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Abstract

We address the problem of graph rewriting and narrowing as the underlying
operational semantics of rule-based programming languages. We propose
new optimal graph rewriting and narrowing strategies in the setting of or-
thogonal constructor-based graph rewriting systems. For this purpose, we
first characterize a subset of graphs, called admissible graphs. A graph is ad-
missible if none of its defined operations belongs to a cycle. We then prove
the confluence, as well as the confluence modulo bisimilarity (unraveling), of
the admissible graph rewriting relation. Afterwards, we define a sequential
graph rewriting strategy by using Antoy’s definitional trees. We show that
the resulting strategy computes only needed redexes and develops optimal
derivations w.r.t. the number of steps. Finally, we tackle the graph narrowing
relation over admissible graphs and propose a sequential narrowing strategy
which computes independent solutions and develops shorter derivations than
most general graph narrowing.

1 Introduction

Many efforts have been dedicated to investigate the integration of functional
and logic languages during the last decade, see [11] for a survey and [18, 12]
for recent language propositions. The underlying operational semantics of
such languages is often based on first-order term rewriting and narrowing.

In practice, data structures are represented as (cyclic) graphs. There are
many reasons that motivate the use of graphs. They actually allow sharing of
subexpressions which leads to efficient computations. They also permit to go
beyond the processing of first-order terms by handling efficiently real-world
data structures. In this paper, we consider graph rewriting and narrowing
as the underlying operational semantics of rule-based (functional and logic)
programming languages.

Using a graph rewriting system (GRS) is not an easy task. Indeed, the
classical properties of term rewriting systems (TRS) cannot be lifted without
caution to GRSs. One of these properties is confluence. Let us consider the
rule F (a, a, x) → x where a is a constant and x is a variable. This rule, which
constitutes an orthogonal TRS, generates a confluent rewrite relation over
(finite or infinite) terms whereas it generates a non confluent rewrite relation



over graphs [15]. It is well-known that this source of nonconfluency of GRSs
comes from the so-called “collapsing rules” in orthogonal GRSs. A rewrite
rule is collapsing if its right-hand side is a variable. However, collapsing rules
are very often used in programming and thus cannot be prohibited in any
programming discipline. Most of access functions are defined by means of
collapsing rules, e.g.,

car (cons (x,u)) -> x left-tree (bin-tree (l,x,r)) -> l

cdr (cons (x,u)) -> u right-tree (bin-tree (l,x,r)) -> r

In practice, many programming languages are constructor-based, i.e., op-
erators called constructors, which are intended to construct data structures
are distinguished from operators called defined operators which are defined
by means of rewrite rules. In this paper, we follow this discipline and define
a new class of GRSs which could be seen as a natural extension to graphs
of the well known class of orthogonal constructor-based TRSs. We investi-
gate the graph rewriting and narrowing relations over a particular subset of
graphs called admissible graphs. An admissible graph is a graph whose cycles
do not include defined operators. We give a sufficient (syntactic) condition
which ensures that the set of admissible graphs is closed under rewriting.
Then, we show the confluence of admissible graph rewriting relation even in
the presence of an arbitrary amount of collapsing rules.

It is notorious that finite graphs represent rational terms. Sometimes,
one would like to equate two graphs if they represent the same rational
term. In this case we say that the two graphs are bisimilar (if we refer to
the theory of concurrency). We show the confluence modulo bisimilarity of
the considered GRSs.

The confluence of a rewrite relation allows to evaluate expressions in a
deterministic and efficient way by using rewriting strategies. Such strategies
have been well investigated in the setting of finite and infinite orthogonal
TRSs (e.g., [19, 13, 16]). In [1], a strategy that computes outermost needed
redexes based on definitional trees has been designed in the framework of
orthogonal constructor-based TRSs. In this article, we show that Antoy’s
strategy can be extended to orthogonal constructor-based GRSs with the
same nice properties. We particularly prove that the resulting strategy is
c-hyper-normalizing on the class of admissible graphs and develops shortest
derivations.

Narrowing [14] has been intensively investigated during the last decade
in the framework of TRSs. An optimal narrowing strategy is presented in
[2]. However, to our knowledge, only few studies considered the extension
of narrowing to graphs [9, 21, 10]. In these papers the considered graphs
are acyclic and the best known strategy is basic narrowing. In the present
paper, we investigate most general narrowing on admissible (cyclic) graphs
and establish its soundness and completeness. Furthermore, we extend the
strategy presented in [2] to admissible graphs and provide a sequential graph



narrowing strategy which computes independent solutions and develops nar-
rowing derivations which are always shorter than most general derivations.

The rest of the paper is organized as follows. We recall briefly some
preliminaries on graphs in the next section. In Section 3, we introduce
the framework of constructor-based GRSs and exhibits the results concern-
ing confluence and confluence modulo bisimilarity. We define our rewriting
strategy in Section 4 and list its properties. Section 5 introduces admissible
graph narrowing and states the completeness of most-general graph narrow-
ing. In Section 6, we define a sequential narrowing strategy and list its
properties. Due to lack of space, some detailed definitions and all the proofs
are omitted from this paper. Precise definitions and proofs can be found in
[7, 6].

2 Preliminaries

Many different notations are used in the literature to investigate graph
rewriting [8, 22]. The aim of this section is to recall briefly some key defini-
tions in order to make easier the understanding of the paper. We are mostly
consistent with [5].

