor-rooted) if its root is labeled with
a defined operation (resp. constructor symbol).

In the rest of the paper, we investigate graph rewriting for the class of what we call admissible
graphs. Roughly speaking, an admissible graph corresponds to nested procedures (functions) calls
whose parameters are complex constructor graphs.

Definition 18 (Admissible graph)
A graph g is admissible iff for all n € N, if L,(n) € D, then Py(n,n) = 0. O

Example 15 The graphs G and T’ of figure 2 are admissible, whereas the graphs z:+(z,z) and
Z:cdr(cons(0,z)) are not.

Definition 19 (Rewrite rule)

A rewrite rule is a graph e with two roots, denoted | — r. [ (resp. r) is a term graph called the
left-hand side (resp. the right-hand side) of the rule. [ and r are compatible and e =+ r. We
shall always assume that V(r) C V(I). We say that a rule ¢’ is a variant of the rule e if € and €’ are
isomorphic and all nodes and variables of ¢’ are new. a

11



From the definition of graphs, variables occurring in a rewrite rule are always shared between
the left-hand side and the right-hand side. The graph T of figure 2 shows an example of rules.

In this paper, we consider particular rewrite rules called admissible rewrite rules. Such rules
are tailored so that the set of admissible graphs is stable by rewriting (see Example 19 and Propo-
sition 9). In order to define these rewrite rules, we introduce below the notion of pattern.

Definition 20 (Pattern)
A term graph ¢ is a pattern if :

1. It is operation-rooted : £,(Root,) € D.

2. All its other nodes are labeled either with a constructor symbol or with a variable : For all

n € Ny, if n # Root,, then L,(n) € X or L,(n) € C.
3. There is no cycle including the root : P,(Root,, Root,) = 0.

4. For all nodes n of ¢ different from the root, there exists one and only one node m in g such that
n is a successor of m : for all n € J\fg, if n # Root,, then cardinal({m € /\fg | n € Sg(m)}) = 1.

In other words, a pattern is a term graph corresponding to a linear first-order term (tree) which
contains only one occurrence of defined operation situated at its root. a

Example 16 11:4(12:0,13:0) is a pattern, whereas 11:+(12:0,12) is not.

Definition 21 (Admissible rewrite rule)
An admissible rewrite rule is a rewrite rule e = [ — r such that :

1. lis a pattern (thus an admissible term graph).
2. ris an admissible term graph.

3. lis not a subgraph of r.

4. Y(r) C V().

a

We say that two admissible rewrite rules are non-overlapping if their left-hand sides are not
unifiable. This notion of unification is straightforward : it is the same as that for first-order terms,
since left-hand sides are patterns.

Definition 22 (cGRS)

A constructor-based graph rewriting system (cGRS) is a pair SP = (3, R) such that ¥ = (S,C, D)
is a constructor-based signature and R is a set of admissible rewrite rules such that every two
distinct rules in R are non-overlapping. a

Example 17 Figure 7 shows the set of admissible rewrite rules associated to the list-of-nat
signature of figure 6.

Rewriting a graph is done in two stages. First, one computes the matcher of the left-hand side
of a rule on a subgraph of the graph to be rewritten and second, the subgraph is replaced by the
instantiated right-hand side of the rule. This definition is consistent with [BvEGT87].
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rules list-of-nat
0+ 11:y — 11
succ(ll:x) + 12:y — succ(ll + 12)
11:0 * x — 11
succ(ll:x) * 12:y — (11 * 12) + 11
car( cons(11:x,12:1) ) — 11
cdr( cons(11:x,12:1) ) — 12

end rules

Figure 7: Rules for list-of-nat.

Definition 23 (Rewriting step)

Let SP = (3,R) be a cGRS. Let g1 be an admissible graph, g, a graph, e = [ — r a variant of a
rewrite rule of R and p a node of g;. We say that g, rewrites to g2 at node p using the rule | — r,
denoted g1 =, 15,] g2, if

1. [ matches g; at node p (i.e., [ < !]1|p) : there exists a homomorphism A : 1 — ¢; Ip-

2. g2 = q1[p « h(r)].
In this case, we say g1, is a redex of g, rooted by p. A graph is in normal form if it has no redex.
A constructor graph is necessarily in normal form. = denotes the reflexive closure of — and we
say that g1 is rewritten in at most one step® into gz whenever g; = gs. &, denotes the transitive

closure of — and =, its transitive and reflexive closure. We speak of a derivation from g¢; to go
whenever g; = g5. |

Example 18 Consider the graph G and the rule T = L — R of figure 2, where

L = 11:4(12:succ(13:x,14:y)) and R = ril:succ(r2:+(13:x,14:y)). According to fig-
ure 4, I matches G at node x2 with homomorphism h. We saw in example 10 that hA(R) =
rl:succ(r2:+(x4:0,x3:succ(x4))). Finally, thanks to the calculus presented in figure 3, we
have G[x2 « h(R)] = x1:cons(rl:succ(r2:+(x4:0,x3:succ(x4))),x5:cons(x3,x1)). Let G’
be this last graph. Then, by definition, G' —x2 1,5 G"-

We now prove the well definedness of a rewriting step.

Proposition 8 Let SP = (¥, R) be a ¢GRS, g; an admissible graph, e = [ — r a variant of a
rewrite rule of R and p be a node of ¢g;. If [ matches ¢g; at node p, then there exists a graph ¢
such that g1 —p, 1) 92

Proof [Let h:l— g1}, be the matcher. We must prove that the expression g1[p < h(r)] is well
defined. By hypothesis, [, r and g1, are compatible because [ and r are compatible, Nis NN, =10
and V(I — r)NV(g1) = 0. Moreover, B(l,r) C N, so B(l,r) ﬂ/\f(gllp) = (. Hence h(r) is well
defined. Let B(l,r) = {p1,...,pr}. By the definition of the application of a homomorphism to a
graph, h(r) = r[p1 < (91|P)|h(p1)] e (91|P)|h(pk)]' This last graph is composed of nodes of r
and of subgraphs of gy, which are not modified by the pointer redirections (since p; ¢ N, for all
i € 1..k). So h(r) is compatible with g1, i.e., g1[p < h(r)] is well defined. ]

Now, we show the stability of the set of admissible graphs w.r.t. rewriting with admissible rules.
The following lemma gives a sufficient condition which ensures the stability of admissible graphs
by replacement.

*>This notation is introduced in [Hue80]. In [Kl1092], it is written —=.
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Lemma 1 Let SP = (3, R) be a ¢GRS, g an admissible graph, u an admissible term graph
compatible with g and p € N,. If p ¢ N,,, then g[p < u] is an admissible graph.

Proof Since p ¢ N,, we have Root, £ pin g+ u. Thus, the pointer redirection from p to Root,
does not modify u to create a cycle on a node labeled with a defined operation. a

Proposition 9 Let SP = (3,R) be a ¢GRS, ¢; an admissible graph, e = [ — r a variant of a
rewrite rule of R, p a node of g; and g a graph such that g1 —, 1, g2. Then, g is an admissible
graph.

Proof Let h:l— g1, be the matcher from the left-hand side of the rule on g; at node p. Thanks to
Proposition 8, we know that g2 = ¢g1[p < h(r)] is well defined. Let us prove that g, is admissible.
Thanks to lemma 1, it is sufficient to prove that p ¢ Nh(,). In the proof of proposition 8, we
established that if P = B(l,r) = {p1,...,px} then h(r) = r[p; < (91|P)|h(p1)] o pr (gl|P)|h(pk)]'
This last graph is composed of nodes of r and of subgraphs of g;, which are not modified by the
pointer redirections (since p; ¢ N, for all i € 1..k). p is not a node of r, since p € N, and
Ny NN, = 0. Thus if p appears in A(r), then p is a node of (gl|p)|h(pi) for some 1. As p; € P
and P = B(l,r), p; € N, thus, Root; < p; in I. The matcher h being a homomorphism, we deduce
that h(Root;) < h(p;) in g1, and as h(Root;) = p, p < h(p;) in g;. Root; is labeled with a defined
operation (since [ is a pattern) and hA(Root;) = p, so by definition of a homomorphism, p is also
labeled with a defined operation. ¢; is an admissible graph, so there exists no path from p to itself
in g1, hence p < h(p;) and h(p;) £ p in g1. So the only possibility for p to be a node of (g1|P)|h(pi)
is that p = h(p;). h:1— g1), is a homomorphism, so i(Root;) = p and for all node n € A such
that n # Root;, h(n) # p (otherwise, there would be a cycle on p in g). Thus, if A(p;) = p, then
p; = Root;. However, p; € B(l,r) and Root; ¢ N, by definition of an admissible rule, so p; # Root;.

