
Parallel Admissible Graph Rewriting

Rachid Echahed and Jean-Christophe Janodet

Laboratoire Leibniz – Institut IMAG, CNRS
46, Av. Felix Viallet, F-38031 Grenoble – France

Tel: (+33) 4 76 57 48 91; Fax: (+33) 4 76 57 46 02
Rachid.Echahed@imag.fr Jean-Christophe.Janodet@imag.fr

Abstract. We investigate the rewrite relation over graphs induced by
constructor-based weakly orthogonal graph rewriting systems. It is well
known that this relation is not confluent in general whereas it is confluent
in the case of weakly orthogonal term rewriting systems. We show, how-
ever, that the considered relation is always confluent, as well as confluent
modulo bisimilarity, for a large class of graphs called admissible graphs.
Afterwards, we define a parallel graph rewriting relation and propose an
efficient parallel graph rewriting strategy.

1 Introduction

Graph rewriting is being considered in many different areas ; see for
instance [9, 15]. The contributions of this paper are theoretical results
which concern graph rewriting as operational semantics of functional or
algebraic programming languages [13, 5]. There are many straightforward
reasons which motivate the use of graphs in the setting of declarative lan-
guages. For instance, graphs allow to represent expressions in a compact
way thanks to the sharing of sub-expressions; they also permit to handle
efficiently cyclic graphs which represent complex data structures as in
imperative languages.

In practice, many functional programming languages are constructor-
based, i.e., operators called constructors, which are intended to construct
data structures, are distinguished from operators called defined operators,
which are defined by means of rewrite rules. In this paper, we follow this
discipline and investigate new graph rewriting systems which could be
seen as a natural extension to graphs of the well known weakly orthogonal
constructor-based term rewriting systems. Below, we give a sample of the
considered graph rewriting systems.

ones -> n:cons(1,n) B(T,F,x) -> ones

f(x,1) -> cons(x,n:cons(1,n)) B(F,x,T) -> ones

f(1,x) -> n:cons(1,n) B(x,T,F) -> ones

It is well known that weakly orthogonal term rewriting systems are conflu-
ent. However, this property does not hold for graphs even if the considered
graph rewriting system is orthogonal [10]. Indeed, the orthogonal system
which consists of the rules (R1) A(x) → x and (R2) B(x) → x in-
duces a confluent rewrite relation on terms and a non confluent rewrite
relation on graphs as it is shown by the following counter-example [10] :
the graph n:A(B(n)) may be rewritten into two different normal forms,
namely, u:A(u) and v:B(v). The source of the non confluence of the
graph rewriting system above comes from the use of the so-called collaps-
ing rules. A rule is collapsing if its right-hand side is a variable. However,
collapsing rules cannot be prohibited in any programming discipline since
most of access functions (e.g., car, cdr) are defined by means of collapsing
rules.

In this paper, we investigate first the confluence of the graph rewrite
relation in the framework of weakly orthogonal constructor-based graph
rewriting systems. We show that the rewrite relation is confluent, even in
the presence of collapsing rules, for a wide class of graphs called admissible
graphs. A graph is admissible if its cycles do not include defined operators
(see Definition 1).

Efficient implementation of functional languages encodes terms as
dags. The soundness of such an encoding can be easily obtained when the
considered graph rewriting system is confluent modulo bisimilarity. Two
graphs are bisimilar if they represent the same rational term. We show
that the considered graph rewriting systems are also confluent modulo
bisimilarity.

The property of confluence allows to evaluate admissible graphs in
a deterministic way by using rewriting strategies. For constructor-based
weakly orthogonal term rewriting systems, efficient strategies have been
proposed in the literature. For example, O’Donnell has shown that parallel-
outermost strategy is normalizing [12], Sekar and Ramakrishnan [16] as
well as Antoy [1] improved O’Donnell’s strategy by proposing strategies
which rewrite in parallel a necessary set of redexes. Their extension to
graphs is not such an easy task. Indeed, the notion of outermost redexes in
a cyclic graph is not always meaningful and parallel reductions of graphs
that share some subgraphs need some care. We propose a graph rewriting
strategy which reduces admissible graphs in parallel at some necessary
set of outermost redexes. This strategy is a conservative extension of the
one presented for terms in [1].