A many-sorted signature Σ = 〈S, Ω〉 consists of a set S of sorts and
an S-indexed family of sets of operation symbols Ω = ]s∈SΩs with Ωs =
](w,s)∈S∗×SΩw,s. We shall write f : s1 . . . sn → s whenever f ∈ Ωs1...sn,s and
say that f is of sort s and rank s1 . . . sn. We consider a graph as a set of
nodes and edges between the nodes. Each node is labeled with an operation
symbol or a variable. Let X = ]s∈SXs be an S-indexed family of countable
sets of variables and N = ]s∈SNs an S-indexed family of countable sets of
nodes. We assume that X and N are fixed throughout the rest of the paper.

A graph g over 〈Σ,N ,X〉 is a tuple g = 〈Ng,Lg,Sg,Rootsg〉 such that
Ng is a set of nodes, Lg : Ng → Ω ∪ X is a labeling function which maps to
every node of g an operation symbol or a variable, Sg is a successor function
which maps to every node of g a (possibly empty) string of nodes and Rootsg

is a set of distinguished nodes of g, called its roots. We also assume three
conditions of well definedness. (i) Graphs are well typed : a node n is of the
same sort as its label Lg(n), and its successors Sg(n) are compatible with
the rank of Lg(n). (ii) Graphs are connected : for all nodes n ∈ Ng, there
exist a root r ∈ Rootsg and a path from r to n. (iii) Let V(g) be the set of
variables of g. For all x ∈ V(g), there exists one and only one node n ∈ Ng

such that Lg(n) = x.
A term graph is a (possibly cyclic) graph with one root denoted Rootg.

Two term graphs g1 and g2 are bisimilar, denoted g1
.
= g2, iff they represent

the same (infinite) tree when one unravels them [3]. We write g1 ∼ g2

whenever the term graphs g1 and g2 are equal up to renaming of nodes.
As the formal definition of graphs is not useful to give examples, we

introduce a linear notation [5]. In the following grammar, the variable A



(resp. n) ranges over the set Ω ∪ X (resp. N ) :
Graph ::= Node | Node + Graph

Node ::= n:A(Node,. . . ,Node) | n
The set of roots of a graph defined with a linear expression contains the first
node of the expression and all the nodes appearing just after a +.

Example 2.1 We define a first graph G which represents a cyclic list al-
ternating the expressions s(0)+s(0) and s(0). The term graph G is given
by (i) NG = {n1, . . . , n5}, (ii) RootG = n1, (iii) LG is defined by LG(n1) =
LG(n5) = c, LG(n2) = +, LG(n3) = s and LG(n4) = 0 and (iv) SG is de-
fined by SG(n1) = n2.n5 , SG(n2) = n3.n3 , SG(n3) = n4, SG(n4) = ε and
SG(n5) = n3.n1 . An equivalent description of G is
n1:c(n2:+(n3:s(n4:0),n3),n5:c(n3,n1)). We define a second graph T
with two roots {l1,r1} which represents the classical rewrite rule s(u)+v

→ s(u+v) : T = l1:+(l2:s(l3:u),l4:v) + r1:s(r2:+(l3,l4)).

A subgraph of a graph g rooted by a node p, denoted g|p, is built by
considering p as a root and deleting all the nodes which are not accessible
from p in g. The sum of two graphs g1 and g2, denoted g1 ⊕ g2, is the
graph whose nodes and roots are those of g1 and g2 and whose labeling
and successor functions coincide with those of g1 and g2. The replacement
by a term graph u of the subgraph rooted by a node p in a term graph g,
denoted g[p ← u], is built in three steps : (i) compute g ⊕ u, (ii) redirect all
the edges pointing on p to point on Rootu in g ⊕ u and (iii) delete all the
“uninteresting” nodes (garbage collection).

Example 2.2 Consider the graph G of Example 2.1. The subgraph G|n2
is n2:+(n3:s(n4:0),n3). Let D = r1:s(r2:+(n4:0,n3:s(n4))). G ⊕
D = n1:c(n2:+(n3:s(n4:0),n3),n5:c(n3,n1)) + r1:s(r2:+(n4,n3)).
We now compute G[n2 ← D], thus we redirect all edges pointing on n2 to
point on r1 in the graph G ⊕ D, and we obtain
n1:c(r1:s(r2:+(n4:0,n3:s(n4))),n5:c(n3,n1)) + r1 + n2:+(n3,n3).
After a garbage collection, the resulting graph is
G[n2 ← D] = n1:c(r1:s(r2:+(n4:0,n3:s(n4))),n5:c(n3,n1)).

A (rooted) homomorphism h from a graph g1 to a graph g2, denoted
h : g1 → g2, is a mapping from Ng1

to Ng2
such that Rootsg2

= h(Rootsg1
)

and for all nodes n ∈ Ng1
, if Lg1

(n) /∈ X then Lg2
(h(n)) = Lg1

(n) and
Sg2

(h(n)) = h(Sg1
(n)) and if Lg1

(n) ∈ X then h(n) ∈ Ng2
. If h : g1 → g2 is

a homomorphism and g is a subgraph of g1 rooted by p, then we write h(g)
for the subgraph g2|h(p). If h : g1 → g2 is a homomorphism and g is a graph,
h[g] is the graph built from g by replacing all the subgraphs shared between
g and g1 by their corresponding subgraphs in g2. We can prove that there
exists a homomorphism h′ : g → h[g]. h′ is called the extension of h to g.