Thus p is not a node of A(r) and by lemma 1, g2 = g1[p < h(r)] is admissible.
O

In the following we give a counter-example for stability when using non admissible rules.

Example 19 Consider the following rewrite rule 11:+(12:0,13:x) — r1:+(11,r2:0). This rule
is not admissible since the root of its left-hand side is a node of its right-hand side and thus its
left-hand side is a subgraph of its right-hand side. By using this rule, the reader may check that the
admissible graph x1:+(x2:0,%x3:0) rewrites to r1:+(r1,r2:0). This last graph is not admissible,
since there is a cycle on the defined operation +.

4 Confluence

The confluence of GRSs is actually not a straightforward extension of that of TRSs, as shown in
Figure 1. In this section, we establish the confluence of the graph rewriting relation with respect
to admissible graphs, in presence of an arbitrary number of collapsing rules.

Definition 24 (Confluence)

Let SP = (X, R) be a ¢cGRS. We say that the rewriting relation = is confluent w.r.t the class of
admissible graphs iff for all admissible graphs g1, g2, g1 and g} such that ¢g; and g3 are equal up to
renaming of nodes (g1 ~ ¢2), g1 — ¢, and g = g}, there exist two admissible graphs ¢ and g
such that ¢ 5 g%, g% = g% and g/ ~ g¥. (see Figure 8). O

Remark : In figures, a continuous line represents a hypothesis, whereas a dashed line represents
a conclusion.
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Figure 8: Confluence.

Theorem 1 Let SP = (X, R) be a ¢cGRS. Then the rewriting relation = is confluent w.r.t the
class of admissible graphs.

In [AKO96], it is proved that every GRS with non overlapping rules is confluent. But this
surprising result is established for a particular rewriting relation, different from the one considered
here.

The rest of this section is dedicated to the proof of Theorem 1. We must first establish a few
technical results. The following proposition states that rewriting two graphs equal up to renaming
of nodes induces two graphs equal up to renaming of nodes. Its proof is clear.

Proposition 10 Let SP = (3, R) be a ¢cGRS and g, and g, two admissible graphs equal up to
renaming of nodes (g1 ~, g2). If there exists a graph ¢} such that g; — ¢/ (resp. g1 = ¢}), then
there exists an admissible graph g} such that g, — g/ (resp. g2 — ¢4) and g} and g}, are equal up
to renaming of nodes (g1 ~g g5). (see Figure 9).

g9 ~Na _qz g1 ~Na gg
| |
| * | *
| |
| |
| |
v v

a ~E g G B g
Figure 9:

The following lemma is the key result to establish confluence. It states that if a graph is
rewritten in two different ways, then the two resulting graphs can be rewritten in at most one step
into a same third graph (up to renaming of nodes). Notice that this lemma does not hold in the
general case (see Figure 1).

Lemma 2 Let SP = (3,R) be a cGRS and g, g; and g, three admissible graphs. If ¢ — ¢g; and
g — go, then there exist two graphs ¢/ and g/, such that g; = ¢/, g2 = ¢/, and g} and g}, are equal
up to renaming of nodes (g7 ~ ¢5). (see Figure 10).

Proof This proof is done by case analysis. Let g, g; and g, be three admissible graphs such
that g =, 1,5, 91 and g [, 1,-5r,] 92. By definition of a rewriting step, there exist a matcher
hi i li = g, such that g = g[n1 < hi(r1)] and a matcher hy : ly — 9ln, such that g» = glne
hg(?"g)].

If ny = ng, then necessarily [; — ry is a variant of [y — ry since R is non-overlapping, so ¢g; and
g2 are equal up to renaming of nodes. Thus, the proposition is straightforward (i.e., g; = ¢1 and
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Figure 10: Confluence : Lemma 2

93 = 92)-

From now on, we assume that ny # ny. We consider two cases, depending on the position of ng
and ng in g : either ny and ny are disjoint (i.e., ny||ng) or there exists a path from n; to ny (i.e.,
ny < ng). The case ny < ny is symmetric.

Case 1 : n; and ny are disjoint (i.e., nq||nz) :

By definition of g1, g1,, = (g[n1 < M (rl)])|n2. Since nq||ng, there exists no path from ny to ny in
g, and there exists a path from a root of g to ny which does not go through ny, so by Proposition 2
(persistence), (g[ny hl(rl)])|n2 = Glny» 1€+ G1jn, = Gjn,- BY hypothesis, h; is a homomorphism
from I3 to g|,,, so hy is also a homomorphism from I, to G|, In other words, I matches ¢, at
node ny. Hence, g; can be rewritten with the rule [y — ry into the graph g1 = g1[n2 < ha(rs)],
that is to say g1 = (g[n1 < hi1(r1)])[n2 < ha(r2)]. For the same reason, gz can be rewritten into
g% = (g9[ne < ha(re)])[n1 « hi(r1)]. We now prove that g] = ¢}. Let us verify that n; is not a
node of hy(ry) and ng is not a node of hy(ry) in order to use Proposition 6 (commutativity). The
graph hq(rg) is composed of nodes of r and of nodes introduced by hq, that is to say nodes of Gins
(since hy is a homomorphism from /; to g},,). By hypothesis, N, NN, =0, so n; is not a node of
r9. Moreover, n; is not a node of Gins because n; and ng are disjoint. So n; is not a node of hy(rz).
With the similar reasoning, we can prove that ny is not a node of hy(rq). Thus, by Proposition 6,
91 = 9.

Case 2 : There exists a path from n; to ng (i.e., ny < ny) (see Figure 11) :

Since ny < ng2, ny is a node of g|,,. By hypothesis h1(l1) = g, , s0 n2 is a node of A~y (l1). The fact
that ng is a node of hq(ly) stems from the existence of at least one variable node py of I; such that
ny is a node of g, (p,)- The existence of p; is due to the fact that /; is a pattern, and A; (Rooty,) =
ny # ng. There may be other variable nodes in /; like the node py, Let P = {py,ps...px} be the
set of variable nodes p; of [; such that ny is a node of g, (,,).- There are two sub-cases to study,
depending on PNN,, = 0 or not, i.e.,whether or not at least one variable node of P belongs to the
right-hand side ry.

Case 2.1 : (PNN,, #0), i.e., there exists a node p; € P which is a common variable node of

ry and [y :
This sub-case is represented in Figure 11. By definition of P, ny is a node of g, (,,). By hypothesis,
Pk is a variable node of rq, thus ng is a node of the graph hy(ry). ng is also a node of g = g[n; «
hi(r1)]. Indeed, hi(r1) is not modified by the pointer redirection from ny to Rooty, (,,) because
ny ¢ hi(ry) (cf. lemma 1).

Let us show that Gijny = Giny- Since n; ¢ Afhl(rl) and ng € J\fhl(rl), by proposition 3 (embed-
ding), g1}, = (h1(r1))},,- Since ny is a node of gj,,, and hi(l1) = g},,, we obtain g, = (h1(l1)),,,-
ny being a common node of i (l1) and hi(r1), we get (h1(l1))),, = (h1(r1)),,. Hence g1j,, = gjn,.

By hypothesis, /i, is a homomorphism from /3 to g, , so hy is also a homomorphism from I, to
91|, SINCE Gy, = g1}, In other words, l; matches g at node ny. Therefore, g1 can be rewritten
with the rule /; — ry into the graph g] = g1[ng < ha(re)], that is to say g = (g[n1 < hi(r1)])[n2 +
ha(r2)].
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Figure 11:

We have just defined ¢i. We now define ¢. By hypothesis, ny < ny and then ny 4 ny since g
is admissible. Thus ny remains a node of g = g[ng  ha(r2)]. In addition, there exists a matcher
byl — 92|n, because [y is a pattern and the construction of g, is obtained from g by a pointer
redirection (replacement) at ng, where ny is labeled with a defined operation. Hence, /; matches
g2 at node nq. So g, can be rewritten into g4 = go[ny « R\ (r1)].