The rest of the paper is organized as follows : The next section lists
some definitions and notations used later in the paper. Section 3 defines

the graph rewriting systems we consider and establishes some confluence
results. In Section 4, a parallel graph rewriting relation is proposed as
well as an efficient parallel graph rewriting strategy. Section 5 concludes
the paper. Due to lack of space, all the proofs have been omitted. They
can be consulted in [7, 6].

2 Definitions and notations

Many different notations are used in the literature to investigate graph
rewriting [9, 17, 14]. The aim of this section is to recall briefly some key
definitions in order to make easier the understanding of the paper. We
are mostly consistent with [5]. Some precise definitions which are omitted
can be found in [6].

A many-sorted signature Σ = 〈S, Ω〉 consists of a set S of sorts and
an S-indexed family of sets of operation symbols Ω =]s∈SΩs with Ωs =
](w,s)∈S∗×SΩw,s. We shall write f : s1 . . . sn → s whenever f ∈ Ωs1...sn,s

and say that f is of sort s and rank s1 . . . sn. We consider a graph as a
set of nodes and edges between the nodes. Each node is labeled with an
operation symbol or a variable. Let X =]s∈SXs be an S-indexed family
of countable sets of variables and N =]s∈SNs an S-indexed family of
countable sets of nodes. We assume that X and N are fixed throughout
the rest of the paper.

A graph g over 〈Σ,N ,X〉 is a tuple g = 〈Ng,Lg,Sg,Rootsg〉 such that
Ng is a set of nodes, Lg : Ng → Ω ∪ X is a labeling function which maps
to every node of g an operation symbol or a variable, Sg is a successor
function which maps to every node of g a (possibly empty) string of nodes
and Rootsg is a set of distinguished nodes of g, called its roots. We also
assume three conditions of well definedness. (1) Graphs are well typed :
a node n is of the same sort as its label Lg(n), and its successors Sg(n)
are compatible with the rank of Lg(n). (2) Graphs are connected : for all
nodes n ∈ Ng, there exist a root r ∈ Rootsg and a path from r to n. A
path from a node n0 to a node nk is a sequence [n0, i0, n1, . . . , ik−1, nk]
of alternating nodes and integers such that k ≥ 1 and np+1 is the ip

th

successor of np for all p ∈ 0..k − 1. (3) Let V(g) be the set of variables of
g. For all x ∈ V(g), there exists one and only one node n ∈ Ng such that
Lg(n) = x.

A term graph is a (possibly cyclic) graph with one root denoted Rootg.
Two term graphs g1 and g2 are bisimilar, denoted g1

.
= g2, iff they repre-

sent the same (infinite) tree when one unravels them [3]. We write g1 ∼ g2

when the term graphs g1 and g2 are equal up to renaming of nodes.

As the formal definition of graphs is not useful to give examples, we
introduce a linear notation [5]. In the following grammar, the variable A
(resp. n) ranges over the set Ω ∪ X (resp. N) :
Graph ::= Node | Node + Graph

Node ::= n:A(Node,. . . ,Node) | n
The set of roots of a graph defined with a linear expression contains the
first node of the expression and all the nodes appearing just after a +.

Example 1. In Fig. 1, we give two examples of graphs denoted G and T .
The term graph G is given by (1) NG = {n1, . . . , n5}, (2) RootG = n1,
(3) LG is defined by LG(n1) = LG(n5) = c, LG(n2) = g, LG(n3) = s and
LG(n4) = a and (4) SG is defined by SG(n1) = n2.n5 , SG(n2) = n3.n3 ,
SG(n3) = n4, SG(n4) = ε and SG(n5) = n3.n1. An equivalent description
of G is n1:c(n2:g(n3:s(n4:a),n3),n5:c(n3,n1)). On the other hand,
T is a graph with two roots {l1,r1} representing a rewrite rule (see
Def. 2) : T = l1:g(l2:s(l3:x),l4:s(l5:y)) + r1:s(r2:g(l3,l4)).

n1:c n5:c

n2:g

n3:s

n4:a l3:x

r1:s

r2:g

l5:y

l2:s

l1:g

l4:s

G T

Fig. 1.

A subgraph of a graph g rooted by a node p, denoted g|p, is built by
considering p as a root and deleting all the nodes which are not accessible
from p in g (e.g., G|n2 = n2:g(n3:s(n4:a),n3) in Fig. 1). The sum of
two graphs g1 and g2, denoted g1 ⊕ g2, is the graph whose nodes and
roots are those of g1 and g2 and whose labeling and successor functions
coincide with those of g1 and g2.