Example 2.3 Consider the subgraph G|n2 of Example 2.2. Let L =
l1:+(l2:s(l3:u),l4:v) and µ the mapping from NL to N(G

|n2) such that

µ(l1) = n2, µ(l2) = µ(l4) = n3 and µ(l3) = n4. µ is a homomorphism from
L to G|n2. On the other hand, let R = r1:s(r2:+(l3:u,l4:v)). R and L
share the subgraphs l3:u and l4:v whose images by µ are respectively n4:0

and n3:s(n4:0), thus µ[R] = r1:s(r2:+(n4:0,n3:s(n4))). The extension
of µ to R is the homomorphism µ′ : R → µ[R] such that µ′(r1) = r1,
µ′(r2) = r2, µ′(l3) = n4 and µ′(l4) = n3.

A term graph l matches a graph g at node n if there exists a homomor-
phism h : l → g|n. h is called a matcher of l on g at node n. Two term
graphs g1 and g2 are unifiable if there exist two graphs G and H and a ho-
momorphism h : G → H such that (i) g1 and g2 are both subgraphs of G
and (ii) h(g1) = h(g2). h is called a unifier of g1 and g2. If g1 and g2 are
unifiable, we can prove that there exists a most general unifier (mgu) in the
following sense : there exist a graph g and a homomorphism h : (g1⊕g2) → g
such that h(g1) = h(g2) = g and for all unifiers h′ : G → H, there exists a
homomorphism φ : g → h′(g1 ⊕ g2).

Example 2.4 The homomorphism µ of Example 2.3 is a matcher of L on
G at node n2. Let H = p1:c(p2:+(p3:x,p3),p4:c(p3,p1)). The graphs
H|p2 and L are unifiable. Indeed, let H ′ = q1:+(l2:s(l3:u),l2) and υ

the homomorphism from (H|p2 ⊕ L) to H ′ such that υ(p2) = υ(l1) = q1,
υ(p3) = υ(l2) = υ(l4) = l2 and υ(l3) = l3. The reader may check that
υ(H|p2) = υ(L) = H ′. Thus υ is a unifier of H|p2 and L.

Independently of homomorphisms, we need substitutions in order to de-
fine solutions computed by narrowing. A substitution σ is a partial function
from the set of variables X to a set of term graphs. Dσ denotes the domain
of σ, i.e., the set of variables x such that σ(x) is not a graph reduced to
a single node labeled with the variable x. The restriction of σ to a set V
of variables is denoted σ|V . D(σ|V ) = V ∩ Dσ and σ|V (x) = σ(x) for all
x ∈ D(σ|V ). σ(g) denotes the graph built from g by replacing all the vari-
ables x ∈ Dσ by their images σ(x). Given two term graphs g1 and g2, we

write g1

.
≤ g2 iff there exists a substitution θ such that θ(g1)

.
= g2. The

composition of two substitutions σ1 and σ2 is the substitution σ2 ◦ σ1 such
that D(σ2 ◦ σ1) = Dσ1 ∪Dσ2 and σ2 ◦ σ1(x) = σ2(σ1(x)) for all x ∈ Dσ1 and
σ2 ◦ σ1(x) = σ2(x) for all x ∈ (Dσ2 −Dσ1). Given two substitutions σ1 and

σ2 and a set V of variables, we write σ1

.
≤ σ2 [V ] iff there exists a substitu-

tion θ such that θ ◦ σ1(x)
.
= σ2(x) for all x in V . Given a homomorphism

h : g1 → g2, we define σh as the substitution such that for every x in V(g1)
which labels some node n ∈ Ng1

, σh(x) = g2|h(n).

Example 2.5 Consider the homomorphism µ of Example 2.3. σµ is defined
by σµ(u) = n4:0 and σµ(v) = n3:s(n4:0). The reader may check that



σµ(L) = l1:+(l2:s(n4:0),n3:s(n4)) and that µ[L] = G|n2 =
n2:+(n3:s(n4:0),n3). We remark that µ[L] and σµ(L) are not equal up to
renaming of nodes but bisimilar. Consider now the homomorphism υ of Ex-
ample 2.4. συ is defined by συ(u) = l3:u and συ(x) = συ(v) = l2:s(l3:u).

We can notice that συ

.
≤ σµ [{u, v}].

3 Admissible graph rewriting systems

This section introduces the class of GRSs we consider. For practical reasons,
many declarative languages use constructor-based signatures. A constructor-
based signature Σ is a triple Σ = 〈S, C,D〉 where S is a set of sorts, C is an
S-indexed family of sets of constructor symbols, D is an S-indexed family of
sets of defined operations such that C∩D = ∅ and 〈S, C∪D〉 is a signature. In
Example 2.1, 0, s and c are constructor symbols and + is a defined operation.

In the rest of the paper, we investigate graph rewriting and narrowing for
the class of what we call admissible term graphs (atgs). Roughly speaking,
an atg corresponds to nested procedure (function) calls whose parameters
are complex constructor graphs (classical data structures).