By definitions of k] and hy we deduce that hi(l;) = hy(l1)[ng < ha(r2)]. Indeed, A} (1) = (by
definition of h}) ga,,, = (By definition of g3) g[ns < ha(r2)]),, = (from ny < n3) g),, [n2 < ha(r2)] =
(By definition of hy) hy(l1)[ng < ha(r2)]. Then, it is easy to see that A (ry) = hy(ry)[ng + ha(rs)].
Thus, g5 = (g9[n2 < ha(r2)])[n1 < (b1 (r1)[n2 < ha(ra)])].

Finally, g1 rewrites into ¢i = (g[n1 < hi(r1)])[n2 < ha(ry)] and go rewrites into g5 =
(glng < ha(r2)])[n1 < (h1(r1)[ng < ha(r2)])]. As ny is not a node of hy(ry) since ny < mg, by
proposition 5 (associativity), we obtain g = g5.

Case 2.2 : (PNN,, =0). There is no variable node of P which appears in ry :

In this case, ng is not a node of hy(r1). But ng may remain a node of g[ny « hy(ry)] if there exists
a path from a root of ¢ to ny which does not go through n;. Hence, there are again two sub-cases.

Case 2.2.1 : Every path from a root of g to ny goes through n; :

Then ny is no more a node of g1 = g[ny < hi(r1)] : it is deleted by replacement since PNAN,, = 0.
Concerning g9, by hypothesis ny < ny and ny £ ny Which implies that nq is a node of g = g[ny
hy(rs)]. Moreover, there exists a homomorphism h} : l1 — g3),,, (for the same reason as in Case
2.1). Hence, I; matches g2 at node n; and so gy can be rewritten into g5 = ga[n1 < hi(r1)].
By hypothesis, ny is not a node of hy(ry), so h}(r1) = hi(r1). Thus, g2 can be rewritten into
gy = (g[ng < ha(r2)])[n1 « hi(r1)]. As ng is not a node of hy(ry) and every path from a root
of g to ny goes through ny, by proposition 7 (weak dominance), we obtain (g[ng < h2(r2)])[n1 <
hi(r1)] = g[n1 ¢ hi(r1)], that is to say g2 —r[n, 1] 91- Finally, let g7 = g3 = g1 and the lemma
holds.

Case 2.2.2 : There exists a path C from a root of g to ng such that ny ¢ C :

Then ng is not a node of hy(ry) (P NAN,, = ), but ny remains a node of g1 = g[n; + hi(r1)],
since the path C' is not modified by the replacement at node ni. There is no path from ny to nq
and there exists a path from a root of g to ny which does not go through n;, so by Proposition
2 (persistence), (g[ni < h1(7“1)])|n2 = Gjnys 1€y G1|n, = Yjn,- By hypothesis, lo matches g},,, so
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Iz matches g1,,. Hence, g1 can be rewritten into g; = gi[n2 < ha(r2)], that is to say g; =
(g[n1 < hy(r1)])[n2 < ha(rg)]. Concerning gy, by hypothesis, n; < ny and ny £ ny which implies
that n; is a node of g2 = g[na  h2(rz)]. Moreover, there exists a homomorphism A} : [ — 92|n,
(for the same reason as in Case 2.1). Hence, /; matches g, at node ny and so g2 can be rewritten
into g4, = ga[ny1 < h{(r1)]. By hypothesis, ny is not a node of hy(ry), so h{(r1) = hy(ry). Thus, g2
can be rewritten into g4 = (g[ng < ha(r2)])[n1 < h1(r1)]. Finally, n; is not a node of hy(ry) (since
ny < ng in g) and ny is not a node of hy(ry) (by hypothesis), so by proposition 6 (commutativity),
91 = 95

O

An immediate consequence of Lemma 2 is the following proposition.

Proposition 11 Let SP = (X, R) be a ¢cGRS and ¢1, g2, g7 and g/ four admissible graphs such
that g; and g2 are equal up to renaming of nodes (g1 ~ g2), g1 — ¢} and g2 — g5. Then there exist
two admissible graphs ¢/ and g/ such that g} = gV, g} = g% and g/ ~ g¥/. (see Figure 12).

~

g1 92
I/ \ !
g1 92

& N Y &
g~ g
Figure 12:

Proof Since g1 — ¢} and g1 ~ g3, by Proposition 10, there exists an admissible graph d such that
g2 — d and g} ~ d. Since go — d and g3 — g}, by Lemma 2, there exist two admissible graphs d’
and g4 such that d 5 d', g4 > g% and d’ ~ gY. Since g} ~ d and d = d', by Proposition 10, there
exists an admissible graph ¢/ such that g} = ¢/ and g} ~ d’. Finally, since ¢/ ~ d’ and d’' ~ g,
we conclude that ¢f ~ g5.

O

We now generalize Lemma 2.

Proposition 12 Let SP = (3, R) be a ¢GRS and g, g; and g, three admissible graphs. If g = ¢
and g rewrites in at most one step to g, (¢ — g2), then there exist two admissible graphs ¢} and
g4 such that g1 = g4, go = g4 and g} ~ g}. (see Figure 13).

Figure 13:
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Proof This proof is done by induction on the length of the derivation g = ¢; and it is sketched in
figure 14. For a null derivation, the proposition is straightforward (i.e., g; = g5 = ¢2). We suppose

it is true for length n. Let g, g1 and g, be three admissible graphs such that g fary g1 and g 5 gy. If
g = g2, the proposition is straightforward (i.e., ¢} = g5 = g1), so we suppose ¢ — g2. There exists
a graph d such that ¢ — d = g,. By Lemma 2, there exist two graphs d; and dy such that d 5 dy,
g2 — dy and dy ~, dy (see A in Figure 14). Since d 5 ¢, and d = d;, by induction hypothesis,
there exists two graphs ¢} and d} such that g; = ¢}, dy = d} and g} ~g d} (see HR in Figure 14).
Since di = d} and di ~, da, by Proposition 10, there exists a graph g} such that dy = ¢/ and
d} ~y g5 (see C'in Figure 14). Finally, g{ ~g d} and d} ~, g}, so ¢} ~05 ¢, i.e., g] and gj are
equal up to renaming of nodes.

O

The following proposition is a second generalization of Lemma 2.

Proposition 13 Let SP = (X, R) be a ¢GRS and g, g; and g, three admissible graphs. If ¢ = ¢;
and g = go, then there exist two admissible graphs ¢/ and g} such that g; = ¢}, go — g4 and
g5 ~ g5. (see Figure 15).

Figure 15:

Proof Let g, gy and gy be three admissible graphs such that ¢ = ¢; and ¢ = g5. We prove
by induction on the length of the derivation g =3 g, that there exist two graphs ¢! and g} such
that g1 = ¢}, g2 = ¢4 and g} ~ ¢}. This proof is sketched in figure 16. For a null derivation, the
proposition is straightforward (i.e., g} = g5 = ¢g1). We suppose it is true for length n. Let g, g1 and
g be three admissible graphs such that ¢ = g; and ¢ fart g2. Then there exists a graph d such that
g — d > g,. By Proposition 12, there exist two graphs d; and dy such that ¢; = dq, d > dy and
dy ~g dy (see A in Figure 16). Since d = dy and d 2 g,, by induction hypothesis, there exist two
graphs d, and g} such that dy = df, go — g4 and d} ~5 g (see HR in Figure 16). Since dy = d},
and dy ~, da, by Proposition 10, there exists a graph g} such that di = g} and g} ~., d (see C in
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Figure 16). Finally, g} ~, d} and df, ~g g}, so ¢} ~goy g5, i.€., g} and g} are equal up to renaming
of nodes.
O

We are now ready to prove the confluence of cGRS w.r.t the class of admissible graphs :
Proof of theorem 1 Let SP = (X, R) be a ¢GRS and g1, g2, g3 and g4 four admissible graphs
such that g ~ go, g1 — ¢} and gy = g}. Since g1 = ¢} and g; ~ g,, by Proposition 10, there exists
an admissible graph d such that g, = d and g} ~ d. Since gy = d and g3 = ¢}, by Proposition 13,
there exist two admissible graphs d’ and g such that d = d’, g}, = g% and d’ ~ g!/. Since ¢} ~ d
and d 5 d', by Proposition 10, there exists an admissible graph g/ such that ¢/ = ¢/ and ¢/ ~ d'.
Finally, since ¢y ~ d" and d' ~ ¢!/, we conclude that g{ ~ g5.