A pointer redirection from a node p to a node q is a function ρ : N →
N such that ρ(p) = q and ρ(n) = n for all nodes n 6= p. More generally,
if p1, . . . , pn, q1, . . . , qn are some nodes, we define the (multiple) pointer
redirection ρ from p1 to q1, . . . , pn to qn as the function ρ : N → N such
that ρ(pi) = qi for all i ∈ 1..n and ρ(p) = p for all nodes p such that
p 6= p1, p 6= p2, . . . and p 6= pn.

Given a graph g and a pointer redirection ρ = {p1 7→ q1, . . . , pn 7→
qn}, we define ρ(g) as the graph whose nodes and labeling function are
those of g, whose successor function satisfies Sρ(g)(n) = ρ(n1) . . . ρ(nk)
if Sg(n) = n1 . . . nk for some k ≥ 0 and whose roots are Rootsρ(g) =
{ρ(n1), . . . , ρ(nk), p1, p2, . . . , pn} if Rootsg = {n1, . . . , nk}.

Given two term graphs g and u and a node p of the same sort as
Rootu, we define the replacement by u of the subgraph rooted by p in g,
denoted g[p ← u], in three stages : (i) Let H = g ⊕ u. (ii) Let ρ be the
pointer redirection from p to Rootu, H ′ = ρ(H) and r = ρ(Rootg). (iii)
g[p ← u] = H ′

|r.

Example 2. Let G be the term graph of Example 1 and D =
r1:s(r2:g(n4:a,n3:s(n4))). The sum G ⊕ D is given by
n1:c(n2:g(n3:s(n4:a),n3),n5:c(n3,n1)) + r1:s(r2:g(n4,n3))

(see Fig. 2). Let ρ be the pointer redirection such that ρ(n2) = r1

and ρ(p) = p for all nodes p 6= n2. The graph ρ(G ⊕ D) is defined by
n1:c(r1:s(r2:g(n4:a,n3:s(n4)),n5:c(n3,n1)) + n2:g(n3,n3).
Thus the replacement by D of the subgraph rooted by n2 in G is defined
by G[n2 ← D] = n1:c(r1:s(r2:g(n4:a,n3:s(n4)),n5:c(n3,n1)). An

n1:c n5:c

n2:g

n3:s

n4:a

r1:s

r2:g

n1:c n5:c

n2:g

n3:s

n4:a

r1:s

r2:g

G ⊕ D G[n2 ← D]

Fig. 2.

example of multiple pointer redirection is shown in Fig. 3 where the graph
H ′ is obtained from H by applying ρ = {p2 7→ r1, p4 7→ r1}.

A (rooted) homomorphism h from a graph g1 to a graph g2, denoted
h : g1 → g2, is a mapping from Ng1 to Ng2 such that Rootsg2 = h(Rootsg1)
and for all nodes n ∈ Ng1 , if Lg1(n) /∈ X then Lg2(h(n)) = Lg1(n) and
Sg2(h(n)) = h(Sg1(n)) and if Lg1(n) ∈ X then h(n) ∈ Ng2 . If h : g1 → g2

is a homomorphism and g is a subgraph of g1 rooted by p, then we write
h(g) for the subgraph g2|h(p). If h : g1 → g2 is a homomorphism and g is
a graph, h[g] is the graph obtained from g by replacing all the subgraphs

shared between g and g1 by their corresponding subgraphs in g2. A term
graph l matches a graph g at node n if there exists a homomorphism
h : l → g|n. h is called the matcher of l on g at node n. Two term graphs
g1 and g2 are unifiable if there exist a term graph g and a homomorphism
h : (g1 ⊕ g2) → g such that h(g1) = h(g2) = g. Such an h is called a
unifier of g1 and g2.

Example 3. Consider the subgraph G|n2 of Example 1, let L =
l1:g(l2:s(l3:x),l4:s(l5:y)) and µ the mapping from NL to N(G

|n2)

such that µ(l1) = n2, µ(l2) = µ(l4) = n3 and µ(l3) = µ(l5) = n4. µ is
a homomorphism from L to G|n2, thus L matches G at node n2. On the
other hand, let R = r1:s(r2:g(l3:x,l4:s(l5:y))). R and L share the
subgraphs l3:x and l4:s(l5:y) whose images by µ are respectively n4:a

and n3:s(n4:a). Hence µ[R] = r1:s(r2:g(n4:a,n3:s(n4))), i.e., µ[R]
is the graph D of Example 2. Finally, consider the term graphs L1 =
n1:f(n2:a,n3:x) and L2 = m1:f(m2:y,m3:s(m4:a)). L1 and L2 are
unifiable since there exist a term graph L3 = p1:f(p2:a,p3:s(p4:a))

and a homomorphism υ : (L1⊕L2) → L3 such that υ(L1) = υ(L2) = L3.