Definition 3.1 Let g be a term graph over a constructor-based signature.
A node n ∈ Ng is called a defined node (resp. variable node) if Lg(n) is
a defined operation (∈ D) (resp. variable (∈ X )). g is an admissible term
graph (atg) if there exists no path from a defined node of g to itself. An atg
g is a pattern if g has a tree structure (i.e., linear first-order term) which
contains one and only one defined operation at its root. A constructor graph
is a graph which has no defined node. An atg is operation-rooted if its root
is a defined node.

The graph G of Example 2.1 is admissible, but z:cdr(c(0,z)) and z:+(z,z)

are not. l1:+(l2:0,l3:0) is a pattern, whereas l1:+(l2:0,l2) is not.
The next definition introduces the notion of admissible rewrite rule. Such

rules are tailored so that the set of atgs is stable with respect to the rewrite
relation induced by admissible rules (see (counter)Example 3.7).

Definition 3.2 A rewrite rule is a graph with two roots, denoted l → r. l
(resp. r) is a term graph called the left-hand side (resp. right-hand side) of
the rule. A rule l → r is admissible iff (i) l is a pattern (thus an atg), (ii)
r is an atg, (iii) l is not a subgraph of r and (iv) V(r) ⊆ V(l). A rule e′ is a
variant of another rule e if e and e′ are equal up to renaming of nodes and
variables and all the nodes and the variables of e′ are new. Two admissible
rules are non-overlapping if their left-hand sides are not unifiable.

By the definition of graphs, the variables occurring in a rewrite rule are
always shared between the left-hand side and the right-hand side. The graph
T of Example 2.1 shows an example of an admissible rule.



Definition 3.3 An admissible graph rewriting system (AGRS) is a pair
SP = 〈Σ,R〉 where Σ = 〈S, C,D〉 is a constructor-based signature and R
is a set of admissible rules such that every two distinct rules in R are non-
overlapping.

Below, we recall the definition of a graph rewriting step [5].

Definition 3.4 Let SP = 〈Σ,R〉 be an AGRS, g1 an atg, g2 a graph, l → r
a variant of a rewrite rule of R and p a node of g1. We say that g1 rewrites
to g2 at node p using the rule l → r and write g1 →[p, l→r] g2 if there
exists a homomorphism h : l → g1|p (i.e., l matches g1 at node p) and
g2 = g1[p ← h[r]]. In this case, we say that g1|p is a redex of g1 rooted by

p. An atg is in normal form if it has no redex.
∗
→ denotes the reflexive and

transitive closure of →.

Example 3.5 According to the Example 2.3, L matches G at node n2 with
homomorphism µ and µ[R] = r1:s(r2:+(n4:0,n3:s(n4))). As µ[R] is
equal to the graph D of Example 2.2, we infer that G[n2 ← µ[R]] =
n1:c(r1:s(r2:+(n4:0,n3:s(n4))),n5:c(n3,n1)). Let G′ be this last
graph. By Definition 3.4, G →[n2,L→R] G′.

The following proposition states the stability of the set of admissible
term graphs w.r.t. rewriting with admissible rules.

Proposition 3.6 Let SP = 〈Σ,R〉 be an AGRS, g1 an atg and g1 →[p, l→r]

g2 a rewriting step. Then g2 is an atg.

Example 3.7 The rule l1:+(l2:0,l3:x) → r1:+(l1,r2:0) is not admis-
sible since the root of its left-hand side is a node of its right-hand side, thus
its left-hand side is a subgraph of its right-hand side, thus the Condition (iii)
of Definition 3.2 is not fulfilled. By using this rule, the reader may check
that the atg x1:+(x2:0,x3:0) rewrites to r1:+(r1,r2:0). This last graph
is not an atg, since there is a cycle on the defined operation +.

One of the main properties of GRSs is confluence. We have seen in
Section 1 that the confluence of AGRSs is not a straightforward extension
of the confluence of orthogonal TRSs. We establish below the confluence
(modulo ∼ and

.
=) of the graph rewriting relation with respect to atgs.

Definition 3.8 We say that the rewriting relation → is confluent modulo
renaming of nodes (resp. bisimilarity) w.r.t. atgs iff for all atgs g1, g2, g′1
and g′2 such that g1 ∼ g2 (resp. g1

.
= g2), g1

∗
→ g′1 and g2

∗
→ g′2, there exist

two atgs g′′1 and g′′2 such that g′1
∗
→ g′′1 , g′2

∗
→ g′′2 and g′′1 ∼ g′′2 (resp. g′′1

.
= g′′2).

Theorem 3.9 → is confluent modulo ∼ and
.
= w.r.t. atgs.



4 An optimal rewriting strategy

In this section, we define an optimal rewriting strategy for atgs. A (sequen-
tial) graph rewriting strategy is a partial function S which takes an atg g and
returns a pair (p, R) such that p is a node of g, R is a rewrite rule of R and
g can be rewritten at node p with rule R. We denote by g →S g′ the S-step
from g to g′ such that S(g) = (p, R) and g →[p,R] g′. A derivation g

∗
→S g′

is called an S-derivation. A strategy S is c-normalizing iff for all atgs g and
constructor graphs c such that g

∗
→ c, there exists a constructor graph c′

such that g
∗
→S c′ and c′ ∼ c. A strategy S is c-hyper-normalizing iff for all

atgs g and constructor graphs c such that g
∗
→ c, every derivation starting

with g which alternates S-steps with some arbitrary reductions ends with a
constructor normal form c′ such that c′ ∼ c.