5 Confluence modulo bisimilarity

Another interesting question is the confluence modulo bisimilarity of the graph rewriting relation
with respect to admissible graphs. Beyond its theoretical interest, we need this result to establish
the completeness of narrowing in the framework of ¢cGRSs [EJ97].

Definition 25 (Confluence modulo bisimilarity)

Let SP = (X, R) be a cGRS. We say that the rewriting relation = is confluent modulo bisimilarity
w.r.t the class of admissible graphs iff for all admissible graphs g1, g2, ¢} and g} such that g; and
g2 are bisimilar (g1 = ¢2), g1 — ¢} and go = g4. Then there exist two admissible graphs g/ and g/
such that ¢} = g%, g5 = g% and g} = gJ. (see Figure 17). a

g1 = 92
SN
1

g1~

/
Y2
.

*\\\\ ////*
1

g = g7

Figure 17: Confluence modulo bisimilarity

Theorem 2 Let SP = (¥, R) be a cGRS. Then the rewriting relation — is confluent modulo
bisimilarity w.r.t the class of admissible graphs.
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The rest of this section is dedicated to the proof of Theorem 2. We must first establish a few
technical results. The following proposition states that if two graphs are bisimilar and the left-hand
side of a rule matches one of them, then it also matches the other.

Proposition 14 Let SP = (X, R) be a ¢GRS, ¢; and g, two admissible graphs and | — r a
rewrite rule of R.

1. If there exists a homomorphism A : g1 — g2 and [ matches g; at the root, then [ matches g
at the root.

2. If there exists a variable-preserving homomorphism h : g; — g2 and [ matches g, at the root,
then [/ matches ¢g; at the root.

3. If g1 and gy are bisimilar and [ matches g; at the root, then [ matches g, at the root.

Proof The first part of the proposition is straightforward : if there exists a homomorphism
hy : Il = g1 and a homomorphism A : g1 — ¢4, then by composition, h o h; is a homomorphism
from [ to gy, and thus [ matches g5 at the root.

Let us prove the second part of the proposition. By definition of a ¢GRS, [ is a pattern, so [
is a finite linear tree. Hereafter, we use this property, since the proof is done by induction on the
height of [, i.e., the maximal length of paths from Root; to the leaves of /.

Base case: Let [ be a linear tree of height n = 0, g; and g, two admissible graphs and A : g1 — g2
a variable-preserving homomorphism such that [ matches gy at the root. Since n = 0, [ is either a
variable or a constant. If / is a variable, [ trivial matches ¢; at the root. If [ is a constant, then g, is
the same constant because hy : [ — g3 is a homomorphism. As h : g1 — g2 is a variable-preserving
homomorphism, g1 is also the same constant. Hence [ matches gy at the root.

Induction step: Let n > 0. We suppose that for every linear tree [ of height less or equal to 7,

for all admissible graphs g; and g and variable-preserving homomorphism A : g1 — g3, if [ matches
g2 at the root, then [ matches g; at the root. Let [ be a linear tree of height n + 1, g; and gy two
admissible graphs and h : g, — ¢ a variable-preserving homomorphism, such that there exists a
homomorphism hy : [ — g3. We build a homomorphism Ay : [ — ¢5.
[ is not a variable nor a constant, since it is of height 74 1. So its root is labeled with a non constant
operation f. Since hy : | — g9 is a homomorphism, the root of gs is also labeled with f. And as
h 1 g1 — g9 is a variable-preserving homomorphism, the root of g, is also labeled with f. We now
suppose S;(Root;) = ny...ng, Sy (Rooty,) = uy ... u; and Sy, (Rooty,) = vy ...v. Forall ¢ € 1.k,
hy,, is a variable-preserving homomorphism from g1, to g2),,. Forall ¢ € 1.k, [},,, is a linear tree of
height less or equal to 1 and h3),, is a homomorphism from [}, to ga,,. So by induction hypothesis,
there exists a matcher ¢; : l|nz. = 91| for all e € 1..k. Let hy : N} — N'gl be the function such
that hi(Root;) = Root,, and for all i € 1.k, for all n € N}, hi(n) = ¢i(n). We now prove that
hi is a homomorphism from [ to g;. First, [ is a linear tree, so for all 7,5 € 1.k, if ¢ # j, then
N(l|"i) ON(%J) =0 and V(/|n,) N V(l|n,) = 0. Thus, for all nodes n of I, hi(n) is defined once and
only once, i.e., hy is a well defined function. Second, h; preserves the labeling function of /, since
Ly, (h1(Rooty)) = Ly, (Rooty, ) = L;(Root;) = f, and every ¢; preserves the labeling function of /.
Third, h; preserves the successor function of [, since Sy, (Rooty,) = w1 ... ux = ¢1(n1) ... Pp(nk) =
h1(Si(Root;)), and every ¢; preserves the successor function of /.. So we conclude that oy : 1 — ¢;
is a homomorphism and thus, / matches ¢; at the root.

Finally, we prove the last part of the proposition. Let g; and gy be two bisimilar graphs such
that [ matches gy at the root. By definition of bisimilarity, there exist a graph g and two variable-
preserving homomorphisms p; : g7 — ¢ and py @ g3 — ¢. [ matches g, at the root, so [ matches g
at the root, with the first part of this proposition. Then by the second part of this proposition, we
obtain [ matches g9 at the root a
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Note : The proposition above would not hold if the left-hand sides of the rules of a ¢GRS were
not finite linear trees. Consider for instance the rule x1:+(x2:0,x2) — x2. Its left-hand side {
does not match the graph g, = y1:4(y2:0,y3:0), since there is no homomorphism from [ to g;.
Consequently, g1 cannot be rewritten. However, [ and g; are bisimilar and / can be rewritten into
x2:0. Consider now the rule x1:+(x2:x,x3:8(x3)) — x3. Its left-hand side matches the graph
gs = y1:+(x2:0,x3:5(x3)) but it does not match the graph g4 = z1:+(22:0,23:5(24:5(=23))),
whereas g3 and ¢4 are bisimilar.

We now establish a key result for the proof of confluence modulo bisimilarity of our graph
rewriting relation. A similar proposition is given in [AK96] (proposition 5.13) (for a different
rewriting relation, as already said).

Lemma 3 Let SP = (3, R) be a ¢GRS, g1 and g2 two admissible graphs and h : g1 — g2 a
variable-preserving homomorphism. If there exists a graph ¢} such that go — ¢4, then there exist
an admissible graph ¢ and a variable-preserving homomorphism A’ : g; — g4 such that ¢ 5 g1.
(see Figure 18).

Figure 18:

Proof We assume ga —[y 1] g5. By definition, there exists a homomorphism @ : [ — 92|, and
g4 = galq  P(r)].

Let P = h~"(q) = {p1,p2,-..,Pn}. All nodes of P are pairwise disjoint : otherwise, if p; < p;
and 7 # j, then there exists a path C' = [p;,n1,...,nk,p;] in g1 ; h being a homomorphism,
h(C) = [h(p:), h(u1), ..., h(ug), h(p;)] is a path of g5 ; but h(p;) = h(p;) = ¢, so there exists a cycle
on ¢ in gy, which is impossible since ¢ is labeled with a defined operation and gy is admissible.
Therefore all nodes of P are pairwise disjoint.