3 Admissible graph rewriting

This section introduces the different classes of graph rewriting systems
we consider and establishes new confluence results. For practical rea-
sons, many declarative languages use constructor-based signatures. A
constructor-based signature Σ is a triple Σ = 〈S, C,D〉 where S is a set of
sorts, C is an S-indexed family of sets of constructor symbols whose rôle
consists in building data structures and D is an S-indexed family of sets
of defined operations such that C ∩ D = ∅ and 〈S, C ∪ D〉 is a signature.
For instance, in Example 1, we suppose that c, s and a are constructors
and g is a defined operation.

In the rest of the paper, we investigate graph rewriting for the class
of admissible term graphs (atg). Roughly speaking, an atg corresponds,
according to the imperative point of view, to nested procedure (func-
tion) calls whose parameters are complex constructor cyclic graphs (i.e.,
classical data structures).

Definition 1. Let g be a term graph over a constructor-based signature
Σ = 〈S, C,D〉. A node n ∈ Ng is called a defined node if Lg(n) is a
defined operation (∈ D). g is an admissible term graph (atg) if there
exists no path from a defined node of g to itself. An atg g is a pattern if g
has a tree structure (i.e., linear first-order term) which has one and only

one defined operation at its root. A constructor graph is a graph with no
defined node. An atg is operation-rooted if its root is a defined node.

Example 4. The term graph G of Example 1 is admissible but z:g(z,z)
and z:g(n:s(z),n) are not (since g is a defined operation which belongs
to a cycle). l1:g(l2:a,l3:a) is a pattern whereas l1:g(l2:a,l2) is not.

The next definition introduces the notion of admissible rewrite rule.
Such rules are tailored so that the set of atgs is closed by the rewrite
relation induced by admissible rules (see Remark 1).

Definition 2. A rewrite rule is a graph with two roots, denoted l → r.
l (resp. r) is a term graph called the left-hand side (resp. right-hand side)
of the rule. A rule l → r is an admissible rule iff (1) l is a pattern (thus
an atg), (2) r is an atg, (3) l is not a subgraph of r and (4) V(r) ⊆ V(l). A
rule e′ is a variant of another rule e if e and e′ are equal up to renaming
of nodes and variables and all the nodes and the variables of e′ are new.
We say that two admissible rules l1 → r1 and l2 → r2 overlap iff their
left-hand sides are unifiable.

Example 5. The graph T of Example 1 is an admissible rule. An example
of a non admissible rule is given in Remark 1.

Definition 3. A constructor-based graph rewriting system (cGRS) is a
pair SP = 〈Σ,R〉 where Σ = 〈S, C,D〉 is a constructor-based signature
and R is a set of admissible rules.

We say that SP is an admissible graph rewriting system (AGRS) iff every
two distinct rules in R do not overlap.

We say that SP is a weakly admissible graph rewriting system (WAGRS)
iff R is a set of admissible rules such that if two rules l1 → r1 and
l2 → r2 overlap, then their instantiated right-hand sides are equal up to
renaming of nodes, i.e., if there exist a term graph g and a homomorphism
h : (l1 ⊕ l2) → g such that h(l1) = h(l2) = g, then h[r1] ∼ h[r2].

Example 6. Consider the following cGRS :

(R1) l1:f(l2:a,l3:x) -> r1:d(r1,l3:x)

(R2) l1:f(l2:x,l3:s(l4:y)) -> r1:d(r1,r2:s(l4:y))

(R3) l1:g(l2:a,l3:x) -> r1:s(r2:a)

(R4) l1:g(l2:x,l3:a) -> r1:s(l2:x)

(R5) l1:g(l2:s(l3:x),l4:s(l5:y)) -> r1:s(r2:g(l3:x,l4:s(l5:y)))

(R6) l1:h(l2:x,l3:y) -> r1:h(l2:x,l3:y)

R1 and R2 (resp. R3 and R4) overlap and their instantiated right-hand
sides are equal up to renaming of nodes. Thus this cGRS is a WAGRS.

Below, we recall the definition of a graph rewriting step [5].