Definition 4.1 Let SP = 〈Σ,R〉 be an AGRS, g and g′ two atgs and B =

g
∗
→ g′ a rewriting derivation. A defined node q in g is a residual node by B

if q remains a node of g′. We call descendant of g|q the subgraph (g′)|q. A
redex u rooted by q in g is a needed redex iff in every rewriting derivation
from g to a constructor normal form, a descendant of g|q is rewritten at its
root q. A redex u rooted by q in g is an outermost redex iff q = Rootg when
g is a redex or else Sg(Rootg) = r1 . . . rk and u is an outermost redex of g|ri

for some i ∈ 1..k. A node q is the leftmost-outermost defined node of g iff
q = Rootg when Rootg is a defined node or else Sg(Rootg) = r1 . . . rk and
there exists i ∈ 1..k such that q is the leftmost-outermost defined node of g|ri

and the subgraphs g|rj
are constructor graphs for all j < i.

Example 4.2 Let g = x1:c(x2:*(x3:0,x4:+(x3,x3)),x5:c(x4,x1)).
The leftmost-outermost node of g is x2. g|x2 and g|x4 are outermost needed
redexes (though there exists a path from x2 to x4).

The notions of leftmost-outermost defined node and outermost redex are
well-defined in the framework of atgs. Indeed, if p and q are two defined
nodes of an atg such that there exists a path from p to q (i.e., p is outer than
q), then there is no path from q to p.

Our graph rewriting strategy is based on definitional trees [1]. A defini-
tional tree is a hierarchical structure whose leaves are the rules of an AGRS
used to define a given operation. In the following definition, branch and rule
are uninterpreted symbols, used to construct the nodes of a definitional tree.

Definition 4.3 Let SP = 〈Σ,R〉 be an AGRS. A tree T is a partial defini-
tional tree, or pdt, with pattern π iff one of the following cases holds :

• T = rule(π → r), where π → r is a variant of a rule of R.

• T = branch(π, o, T1, . . . , Tk), where o is a variable node of π, o is of
sort s, c1, . . . , ck (k > 0) are different constructors of the sort s and for
all j ∈ 1..k, Tj is a pdt with pattern π[o ← p : cj(o1 : X1, . . . , on : Xn)],



such that n is the number of arguments of cj, X1, . . . , Xn are new
variables and p, o1, . . . , on are new nodes.

We write pattern(T ) to denote the pattern argument of a pdt. A definitional
tree T of a defined operation f is a finite pdt with a pattern of the form p :
f(o1 : X1, . . . , on : Xn) where n is the number of arguments of f , X1, . . . , Xn

are new variables, p, o1, . . . , on are new nodes, and for every rule l → r of
R, with l of the form f(g1, . . . , gn), there exists a leaf rule(l′ → r′) of T
such that l′ → r′ is a variant of l → r. An AGRS is inductively sequential
(IGRS) iff for every defined operation f , there exists a definitional tree of f .

Example 4.4 Consider the following AGRS where 0 and s are constructors
and p, q, r, u, v, w are variables.

(R0) n1:f(n2:s(n3:p),n4:q) -> n3

(R1) m1:f(m2:0,m3:r) -> m3

(R2) l1:g(l2:w,l3:s(l4:u),l5:s(l6:v)) -> l2

The definitional trees Tf and Tg of the operations f and g are

Tf = branch( k1:f(k2:X1,k3:X2), k2,
rule(m1:f(m2:0,m3:r) → m3),
rule(n1:f(n2:s(n3:p),n4:q) → n3))

Tg = branch( k4:g(k5:X3,k6:X4,k7:X5), k6,
branch( k8:g(k9:X6,k10:s(k11:X7),k12:X8), k12,

rule(l1:g(l2:w,l3:s(l4:u),l5:s(l6:v)) → l2)))

We are ready to define our graph rewriting strategy Φ. The strategy Φ
is a partial function that operates on atgs in the presence of IGRSs. Φ(g)
returns, when it is possible, a pair (p, R) where p is a node of g and R is a
rewrite rule such that g can be rewritten at node p with rule R. Φ uses an
auxiliary function ϕ which takes two arguments : an operation-rooted atg
and a pdt of this operation.

Definition 4.5 Let SP = 〈Σ,R〉 be an IGRS and g an atg. Φ is the par-
tial function defined by Φ(g) = ϕ(g|p, T ), where p is the leftmost-outermost
defined node of g and T is a definitional tree of the label of p.
Let g be an operation-rooted atg and T a pdt such that pattern(T ) matches
g at the root. We define the partial function ϕ by :

ϕ(g, T ) =














































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(p, R) if T = rule(π → r), p = Rootg and
R is a variant of π → r ;

ϕ(g, Ti) if T = branch(π, o, T1, . . . , Tk) and
pattern(Ti) matches g for some i ∈ 1..k ;

(p, R) if T = branch(π, o, T1, . . . , Tk),
π matches g by a homomorphism h : π → g,
h(o) is labeled with a defined operation f in g,
T ′ is a definitional tree of f and
ϕ(g|h(o), T

′) = (p, R).



Example 4.6 Consider the AGRS defined in Example 4.4 and the atg t1 =
x1:g(x2:s(x2),x2,x3:f(x2,x2)).