Let {l; = r; | i € 1..n} be a set of n variants of [ — r ; let a; be the isomorphism from the
graph l; = r; to the graph [ — r (i.e., a; is the isomorphism from /; + r; to [ 4+ r which renames all
nodes and variables of I; + r;). % is a homomorphism from [ to 92| and hy,, is a homomorphism
from g1, to gz, for all ¢ € 1..n. So by proposition 14, there exists a homomorphism from [ to g1 ,,.
l; = r; is a variant of [ — r by isomorphism «; and there exists a homomorphism from [ to G1|p;» SO
there exist a homomorphism ¢; from [; to gy,,. Hence, for all 2 € 1..n, g1 can be rewritten at node
pi with rule l; = r; into g1[p; < ¢i(r;)]. All positions in P are pairwise disjoint, so by proposition
6 (commutativity), we can perform all these rewriting steps in any order and we obtain a graph
g, = qilpr  61(r)] .. [Pn < bn(rn)]. We clearly have g, 3 g},

Now, let us prove that there exists a variable-preserving homomorphism A’ : gf — ¢}. We are
going to decompose the construction of ¢} and g5 in elementary stages (following the definition of
replacement) and prove that there exists a variable-preserving homomorphism at each stage.
First stage, let Gy = g1+ ¢1(r1) + ...+ ¢n(rn) and Gy = g2 + ¥ (r). There exists a homomorphism
p = Gy — Gy such that for all nodes n € N, u(n) = h(n) and for all i € 1.k, for all nodes

€ Nr, = Niy), u(n) = ai(n).
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Second stage, we perform the multiple pointer redirection p; on Gy and the pointer redirection
p2 on G, where p1 = {p1 = Rooty, ()., Pn = Rooty ()} and pz = {g — Rooty}. We
must prove the g is still a homomorphism from p;(Gy) to pg(Gg) First, p is a functlon from
N, to Nag,, so p is also a function from N, (g,) to N,,(q,)- Second, u preserves the labeling
function of Gy, so it does on py(Gy). Third, p preserves the successor function of pi(Gy) : we
must verify that S,,(a,)(1(n)) = (S, (a)(n)), for all node n € N, (a,). As N, (a,) = Na,, it
is equivalent to prove that for all nodes n € Ng,, pa(Sa, (1(n))) = p(p1(Sa, (n))). Since p is a
homomorphism from Gy to G, p2(Sa, (1(n))) = p2(p(Sa, (n))). So, let us prove that for all nodes
n € Na,, p(p1(Sa, (n))) = p2(1(Sa, (n))). This result holds if po(p(n)) = p(pi(n)) for all nodes n
of Gy. There are two cases for n. First case, if n ¢ P. Then pi(n) = n and so p(p1(n)) = p(n).

Asn ¢ P, u(n) # q, so pa(p(n)) = p(n). Hence, u(p1(n)) = p2(p(n)). Second case, if n € P.
Then there exists an 7 € 1.k such that n = p;. So pi(n) = pi(p;) = Rooty,(,,) = ¢:(Root,,).

So u(pa(n)) = p(6:(Rooty,)). Moreover, pa(u(n)) = palyu(pi)) = pa(a) = Rooty) = $(Roots).
By definition of p, p(¢i(Root,,)) = ¥(Root,). Hence, u(p1(n)) = p2(p(n)) and we obtaln that u
preserves the successor function of p;(Gy). Finally, (Roots (G )) Roots,,(a,)- So we conclude
that u is still a homomorphism from p1(G1) to p2(Ga).
Third and last stage, let ¢} = pl(G1)|p1(ROOthl) and g = pg(G2)|p2(ROOth2). Let b/ = Hiroot,, - It
is clear that A’ is a variable-preserving homomorphism from g¢{ to g5. 1

O

The following proposition is a generalization of Lemma 3.

Proposition 15 Let SP = (X, R) be a ¢GRS, ¢; and g, two admissible graphs and h : g1 — ¢2 a
variable-preserving homomorphism. If there exists a graph ¢4 such that g = gh, then there exist a
graph ¢{ and a variable-preserving homomorphism A’ : g} — ¢/, such that ¢, 5 g, (see Figure 19).

Figure 19:

Proof This proof is done by induction on the length of the derivation g, = g¢4. For a null
derivation, the proposition is straightforward (i.e., ¢§ = g1, g5 = g2, K’ = h). We suppose the
proposition is true for length n. Let g; and gy be two admissible graphs and A : g1 = g2 a
variable-preserving homomorphism such that g fary gh. Then, there exists a graph d’ such that
gs = d' > g). Since go — d' and there exists a variable-preserving homomorphism A : g1 — g3,
by Lemma 3, there exist a graph d and a variable-preserving homomorphism j : d — d' such
that g1 % d. Since there exists a variable-preserving homomorphism j : d — d’ and d' = g}, by
induction hypothesis, there exist a graph g; and a variable-preserving homomorphism A’ : g] — ¢/
such that d = ¢/. Finally, ¢, Hd gl s0 g1 = gl

O

We now establish a second key result for the proof of confluence modulo bisimilarity of cGRSs.
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Lemma 4 Let SP = (3, R) be a ¢GRS, ¢ and g, two admissible graphs and A : g1 — ¢2 a
variable-preserving homomorphism. If there exists a graph g such that g; — ¢, then there exist
two admissible graphs ¢ and ¢} and a variable-preserving homomorphism A’ : g7 — ¢/ such that
gt = gt and go — g5. (see Figure 20).

g1 ——= g2

/
S >
-

Figure 20:

Proof This proof is sketched in Figure 21. We assume g¢; rewrites to g7 at node p; with rule

g1 g2
gl/l B + A
N J
gl ~o d g
Figure 21:

[ = r. Let ¢ = h(p1) and P = h='(q) = {p1,...pn} (ie., P is the set of the antecedents of
q by h). Since there exists a homomorphism from [/ to 91p, (i.e., the matcher) and hyp, 1s a
homomorphism from g1}, to ga|,, then by composition, there exists a homomorphism from [ to
g2|¢- So there exists a graph g3 such that g2 —[, 1, g5. Since g2 —[; 14, g5 and there exists a
variable-preserving homomorphism % : g, — g2, by Lemma 3, there exists a graph d and a variable-
preserving homomorphism j : d — g4 such that g; & d (see A in Figure 21). From the proof
of Lemma 3, the nodes of P are pairwise disjoint in g; and all rewriting steps of the derivation
g1 % d are performed at the nodes of P. Therefore, since p; is a node of P and g1 =, 15/ g1,

there exists a graph g} such that g} = ¢V and g} ~, d (see B in Figure 21). The nodes used to
perform the rewriting derivation ¢} = ¢/ are those of P — {p,}, that is to say {ps,...,p,}. Finally,
the isomorphism of renaming « is a variable-preserving homomorphism from ¢} to d and j is a
variable-preserving homomorphism from d to g}, so a0 j is a variable-preserving homomorphism
from g7 to gb.

O

The following proposition is a generalization of lemma 4.

Proposition 16 Let SP = (3, R) be a cGRS, ¢; and g2 two admissible graphs and h: g1 — g2 a
variable-preserving homomorphism. If there exists a graph ¢} such that g; = ¢/, then there exist
two admissible graphs ¢{" and ¢} and a variable-preserving homomorphism A’ : g/ — ¢/ such that
g1 = gt and go = gb. (see Figure 22).
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Proof This proof is done by induction on the length of the derivation g; = ¢} and it is sketched
in Figure 23. For a null derivation, the proposition is straightforward (i.e., ¢{ = g1, 95 = ¢2

g2

Figure 23:

and h' = h). We suppose the proposition is true for length n. Let ¢, and gy be two admissible
graphs and & : g — g2 a variable-preserving homomorphism such that there exists a graph ¢} with

g1 ! g,. Then, there exists a graph d such that g; 5 d — g/. Since h : g; — g5 is a variable-
preserving homomorphism and g; = d, by induction hypothesis, there exists two graphs d; and ds
and a variable-preserving homomorphism j : dy — dy such that d 2 dy and g2 2 dy (see HR in
Figure 23). Since d — g1 and d % dy, by Proposition 12, there exists two graphs f; and f, such
that g/ = fi, di = f2, and fi ~, fa (see B in Figure 23). Since there exists a variable-preserving
homomorphism j : d; — dy and d; = f,, we can deduce by using Lemma 4, the existence of two
graphs e and g4, and a variable-preserving homomorphism j': e — ¢4 such that f, S eand dy > g5
(see C'in Figure 23). Since fo = e and fi ~, f2, by Proposition 10, there exists a graph g such
that fi = ¢/ and g7 ~g e (see D in Figure 23). Finally, ¢ ~g e, so 3 is a variable-preserving
homomorphism from g{ to e. Moreover, j' : e — ¢4 is a variable-preserving homomorphism. So
j o B g) — g} is a variable-preserving homomorphism.