Definition 4. Let SP = 〈Σ,R〉 be a cGRS, g1 an atg, g2 a graph, l → r
a variant of a rewrite rule of R and p a node of g1. We say that g1

rewrites to g2 at node p using the rule l → r and write g1 →[p, l→r] g2

if there exists a homomorphism h : l → g1|p (i.e., l matches g1 at node
p) and g2 = g1[p ← h[r]]. In this case, we say that g1|p is a redex of g1

rooted by p.
∗
→ denotes the reflexive and transitive closure of →.

Example 7. According to Example 3, L matches G at node n2 with homo-
morphism µ and µ[R] = r1:s(r2:g(n4:a,n3:s(n4))). As µ[R] is equal
to the graph D of Example 2, we infer that G[n2 ← µ[R]] =
n1:c(r1:s(r2:g(n4:a,n3:s(n4))),n5:c(n3,n1)). Let G′ be this last
graph. By Definition 4, G →[n2,L→R] G′.

We can prove that the set of atgs is stable w.r.t. rewriting with ad-
missible rules [6], i.e., if g1 is an atg and g1 →[p, l→r] g2 is a rewriting step,
then g2 is an atg. In the following example, we show that the set of atgs
is not stable w.r.t. non admissible rewrite rules :

Remark 1. The rule l1:g(l2:a,l3:x) → r1:g(l1,r2:a) is not admis-
sible since the root of its left-hand side is a node of its right-hand side,
thus its left-hand side is a subgraph of its right-hand side, i.e., Condition 3
of Def. 2 is not fulfilled. By using this rule, the reader may check that the
atg n1:g(n2:a,n3:a) is rewritten into r1:g(r1,r2:a). This last graph
is not an atg, since the defined operation g belongs to a cycle.

The property of confluence is one of the main properties of rewrite
relations. We consider here the classical notion of confluence as well as
confluence modulo bisimilarity. The reader may find in [4] a survey of
confluence properties over acyclic term graphs.

Definition 5. Let SP = 〈Σ,R〉 be a cGRS. We say that the rewriting
relation → is confluent modulo renaming of nodes ∼ (resp. bisimilarity
.
=) w.r.t. atgs iff for all atgs g1, g2, g′1 and g′2 such that g1 ∼ g2 (resp. g1

.
=

g2), g1
∗
→ g′1 and g2

∗
→ g′2, there exist two atgs g′′1 and g′′2 such that

g′1
∗
→ g′′1 , g′2

∗
→ g′′2 and g′′1 ∼ g′′2 (resp. g′′1

.
= g′′2).

We have seen in Section 1 that confluence (modulo bisimilarity) of
AGRSs is not a straightforward extension of that of orthogonal term

rewriting systems. In [11], it is proved that orthogonal graph rewriting
systems (and thus AGRSs) are confluent modulo the equivalence of the so-
called hypercollapsing graphs. A graph g is hypercollapsing if g → g. We
are not interested in confluence modulo the equivalence of hypercollapsing
graphs in the present paper.

Theorem 1. Let SP be a WAGRS. → is confluent modulo ∼ and
.
=

w.r.t. atgs.

Since bisimilar graphs are naturally handled in the setting of graphs,
one may wonder whether the class of weakly orthogonal graph rewriting
systems, such that the instantiated right-hand sides of overlapping rules
are bisimilar (and not necessarily equal up to renaming of nodes), still
defines a rewrite relation which is confluent modulo bisimilarity or not.

Definition 6. Let SP = 〈Σ,R〉 be a cGRS. We say that SP is a bisimi-
lar weakly admissible graph rewriting system (bWAGRS) iff R is a set of
admissible rules such that if two rules l1 → r1 and l2 → r2 overlap, then
their instantiated right-hand sides are bisimilar, i.e., if there exist a term
graph g and a homomorphism h : (l1⊕l2) → g such that h(l1) = h(l2) = g,
then h[r1]

.
= h[r2].

Example 8. Consider the following rules :

(S1) l1:f(l2:a,l3:x) -> r1:d(r2:d(r1,l3:x),l3)

(S2) l1:f(l2:x,l3:s(l4:a)) -> r1:d(r1,r2:s(r3:a))

As the rules S1 and S2 overlap and their instantiated right-hand sides are
bisimilar, this cGRS is a bWAGRS.