Φ(t1) = ϕ(t1, Tg)
= ϕ(t1, branch(k4:g(k5:X3,k6:X4,k7:X5), k6, . . .))
= ϕ(t1, branch(k8:g(k9:X6,k10:s(k11:X7),k12:X8), k12, . . .))

The pattern of rule(l1:g(l2:w,l3:s(l4:u),l5:s(l6:v)) → l2) does not
match t1 because l5 is labeled with s whereas x3 is labeled with f. So Φ(t1)
recursively calls ϕ(t′1, Tf) where t′1 = t1|x3 = x3:f(x2:s(x2),x2). The
reader may check that Φ(t1) = ϕ(t′1, Tf) = (x3, R0).

Below, we list some properties of Φ.

Proposition 4.7 If Φ(g) = (p, R), then g|p is an outermost needed redex of
g and g can be rewritten at node p with rule R. If Φ(g) is not defined, then
g has no constructor normal form.

Theorem 4.8 Φ is c-hyper-normalizing (thus c-normalizing).

Graph rewriting does not duplicate data. Thus the number of rewriting
steps which are necessary to compute a constructor normal form may be
optimized.

Theorem 4.9 Let g be an atg and c a constructor graph such that there
exists a rewriting derivation g

∗
→ c. Then there exists a constructor graph c′

with c′ ∼ c such that the length of the Φ-derivation g
∗
→Φ c′ is less than (or

equal to) the length of the derivation g
∗
→ c.

5 Admissible graph narrowing

Besides rewriting, narrowing is the basis of many functional logic program-
ming languages [11]. In this section we generalize narrowing to admissi-
ble term graphs.

Definition 5.1 Let SP = 〈Σ,R〉 be an AGRS, g1 an atg, l → r a variant of
a rewrite rule of R, p a non variable node of g1, h : G → H a homomorphism
and g2 a graph. We say that g1 narrows to g2 at node p using the rule
l → r and the homomorphism h, denoted g1 ;[p, l→r,h] g2, if l and g1|p

are unifiable, h is a unifier of l and g1|p and g2 = h[g1][h(p) ← h[r]]. A
narrowing step is most general when the unifier, h, is an mgu.

Example 5.2 In Example 2.4, H|p2 and L are unifiable with mgu υ. The
reader may check that υ(p2) = q1, υ[R] = r1:s(r2:+(l3:u,l2:s(l3)) and
υ[H] = p1:c(q1:+(l2:s(l3:u),l2),p4:c(l2,p1)). Let H1 =
υ[H][υ(p2) ← υ[R]] = p1:c(r1:s(r2:+(l3:u,l2:s(l3))),p4:c(l2,p1)).
By Definition 5.1, H ;[p2,L→R,υ] H1.



In general, the set of atgs is not stable w.r.t. narrowing.

Example 5.3 Let g = n1:f(n2:x) and R = l → r a rule such that l =
l1:f(l2:0) and r = r1:g(r2:f(r3:0)). g and l are unifiable, say with
h : (g ⊕ l) → r|r2. Let g′ = h[g][h(n1) ← h[r]]. We can show that h[g] =
r|r2, h(n1) = r2 and h[r] = r, thus g′ = r1:g(r1). By Definition 5.1,
g ;[n1,R,h] g′. However, g is admissible whereas g′ is not.

Under some technical assumptions on the unifiers detailed in [6], we can
prove the following proposition.

Proposition 5.4 Let SP = 〈Σ,R〉 be an AGRS, g1 an atg and g1 ;[p, l→r,h]

g2 a most general narrowing step. Then g2 is an atg.

Narrowing is used to solve goals. A solution of a goal is often represented
by a substitution. A substitution computed by a narrowing derivation is
defined as follows.

Definition 5.5 Let g1 and g2 be two atgs and σ a substitution. We say that
σ is computed by a narrowing derivation from g1 to g2 and write g1

∗
;σ g2,

if there exists a derivation g1 ;[p1, l1→r1, h1] . . . ;[pk, lk→rk, hk] g2 and σ =
(σhk

◦ . . . ◦ σh1
)|V(g1).

Example 5.6 Let H ;[p2,L→R,υ] H1 be the narrowing step of Example 5.2.
We saw in Example 2.5 that συ(x) = l2:s(l3:u). Consider a second narrow-
ing step starting with H1 and the rule L′ → R′ where L′ = l5:+(l6:0,l7:w)

and R′ = l7:w. H1|r2 and L′ unify and an mgu is υ′ : (H1|r2 ⊕ L′) → H ′
1

with H ′
1 = q2:+(l6:0,q3:s(l6)). Therefore, H1 ;[r2,L′→R′, υ′] H2 where

H2 = p1:c(r1:s(q3:s(l6:0)),p4:c(q3,p1)). From υ′, we deduce that
συ′(u) = l6:0. The reader may check that σ = (συ′ ◦ συ)|{x} is defined by
σ(x) = l2:s(l6:0). By Definition 5.5, σ is computed by the narrowing
derivation from H to H2.

We define below the notions of soundness and completeness of narrow-
ing. These definitions do not consider narrowing as an inference rule for
solving some particular goals but rather as a general computational model
for arbitrary expressions (graphs). The traditional goals such as equations
can be represented as boolean expressions.