O

We are now ready to prove Theorem 2.
Proof of theorem 2 Let SP = (X, R) be a cGRS. Let gy and g2 be two admissible and bisimilar
graphs (g1 = g2) such that there exist two graphs ¢{ and ¢} with ¢, 5 g} and g9 ' g5. We prove
that there exist two admissible graphs ¢/ and ¢4 such that ¢/ = ¢/, g5 = g and ¢/ = ¢%. This
proof is direct thanks to the previous propositions. It is sketched in Figure 24. By definition of
bisimilarity, there exist a graph ¢, a variable-preserving homomorphism h; : g; — ¢g and a variable-
preserving homomorphism hy : g2 — g (see A in Figure 24). Since g1 = ¢} and there exists a
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variable-preserving homomorphism hy : g1 — ¢, by Proposition 16, there exist two graphs f; and
d, and a variable-preserving homomorphism h{ : f; — d; such that ¢f = f; and ¢ = dy (see B
in Figure 24). For the same reason, there exist two graphs fy and dy and a variable-preserving
homomorphism hj : f — dy such that g5 = f, and ¢ = dy (see B’ in Figure 24). Since g = d;
and ¢ = dy, by Theorem 1, there exist two graphs d| and d}, such that d; = d, dy = d}, and
dy ~, db (see C in Figure 24). Since d; = d) and there exists a variable-preserving homomorphism
hy : fi — di, by Proposition 15, there exist a graph g{ and a variable-preserving homomorphism
B! gt — di such that f; = g% (see D in Figure 24). For the same reason, there exist a graph g/
and a variable-preserving homomorphism %% : g§ — dj such that f, = g% (see D' in Figure 24).
Finally, aohf is a variable-preserving homomorphism from ¢{ to d/, and A/ is a variable-preserving
homomorphism from ¢4 to d}, so by definition of bisimilarity, ¢ = ¢4.

6 Needed graph rewriting

In this section, we define an optimal rewriting strategy for admissible graphs. We first introduce
some vocabulary.

Definition 26 (Strategy)

Let SP = (X, R) be a ¢cGRS. A (sequential) graph rewriting strategy is a partial function § which
takes an admissible graph ¢ and returns a pair (p, R) such that pis a node of g, R is a rewrite rule
of R and g can be rewritten at node p with rule B. We write ¢ —s ¢’ and speak of an §-step from
g to g’ whenever S(g) = (p, R) and ¢ —p, R g'. 5 denotes the reflexive and transitive closure of

—s and we speak of an S-derivation from g to ¢’ whenever ¢ 55 g'.

A strategy S is c-normalizing iff for all admissible graph g admitting a constructor normal form e,
if ¢ = ¢, then there exists a constructor graph ¢’ such that ¢ s ¢ and ¢ ~ c.

A strategy S is c-hyper-normalizing iff for all admissible graphs g admitting a constructor normal
form ¢, any derivation D starting with g which uses infinitely many times S-steps ends with a
constructor normal form ¢ such that ¢ ~ ¢'. O

Definition 27 Let SP = (X, R) be a ¢GRS, g and ¢’ two admissible graphs and B = g = ¢’ a
rewriting derivation. A node ¢ labeled with a defined operation in ¢ is a residual node by B if ¢
remains a node of ¢’. Then, we call descendant of g|, the subgraph (g’)|q. A redex u rooted by
g in ¢ is a needed redez iff in every rewriting derivation from ¢ to a constructor normal form, a
descendant of g, is rewritten at its root ¢. A node ¢ labeled with a defined operation in g is an
outermost node of ¢ iff ¢ € Roots, or there exist a root r € Roots, and a path C' = [py, ..., px]
from r to ¢ such that pg = r, pr = ¢ and p; is a node of ¢ labeled with a constructor symbol for all
i €0..(k—1). A redex u rooted by ¢ in g is an outermost redez iff ¢ € Roots, or there exist a root
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r € Roots, and a path C' = [po, ..., px] from r to ¢ such that po = r, px = ¢ and gjp; is not a redex
forall i € 0..(k —1). O

Example 20 let g = x1:cons(x2:*(x3:0,x4:+(x3,x3)) ,x5:cons(x4,x6:nil)). By definition,
9)x2 and 9|xa are outermost needed redexes. However, there exist a path from x2 to x4. Notice
that gjyq does not vanish when g x5 is rewritten.

Remark : The notions of outermost node and outermost redex are well-defined in the framework
of admissible graphs : if p and ¢ are two nodes of an admissible graph labeled with defined operations
and such that there exist a path from p to ¢ (i.e., p is outer than ¢), then there is no path from ¢
to p.

Our graph rewriting strategy is based on definitional trees and is a conservative extension to
admissible graphs of Antoy’s term rewriting strategy [Ant92]. A definitional tree is a hierarchical
structure whose leaves are the rules of a ¢GRS used to define a given operation. In the following
definition, branch and rule are uninterpreted symbols, used to construct the nodes of a definitional
tree.

Definition 28 (Definitional tree)
Let SP = (X, R) be a ¢cGRS. A tree T is a partial definitional tree, or pdt, with pattern m iff one
of the following cases holds :

o 7 =rule(r — r), where m — r is a variant of a rule of R.

e 7 =branch(w,0,Th,...,Tr), where o is a variable node of 7, 0 is of sort s, ¢1,...,cx (k> 0)
are different constructors of the sort s and for all j € 1.k, 7; is a pdt with pattern w[o <
p:ci(or: Xq,...,0, : X;))], such that n is the number of arguments of ¢;, X1, ..., X, are new
variables and p, 01, ..., 0, are new nodes.

We write pattern(7T) to denote the pattern argument of a pdt.

A definitional tree T of a defined operation f is a finite pdt with a pattern of the form p: f(oy :
X1,...,0, : X,,) where nis the number of arguments of f, Xy,..., X, are new variables, p,01,...,0,
are new nodes, and for every rule [ — r of R, with [ of the form f(gi,...,¢gs), there exists a leaf
rule(l' — r') of T such that I’ — ' is a variant of [ — r. An inductively sequential cGRS is a GRS
such that for every defined operation f, there exists a definitional tree of f. a

Example 21 Consider the following ¢GRS which defines the sum of positive integers :

x1:4(x2:0,x3:x) -> x3
x4:+(x5:succ(x6:x),x7:y) -> x8:succ(x9:+(x6,x7))

The definitional tree 7 of the operation + is

T+ =branch( 11:+4(12:X,13:Y),
12,
rule(14:+(15:0,16:U) — 16),
rule(17 :+(18:succ(19:V),110:W) — 111:succ(112:+(19,110))))

Now, we are ready to define our graph rewriting strategy noted ®. The strategy ® is a partial
function that operates on admissible graphs in presence of inductively sequential cGRS. ®(g) re-
turns, when it is possible, a pair (p, R) where p is a node of g and R is a rewrite rule such that ¢
can be rewritten at node p with rule R. ® uses an auxiliary function ¢ which takes two arguments :
an operation-rooted term graph and a pdt of this operation.
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Definition 29 (Admissible graph rewriting strategy)

Let SP = (X,R) be an inductively sequential cGRS and g an admissible graph. & is the partial
function defined by ®(g) = ¢(g)p, T¢), where p is an outermost node of g labeled with a defined
operation f and 7y is a definitional tree of f.