It is clear that a bWAGRS cannot be confluent modulo renaming of
nodes, in general. Nevertheless, a bWAGRS may be confluent modulo
bisimilarity. We can prove this property in the case where a bWAGRS is
Noetherian w.r.t. atgs (i.e., for all atgs g, there is no infinite derivation
g → g1 → g2 → . . .).

Theorem 2. Let SP be a bWAGRS which is Noetherian w.r.t. atgs.
Then → is confluent modulo

.
= w.r.t. atgs.

When a bWAGRS is not Noetherian w.r.t. atgs, we conjecture that
the rewrite relation → is still confluent modulo

.
= w.r.t. atgs.

4 Parallel admissible graph rewriting

In this section we propose a definition of parallel graph rewriting relation
and define an efficient strategy for it. If parallel rewriting can be easily
conceived in the framework of first-order terms, this is unfortunately not
the case when one has to deal with graph structures. The main difficulty
comes essentially from the sharing of subgraphs. In [13, Chap. 14], parallel
graph rewriting has been investigated w.r.t. implementation point of view.
That is to say, some annotations are proposed to be added to right-hand
sides in order to indicate which redexes can be evaluated in parallel. In
the following definition, we are rather interested in the general notion of
parallel graph rewriting which allows to reduce several arbitrary redexes
of an atg in one shot.

Definition 7. Let SP = 〈Σ,R〉 be a cGRS, g1 an atg, g2 a graph,
l1 → r1, . . . , ln → rn n variants of rewrite rules of R and p1, . . . , pn n
distinct nodes of g1. We say that g1 rewrites in parallel to g2 at nodes
p1, . . . , pn using the rules l1 → r1, . . . , ln → rn and write
g1 −→bb [p1, l1→r1]...[pn, ln→rn] g2 iff :

1. There exists n homomorphisms hi : li → g1|pi
for all i ∈ 1..n.

2. Let H = g ⊕ h1[r1] ⊕ . . . ⊕ hn[rn].
3. Let ρ1, . . . , ρn be the pointer redirections such that for all i ∈ 1..k,

ρi(pi) = Roothi[ri] and ρi(p) = p for all nodes p such that p 6= pi.
4. Let ρ = ρµ(1) ◦ . . . ◦ ρµ(n) where µ : 1..n → 1..n is a permutation such

that if i < j, then there exists no path from pµ(i) to pµ(j).
5. Let H ′ = ρ(H) and r = ρ(Rootg).
6. g2 = H ′

|r.

Condition (4) in the previous definition can always be fulfilled. Its rôle is
to take into account the relative positions of the different redexes to be
transformed so that the parallel rewrite relation −→bb can be simulated by
sequential rewriting →. Indeed, consider for example the pointer redirec-
tion ρ′ such that ρ′(pi) = Roothi[ri] for all i ∈ 1..n and ρ′(p) = p for all
nodes p such that p 6= p1, . . . , p 6= pn. ρ′, which seems to be the natural
candidate as a pointer redirection to define a parallel rewrite relation,
does not always satisfy Condition (4). The reader may verify (see also
[7]) that the parallel rewrite relation induced by ρ′, say −→‖ , cannot be

simulated by sequential rewriting →, i.e., −→‖ is not included in
∗
→.

Example 9. Let g = p1:d(p2:u(p3:a),p4:v(p2)) be an atg and l1 →
r1 and l2 → r2 two admissible rules such that l1 = l1:u(l2:x), r1 =

r1:s(l2:x), l2 = l3:v(l4:y) and r2 = l4:y. l1 matches g at node
p2 using the homomorphism h1 : l1 → g|p2 and h1[r1] = r1:s(p3:a).
On the other hand, l2 matches g at node p4 using the homomorphism
h2 : l2 → g|p4 and h2[r2] = p2:u(p3:a). Let H = g ⊕ h1[r1] ⊕ h2[r2] =
p1:d(p2:u(p3:a),p4:v(p2)) + r1:s(p3) + p2 (see Fig. 3). Let ρ1 =

p1:d

p2:ur1:s p4:v

p3:a

H

p1:d

p2:ur1:s p4:v

p3:a

H
′

Fig. 3.

{p2 7→ r1} and ρ2 = {p4 7→ p2}. There exists a path from p4 to p2 in g
but none from p2 to p4. So we define ρ = ρ1 ◦ ρ2 = {p2 7→ r1, p4 7→ r1}.
The reader may check that ρ(H) = H ′ = p1:d(r1:s(p3:a),r1) + r1

+ p2:u(p3) + p4:v(r1) and ρ(Rootg) = p1. Hence, by Definition 7,
g −→bb [p2, l1→r1][p4, l2→r2] g2 where g2 = p1:d(r1:s(p3:a),r1).