Definition 5.7 Let SP = 〈Σ,R〉 be an AGRS. We say that a narrowing
calculus is sound iff for all atgs g, constructor graphs c and substitutions θ
such that g

∗
;θ c, there exists a constructor graph c′ such that θ(g)

∗
→ c′

and c′
.
= c. We say that a narrowing calculus is complete iff for all atgs

g, constructor graphs c and constructor substitutions θ such that θ(g)
∗
→ c,

there exist a constructor graph c′ and a substitution σ such that g
∗
;σ c′,

c′
.
≤ c and σ

.
≤ θ [V(g)].

Theorem 5.8 The most general narrowing is sound and complete.



6 An optimal narrowing strategy

In this section, we define a sequential narrowing strategy Λ which general-
izes the rewriting strategy Φ to narrowing. A (sequential) graph narrowing
strategy is a partial function S which takes an atg g and returns a set of
triples of the form (p, R, h) such that g is narrowable at node p using the
rule R and homomorphism h. We denote by g ;S g′ an S-step from g to g′

such that S(g) 3 (p, R, h) and g ;[p,R,h] g′. A derivation g
∗
;S g′ is called

an S-derivation.

Definition 6.1 Let SP = 〈Σ,R〉 be an IGRS and g an atg. Λ is the partial
function such that (n, R, h′) ∈ Λ(g) iff there exists (n, R, h) ∈ λ(g|p, T ), p is
the leftmost-outermost defined node of g, T is a definitional tree of the label
of p and h′ is the extension of h to g ⊕ l.
Let g be an operation-rooted atg and T a pdt such that pattern(T ) and g
are unifiable. λ(g, T ) is a set of triples of the form (n, R, h), where n is a
non variable node of g, R is a rewrite rule and h is a unifier of g|n and the
left-hand side of R. λ(g, T ) is defined as the smallest set such that :

λ(g, T ) ⊇
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{(p, R, h)} if T = rule(π → r), p = Rootg, R = π′ → r′ is
a variant of π → r and h is an mgu of π′ and g ;

λ(g, Ti) if T = branch(π, o, T1, . . . , Tk) and
pattern(Ti) and g unify for some i;

{(p, R, h)} if (1) T = branch(π, o, T1, . . . , Tk),
(2) g and π are unifiable with

most general unifier τ : (g ⊕ π) → g′,
(3) τ(o) is labeled with a defined operation f ,
(4) T ′ is a definitional tree of f ,
(5) (p′, R, h′) ∈ λ(g′|τ(o), T

′),

(6) p is the node of g such that τ(p) = p′,
(7) R is of the form l → r,
(8) h = h′′ ◦ τ ′ where h′′ is the extension

of h′ to g′ ⊕ l and τ ′ is the extension
of τ|Rootg

to g ⊕ l.

Example 6.2 Consider the AGRS defined in Example 4.4 and the atg s1 =
y1:g(y2:s(y3:s(y2)),y4:z,y5:f(y6:x,y7:s(y8:y))). As the leftmost-
outermost defined node of s1 is its root y1, we infer that

Λ(s1) = λ(s1, Tg)
= λ(s1, branch(k4:g(k5:X3,k6:X4,k7:X5), k6, . . .))
= λ(s1, branch(k8:g(k9:X6,k10:s(k11:X7),k12:X8), k12, . . .))

Let π = k8:g(k9:X6,k10:s(k11:X7),k12:X8). s1 and π are unifiable with
most general unifier τ : (s1 ⊕ π) → s′1 where
s′1 = p1:g(y2:s(y3:s(y2)),k10:s(k11:X7),y5:f(y6:x,y7:s(y8:y))). τ



is precisely defined by τ(y1) = τ(k8) = p1, τ(y2) = τ(k9) = y2, τ(y3) = y3,
τ(y4) = τ(k10) = k10, τ(k11) = k11, τ(y5) = τ(k12) = y5, τ(y6) = y6,
τ(y7) = y7 and τ(y8) = y8. Notice that the variable z which labels the
node y4 in s1 is assigned with the constructor graph k10:s(k11:X7) by στ .
s1 does not unify with the pattern of
rule(l1:g(l2:w,l3:s(l4:u),l5:s(l6:v)) → l2). Indeed, l5 is labeled
with s whereas y5 is labeled with f. So Λ(s1) recursively calls λ(g1, Tf)
where g1 = s′1|τ(k12) = s′1|y5 = y5:f(y6:x,y7:s(y8:y)).

λ(g1, Tf) = λ(g1, branch(k1:f(k2:X1,k3:X2), k2, . . .))
⊇ λ(g1, rule(n1:f(n2:s(n3:p),n4:q) → n3))

Let l be the pattern of rule(n1:f(n2:s(n3:p),n4:q) → n3), i.e., the left-
hand side of the rule R0 defined in Example 4.4. g1 and l are unifiable
and a most general unifier is the homormophism h′ : (g1 ⊕ l) → e where
e = p2:f(n2:s(n3:p),y7:s(y8:y)). The homomorphism h′ is defined
by h′(y5) = h′(n1) = p2, h′(y6) = h′(n2) = n2, h′(n3) = n3, h′(y7) =
h′(n4) = y7 and h′(y8) = y8. By the definition of λ, we conclude that
λ(s′1|τ(k12), Tf) = λ(g1, Tf) ⊇ {(y5, R0, h′)}. h′ is a homomorphism from the

graph s′1|τ(k12)⊕l to the graph e. We now compute the extension of h′ to the

graph s′1 ⊕ l. We thus obtain a homomorphism h′′ : (s′1 ⊕ l) → e′ where e′ =
p1:g(y2:s(y3:s(y2)),k10:s(k11:X7),p2:f(n2:s(n3:p),y7:s(y8:y)))