Let g be an admissible operation-rooted term graph and 7 a pdt such that pattern(7) < g. We
define the partial function ¢ :

(Rooty, " — ') if T =rule(r — r) and
7' — r'is a variant of 7 — 1 ;

©(g,Ti) if 7 =branch(r,0,7y,...,7Tx) and
pattern(T;) < g for some i € 1.k ;
e(g,7) =1 (p,R) if 7 =branch(r,0,Tv,...,Tk),

7 matches g at the root by homomorphism h : 7 — g,
h(o) is labeled with a defined operation f (in g),
7' is a definitional tree of f and

Q‘O(g|h(o)7 T,) = (p7 R)

O

Example 22 Consider the admissible graph g = x1:cons(x2:+(x3:+(x4:0,x4),x3),x1). Then

®(g) = ¢ x2:+(x3:+(x4:0,x4),x3),74)
= ( x2:+(x3:+(x4:0,x4),x3),
branch(11:+(12:X,13:Y),12,...))
= ¢ x3:+(x4:0,x4),
branch(11:+(12:X,13:Y),12, rule(14:+(15:0,16:U) — 16),...))
= (x3,v1:+4(v2:0,v3:Z) — v3)

Lemma 5 Let SP = (X,R) be an inductively sequential ¢GRS, f a defined operation, 7; a
definitional tree of f, and g an admissible term graph whose root is labeled with f. If ¢(g,7;) =
(p, R), then (i) in every rewriting derivation from ¢ to a constructor-rooted term graph, a descendant
of g, is rewritten at the root, in one or more steps, into a constructor-rooted term graph ; (ii) 9p
is a redex of g matched by the left-hand side of R ; (iii) g), is an outermost redex of g. If (g, T)
is not defined, then g cannot be rewritten into a constructor-rooted term graph.

Proof In the sequel, C denotes the Neetherian ordering defined by : (¢1,71) C (g2, 72) if and
only if either the graph ¢, has fewer occurrences of defined operations than the graph g¢,, or else
g1 = g2 and Ty is a proper subtree of 73. The proof is by Neetherian induction on =. We consider
the different cases of the definition of ¢.

Base case : consider (g,7) where g is an admissible operation-rooted term graph, 7 =
rule(m — r) and m# — r is a variant of a rule of R such that 7 < g. By definition of ¢, ¢(g,7)
is defined and ¢(g,7) = (Rooty,n" — r'), where 7/ — r is a variant of # — r. (i) Since g is
operation-rooted, every rewriting derivation from g to a constructor-rooted term graph must con-
tain a rewriting step at node Root,. So in any rewriting derivation from ¢ to a constructor-rooted
term graph, a descendant of 9|root, must be rewritten at the root into a constructor-rooted term
graph. (ii) By definition of ¢, 7 < ¢ and since 7’ is a variant of 7, 7/ < g. So 9|root, is a redex
matched by the left-hand side of 7’ — r’. (iii) It is obvious that 9|root, 18 an outermost redex of g.

Induction step : consider (g,7) where g is an admissible operation-rooted term graph,

T = branch(r,0,T1,...,Ti), where o is a variable node of 7, 0 is of sort s, ¢1,...,¢; (K > 0)
are different constructors of the sort s and for all j € 1.k, 7; is a pdt with pattern w[o
p:cj(or: Xq,...,0, : Xy,)], such that n is the number of arguments of ¢;, Xi,..., X, are new
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variables and p,o1,...,0, are new nodes. We assume that pattern(7) < g, i.e., there exists a
homomorphism h : # — g. There are three cases to consider.

Case 1 : g|,(,) is constructor-rooted, say L,;(h(0)) = c. Then, there are two possibilities. If
there exists an ¢ € 1..k such that pattern(7;) < g, then by definition of ¢, ©(g,7) = ¢(g,7;). By
induction hypothesis, all the claims hold already for ¢(g, 7;), so they also hold for ¢(g, 7). Else,
there exists no i € 1..k such that pattern(7;) < g, then the operation £,;(Root,) is incompletely
defined by R. So g cannot be rewritten into a constructor-rooted term graph and ¢(g,7) is not
defined.

Case 2 : g, is operation-rooted, say £,(h(0)) = f. Let 7' be a definitional tree of f. Then,
either ¢(gjn(0), T') is defined, or not.

First sub-case, suppose ¢(g|n(0), 7') = (p, ), where p is a node of gjj(,) and R is a variant of a
rule of R. By the definition of ¢, ¢(g,7) = (p, R). (i) By the definition of ¢, pattern(7T) < ¢g. By
the definition of a definitional tree, for every rule [ — r of R whose left-hand side may match g at the
root, there exists a leaf rule(lI’ — r') of T, where I’ — r' is a variant of [ — r. By construction of a
definitional tree, if [ — r is a rule represented by a leaf of T, then pattern(7) < [, i.e., there exists a
homomorphism A’ : © — [. By hypothesis, T is a branch pdt and not a rule pdt so pattern(7) < [.
This implies that [ has a constructor symbol at node h’(0). However, the case being considered
assumes that ¢ has a defined operation at node h(o). Hence, there is no rule of R whose left-hand
side matches ¢ at the root, i.e., ¢ is not a redex. Moreover, in any rewriting derivation from g that
includes a rewriting step at the root, a descendant of g);(,) must be rewritten into a constructor-
rooted term. Since g is operation-rooted, in any rewriting derivation from ¢ to a constructor-rooted
term graph, a descendant of g is rewritten at the root, and consequently, a descendant of g,
is rewritten into a constructor-rooted term graph. By the induction hypothesis, in any rewriting
derivation from gp(,) to a constructor-rooted term graph, a descendant of (!]|h(o))|p is rewritten into
a constructor-rooted term graph. Since p is a node of g|n(,), then by Proposition 1, (g|h(o))|p = Glp-
So in any rewriting derivation from g to a constructor-rooted term graph, a descendant of g, is
rewritten into a constructor-rooted term graph. (ii) By induction hypothesis, gjp is a redex of gjp(,)
matched by the left-hand side of R, thus g, is a redex of g matched by the left-hand side of k. (iii)
By the definition of ¢, 7 < g, i.e., there exists a homomorphism h : 7 — ¢. By the definition of
a definitional tree, w is a pattern and o is a node of 7. These conditions imply that there exists a
path from Root, to h(0) along which all nodes are labeled with constructor symbols, except Root,
and h(o). In ¢GRS, redexes occur only at nodes labeled with defined operations. We have just
proved that g is not a redex. Thus, there is no redex in g above A (0). By induction hypothesis, g,
is an outermost redex in gjp(o). So g|, is also an outermost redex in g.

Second sub-case, suppose ¢(g|n(o), 7') is not defined. Then, ¢(g, T) is not defined too. Moreover,
by induction hypothesis, g|;(,) cannot be rewritten into a constructor-rooted term graph. However,
as before, ¢ is not a redex and in any rewriting derivation from ¢ to a constructor-rooted term
graph, a descendant of g),(,) must be rewritten into a constructor-rooted term graph. So g cannot
be rewritten into a constructor-rooted term graph.

Case 3 : g(,) is a variable. Then (g, T) is not defined. On the other hand, by the definition
of ¢, m < g. Any rule whose left-hand side may match g at the root is represented by a leaf of 7. If
I — ris a rule represented by a leaf of 7, then by construction of a definitional tree, pattern(7) <,
i.e., there exists a homomorphism A’ : # — [. Thus, by the definition of a definitional tree, [ has a
constructor symbol at node h'(0). However, the case being considered assumes that g has a variable
at node h(o). Hence, g is not a redex. Since in any rewriting derivation from ¢ that includes a
rewriting step at the root, a descendant of g|;(,) must be rewritten into a constructor-rooted term
and g);(c) is a variable, g has no constructor normal form.

O
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Proposition 17 Let SP = (X, R) be a cGRSand ¢ an admissible graph. If ®(g) = (p, R), then
gjp is an outermost needed redex of g and g can be rewritten at node p with rule R. If d(g) is not
defined, then g cannot be rewritten into a constructor graph.

Proof Follows immediately from Lemma 5 and the definition of ®. O

From the previous proposition, we deduce that if an admissible graph ¢ has a constructor normal
form ¢ and ®(g) = (p, R), then every derivation from g to ¢ must contain a step at node p with rule
R. The following lemma states that given a derivation D) = g = ¢, performing the step computed
by ®(g) first leads to a new derivation of length less than (or equal to) the length of D.