Proposition 1. Let SP be a cGRS. If g1 −→bb g2, then g1
∗
→ g2. If

g1 → g2, then g1 −→bb g2.

Theorem 3. Let SP = 〈Σ,R〉 be an WAGRS. −→bb is confluent modulo
∼ and

.
= w.r.t. atgs.

In the rest of this section we describe a parallel graph rewriting strat-
egy for WAGRSs which is c-hyper-normalyzing and computes necessary
sets of redexes. We need first some preliminary definitions.

Definition 8. Let SP = 〈Σ,R〉 be a cGRS. A parallel graph rewriting
strategy is a partial function S̄ which takes an atg g and returns a set of
pairs (p, R) such that p is a node of g, R is a rewrite rule of R and g
can be rewritten at node p using the rule R. We write g →S̄ g′ to denote
the parallel S̄-step from g to g′ such that g −→bb S̄(g) g′. A strategy S̄ is

c-normalizing iff for all atgs g and constructor graphs c such that g
∗
→ c,

there exists a graph c′ such that g −→bb ∗
S̄ c′ and c′

.
= c. A strategy S̄ is

c-hyper-normalizing iff for all atgs g and constructor graphs c such that
g

∗
→ c, every derivation D starting with g which alternates S̄-steps with

other reduction steps ends with a constructor graph c′ such that c′
.
= c.

Definition 9. Let SP = 〈Σ,R〉 be a cGRS, g and g′ two atgs and B =

g
∗
→ g′ a rewriting derivation. A defined node q in g is a residual node

by B if q remains a node of g′. We call descendant of g|q the subgraph
(g′)|q. A redex u rooted by q in g is a needed redex iff in every rewriting
derivation from g to a constructor graph, a descendant of g|q is rewritten
at its root q. A set of redexes S = {u1, . . . , un} of g is a necessary set of
redexes iff in every rewriting derivation from g to a constructor graph, a
descendant of at least one redex u ∈ S is rewritten at its root. A redex
u rooted by q in g is an outermost redex iff q = Rootg when g is a
redex or else Sg(Rootg) = r1 . . . rk and u is an outermost redex of g|ri

for
some i ∈ 1..k. A node q is the leftmost-outermost defined node of g iff
q = Rootg when Rootg is a defined node or else Sg(Rootg) = r1 . . . rk and
there exists i ∈ 1..k such that q is the leftmost-outermost defined node of
g|ri

and the subgraphs g|rj
are constructor graphs for all j < i.

Example 10. Let g = n1:f(n2:f(n3:a,n3),n4:f(n2,n3)) where f is de-
fined with the rules (T1) l1:f(l2:x,l3:a) → l2:x and
(T2) l1:f(l2:a,l3:y) → l3:y. The subgraphs g|n2 and g|n4 are out-
ermost redexes (though there exists a path from n4 to n2). The leftmost-
outermost defined node of g is n2. The set S = {g|n2, g|n4} is a necessary
set of redexes of g. None of them is a needed redex of g. Actually, the
notion of needed redex is irrelevant in the framework of WAGRSs.

Our strategy is based on an extension of definitional trees [1] to the
context of WAGRSs. A definitional tree is a hierarchical structure whose
leaves are the rules of a WAGRS used to define some operation. In the
following definition, branch and rule are uninterpreted symbols, used to
construct the nodes of a definitional tree.

Definition 10. Let SP = 〈Σ,R〉 be a WAGRS. A tree T is a partial
definitional tree, or pdt, with pattern π iff one of the following cases
holds :

– T = rule(π → r), where π → r is a variant of a rule of R.

– T = branch(π, o, T1, . . . , Tk), where o is a node of π, o is labelled with
a variable, o is of sort s, c1, . . . , ck (k > 0) are different constructors
of the sort s and for all j ∈ 1..k, Tj is a pdt with pattern π[o ←
p : cj(o1 : X1, . . . , on : Xn)], such that n is the number of arguments
of cj, X1, . . . , Xn are new variables and p, o1, . . . , on are new nodes.

We write pattern(T) to denote the pattern argument of T . A definitional
tree T of a defined operation f is a finite pdt with a pattern of the form

p :f(o1 :X1, . . . , on :Xn) where n is the number of arguments of f , X1, . . . ,
Xn are new variables and p, o1, . . . , on are new nodes. A forest of defini-
tional trees (fdt) F of an operation f is a set of definitional trees such
that every rule defining f appears in one and only one tree in F .