+ p2 and h′′ is defined by h′′(p1) = p1, h′′(y2) = y2, h′′(y3) = y3,
h′′(k10) = k10, h′′(k11) = k11, h′′(y5) = h′′(n1) = p2, h′′(y6) = h′′(n2) =
n2, h′′(n3) = n3, h′′(y7) = h′′(n4) = y7 and h′′(y8) = y8. Let τ ′ be the
extension of τ|Roots1

to s1 ⊕ l, i.e., τ ′ is the homomorphism from s1 ⊕ l

to s′1 ⊕ l such that τ ′(s1) = s′1 and τ ′(l) = l. Let h = h′′ ◦ τ ′. h is
a homomorphism from s1 ⊕ l to e′ such that h(y1) = p1, h(y2) = y2,
h(y3) = y3, h(y4) = k10, h(y5) = h(n1) = p2, h(y6) = h(n2) = n2,
h(n3) = n3, h(y7) = h(n4) = y7 and h(y8) = y8. It appears that y5 is
the only node of s1 such that τ(y5) = y5. By the definition of Λ, we con-
clude that Λ(s1) ⊇ {(y5, R0, h)}. The reader may check that s1 narrows at
node y5 using the rule R0 and the homomorphism h into the graph s2 =
p1:g(y2:s(y3:s(y2)),k10:s(k11:X7),n3:p).

In the following we list some properties of Λ.

Proposition 6.3 Let g1 be an atg such that g1 ;Λ g2. Then g2 is an atg.

Definition 6.4 Let SP = 〈Σ,R〉 be an AGRS and g and g′ two atgs. A
narrowing step g ;[p,R,h] g′ is outermost needed iff for all substitutions η

such that σh

.
≤ η [V(g)], η(g|p) is an outermost needed redex of η(g).

Proposition 6.5 If Λ(g) 3 (p, R, h), then g ;[p,R,h] g′ is an outermost
needed narrowing step. If Λ(g) is not defined, then g cannot be narrowed
into a constructor graph.



Theorem 6.6 The narrowing relation induced by Λ is sound and complete.

Λ always computes independent substitutions, that is to say Λ never
performs redundant calculus. We say that two substitutions θ and θ′ are
independent on a set V of variables iff there exists x ∈ V such that θ(x) and
θ′(x) are not unifiable.

Theorem 6.7 Let g be an atg, c and c′ two constructor graphs and g
∗
;σ c

and g
∗
;σ′ c′ two distinct Λ-derivations. Then σ and σ′ are independent on

V(g).

The restriction of Λ to first-order terms always develops shortest narrow-
ing derivations [2]. This is not the case in our framework, as it is witnessed
by the following (counter-)example.

Example 6.8 Consider the graph g = n1:f(n2:g(n3:x),n4:g(n3)) and
the rules l4:g(l5:w) → l5 and l1:f(l2:u,l3:v) → r1:c(l2,l3). The
following Λ-derivation is of length 3 : g ;Λ r1:c(n2:g(n3:x),n4:g(n3))

;Λ r1:c(n3:x,n4:g(n3)) ;Λ r1:c(n3:x,n3). But arbitrary unifiers can
collapse nodes labeled with defined operations. The following derivation is
of length 2 : g ; r1:c(r2:g(n3:x),r2) ; r1:c(n3:x,n3).

Nevertheless, the derivations developed by Λ are always shorter than those
developed by most general narrowing.

Theorem 6.9 Let g be an atg, σ and σ′ two substitutions and c and c′ two
constructor graphs such that A = g

∗
;σ c is a Λ-derivation, B = g

∗
;σ′ c′ is

a most general narrowing derivation and σ and σ′ are equal up to renaming
of nodes. Then the length of A is less than (or equal to) the length of B (and
c ∼ c′).

7 Conclusion

We defined the class of admissible graph rewriting systems, AGRSs, and
characterized a subset of graphs called admissible graphs for which graph
rewriting is confluent (modulo renaming and bisimulation) even in the pres-
ence of collapsing rules. We defined a new sequential graph rewriting strat-
egy for the class of inductively sequential AGRSs which is c-normalizing and
optimal for the class of admissible graphs. The use of definitional trees al-
lows to combine the elegance of neededness with an efficient implementation
by pattern-matching. In [17], a lazy graph rewriting strategy close to ours
is described, namely the annotated functional strategy, which combines the
discriminating position strategy [20] and rewriting with priority [4]. To our
knowledge, no formal result has been proved regarding this strategy. In ad-
dition, we considered the extension of narrowing to admissible graphs and
established the completeness and the soundness of most general narrowing.



We also used definitional trees to define a sequential graph narrowing strat-
egy which is complete and sound, computes only independent substitutions
and develops derivations which are shorter than most general narrowing. As
far as we are aware of, the graph narrowing strategies presented in this paper
are the first ones that handle graphs with cycles.
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