Lemma 6 Let SP = (3, R) be a cGRS, g an admissible non constructor graph and ¢ a constructor
graph, such that there exists a rewriting derivation ¢ = ¢ of length n. Then, there exists an
admissible graph ¢’ such that ¢ —¢ ¢’ and a rewriting derivation ¢’ = ¢ of length n’ such that
n’ < n and ¢ is a constructor graph with ¢ ~ ¢

Proof This proof is sketched in Figure 25. By hypothesis, there exists a rewriting derivation

g lui,Ri] @1 Plug,Ro] -+ lug_1,Re1] Gk—1 P[p,R] Ak lugq1, Reqrl -0 Plun, Ry C
1. Rl {lp,R]
[pvR] bl bk—l ~ ~
€ €
gl i>[u1,R1] ui _>[u127R2] "'_>[“L_17Rk_1] a;c—l = a;c—l_>[u;c+1’Rk+1] cow udy Ral o
Figure 25:

from ¢ to a constructor graph ¢. So by Proposition 17, (p, R) = ®(g) exists, g can be rewritten at
node p with rule R and in any rewriting derivation from g to ¢, a descendant of g, is rewritten
into a constructor-rooted term graph. Thus there exists a graph ¢’ such that ¢ —p, R] g’ and the
derivation B is of the form B = g —u; R,] @1 —[uy,Ro] - -+ up_y, Ry—y] @h—=1 —[p, R] © —[upyy, Rypi]
co o up, Ry C With u; Zpforallie€ 1.(k—1) and i € (k+1)..n.
First, according to Lemma 2, since g —[y, R, @1, § —[p,r] ¢ there exist two graphs b; and
a} such that a, i>[p’R] by, g’ _E>[u1,R1] ay, and by ~ aj. Since g, is a needed redex of g, and
p # uy, pis a node of a1, s0 a1 # by and a; —p, gy b1. More generally, according to Proposition 12,
if ¢ —uy,Ra] @1+« —[up_y,Rp_y] Q-1 and g —(, gy ¢, then there exist two graphs by_1,a}_; such
that ax—; _E>[p,R] br—1,9' _E>[u1,R1] . —E>[u§€_1,Rk_1] aj_,,and by_1 ~ aj_,. In this second derivation,
u} is the node corresponding to u; by renaming (when it exists). Since gjp is a needed redex of
gand p ¢ {uy,...,up_1}, pis a node of agp_; so ap_; —p,R] bk—1. The length of the derivation
9 —ur,Ri] -+ up_1,Rs_,] @k—1 18 exactly & — 1, whereas the length of the derivation g —E>[u1’Rl]
. i*[u;_ka_ﬂ a,_, is less or equal to k — 1. Second, ap—; —p,R] @k and ag_1 —p R) br-1,
hence a; ~ by_y and since a)_, ~ by_1, aj_, ~ ai. Last, ay kg1 Rigr] * 0 uns Rl € and
aj_y ~ a, so it is clear that there exists a constructor graph ¢’ such ¢ ~ ¢ and a}_, “uhyy Riga]
- [y, Rn] ¢’. The length of the derivation B is exactly n, whereas the length of the derivation
g _€>[u1’R1] .. _E:'[u;c_l,Rk_l] ay_y g ys Ri] - b, Rl ¢’ is less or equal to n — 1.
O

Theorem 3 The strategy ® is c-hyper-normalizing strategy (and thus c-normalizing).
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go - g6 - G - e e o
1o ny < no n <nj—1 <0

co ~ ch ~ Cc1 ~ e ~ o’
Figure 26:

Proof This proof is sketched in Figure 26. lLet gy be an admissible graph, ¢y a constructor
graph such that there exists a rewriting derivation gy — ¢ of length ny. We prove this theorem by
induction on ng. The case ng = 0 is straightforward. Let ngy > 0 and suppose the theorem is true
for all lengths p < ng. Let D be a derivation starting with g which contains infinitely many times
d-steps. D is of the form gy = g = g1 — ¢} —a g2 — .. By confluence (see Theorem 1), since
go = gb, go — co is of length ny and ¢g is a constructor normal form, there exists a constructor
graph ¢}, ~ ¢o and a derivation g}, = ¢/, of length n/, < ng. Since g, = ¢}, of length n), g —o g1,
and ¢, is a constructor graph, we deduce by Lemma 6 the existence of a constructor graph ¢; ~ ¢f
and a derivation gy 5 ¢y of length ny < nf,. Let D’ be the sub-derivation of D starting with ¢;.
The derivation g; = ¢; is of length n; < ny and D’ contains infinitely many times ®-steps (since
D contains infinitely many times ®-steps). So by induction hypothesis, D’ ends with a constructor
graph C' ~ ¢y, thus D ends with the constructor graph C” ~ ¢g.

O

Graph rewriting does not duplicate data. Thus the number of rewriting steps which are neces-
sary to compute a constructor normal form may be optimized. We obtain the following result for
the strategy .

Theorem 4 lLet g be an admissible graph and ¢ a constructor graph such that there exists a
rewriting derivation ¢ =3 ¢. Then there exists a constructor graph ¢’ with ¢’ ~ ¢ such that the
length of the ®-derivation g =g ¢ is less (or equal) to the length of the derivation g = c.

Proof By induction on the length n of the derivation g = ¢. The case n = 0 is straightforward.
Let n» > 0 and suppose the theorem is true for all lengths p < n. Thanks to Lemma 6, there exist
an admissible graph ¢’ such that ¢ —¢ ¢’, a constructor graph ¢’ ~ ¢ and a rewriting derivation
g 5 ¢ of length n' < n. By induction hypothesis, there exist a constructor graph ¢” ~ ¢ and
a ®-derivation ¢’ ¢ ¢’ of length n” < n/. The length of the derivation ¢ —¢ ¢’ —¢ ¢’ is
n'+1<n"+1<mnandc’ ~c. a

7 Conclusion

We characterized the class of admissible graphs. For this class of graphs, we proved the classical
confluence as well as the confluence modulo bisimilarity of the graph rewriting relation induced by
orthogonal constructor-based GRSs, even in the presence of collapsing rules. We have also presented
a new strategy for inductively sequential graph rewriting systems. This strategy has been defined
precisely and proved to be c-normalizing and optimal for the class of admissible graphs. The use of
definitional trees allows to combine the elegance of neededness with an efficient implementation by
pattern-matching. In [KSvEP93], a lazy graph rewriting strategy close to ours is described, namely
the annotated functional strategy, which combines the discriminating position strategy [PvE93] and
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rewriting with priority [BBK87]. At our knowledge, no formal result has been proved regarding
this strategy.

The main motivation of this work was the definition of an operational semantics of functional
and logic languages based on narrowing. The extension to narrowing of the rewriting strategy
presented in this paper can be found in [EJ97].
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A Matching

Matching is essential for graph rewriting. We first recall its definition and then we give an algorithm.

Definition 30 (Matching)

Given a graph ¢, a term graph [ and a node n of g, we say that [ matches g at node n, denoted
I < g}, if there exists a homomorphism h : 1 — g),,. h is called the maicher of [ on g at node n.
O

Here is a matching algorithm : Given two term graphs g1, g2, it computes the relation on
Ny, X Ny, which induces a function h : Ny, — N, such that k is a homomorphism from g¢; to g,
when it exists, and fails otherwise. It begins with the pair ({Root,, > Root,,}, ), and ends with
the pair (0, h) in case of success, or O in case of failure. The rules are :

% if n; ¢ Dom(h) and L4,nq € X ;
{w1 [>'u1,...,{uTZI[I:U7Z2}{JUAA,}L}EJ{n1,_>n2} if ny @é Dom(h),

’Cg1 (nl) g-f X,

‘Cgl (nl) = ’ng (nQ)v

Sy (n1) =up ... uy and

Sgy(n2) =v1...vp
7{n1>né}UA’h if ny ¢ Dom(h),

Ly,m1 ¢ X and
Ly, (1) # Ly, (n2) 5

% if ny € Dom(h) and h(ny) = ny ;
{mpralost if 1y € Dom (h) and h(ny) # ny.
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