Example 11. Consider the WAGRS defined in Example 6. A definitional
tree T 1

g of the operation g is represented in Fig. 4 and formally defined by

T 1
g = branch(k1:g(k2:X1,k3:X2), k2,

rule(k4:g(k5:a,k6:X3) → k7:s(k8:a)),
branch(k9:g(k10:s(k11:X4),k12:X5), k12,

rule(k13:g(k14:s(k15:X6),k16:s(k17:X7)) →
k18:s(k15,k16))))

Notice that the rule R4 of Example 6 is not represented by a leaf of T 1
g .

Actually, it is impossible to build only one definitional tree which contains
all the rules defining g. This is why we introduced the notion of fdts. In
Fig. 4, we represent possible fdts Ff = {T 1

f , T 2
f }, Fg = {T 1

g , T 2
g } and

Fh = {Th} corresponding to the operations f, g and h of Example 6.

k1:f(k2:X1,k3:X2)

k4:f(k5:a,k6:X3)

k7:d(k7,k6:X3)

T
1

f

k1:h(k2:X1,k3:X2)

k4:h(k2:X1,k3:X2)

Th

k1:f(k2:X1,k3:X2)

k4:f(k5:X3,k6:s(k7:X4)

k12:d(k12,k13:s(k7:X4)

T
2

f

k1:g(k2:X1,k3:X2)

k7:s(k5:X3)

k4:g(k5:X3,k6:a)

T
2

g

k7:s(k8:a)

k4:g(k5:a,k6:X3)

k1:g(k2:X1,k3:X2)

k9:g(k10:s(k11:X4),k12:X5)

k13:g(k14:s(k15:X6),k16:s(k17:X7))

T
1

g

k18:s(k19:g(k15:X6,k16:s(k17:X7))

Fig. 4.

We are now ready to define our parallel graph rewriting strategy Φ̄.
The strategy Φ̄ is a partial function that operates on atgs in the presence
of a WAGRS. Φ̄(g) returns, when it is possible, a set of pairs (p, R) where
p is a node of g and R is a rewrite rule such that g can be rewritten at

node p using the rule R. Φ̄ uses two auxiliary functions ϕ̄ and Outer. ϕ̄
takes two arguments : an operation-rooted atg and a pdt of this operation.

Definition 11. Let SP = 〈Σ,R〉 be a WAGRS, g an operation-rooted
atg and T a pdt such that pattern(T) matches g at the root. We define
the partial function ϕ̄ by :

ϕ̄(g, T) =

{(p, R)} if T = rule(π → r), p = Rootg and
R is a variant of π → r ;

ϕ̄(g, Ti) if T = branch(π, o, T1, . . . , Tk) and
pattern(Ti) matches g for some i ∈ 1..k ;

S if T = branch(π, o, T1, . . . , Tk),
π matches g using the homomorphism h,
h(o) is labeled with a defined operation f in g,
F = {T ′

1 , . . . , T ′
k} is an fdt of f and

S = ϕ̄(g|h(o), T
′
1) ∪ . . . ∪ ϕ̄(g|h(o), T

′
k).

In the definition above, ϕ̄(g, T) computes a set S of pairs (p, R) where
p is a node of g and R is a rule whose left-hand side matches g at node p.
Some pairs (p, R) in S may be useless. Therefore, we define the function
Outer(g, S) which chooses a maximal set consisting of outermost defined
nodes of S w.r.t. g. If an outermost defined node p occurs several times
in S, only one pair (p, R) will appear in Outer(g, S). Outer(g, S) can
be defined in a deterministic way by using some ordering on the rewrite
rules.

Definition 12. Let SP = 〈Σ,R〉 be a WAGRS, g an atg and
S = {(p1, R1), . . . , (pn, Rn)} a set of pairs such that pi is a node of g
and Ri is an admissible rule. We define Outer(g, S) as a maximal subset
{(q1, S1), . . . , (qk, Sk)} of S such that :

1. For all i, j ∈ 1..k, i 6= j =⇒ qi 6= qj.
2. For all i ∈ 1..k, there exists a path [Rootg, i0, u1, i1, . . . , ik−1, qi] such

that for all j ∈ 0..k − 1, for all rewrite rules R, (uj , R) /∈ S.

Definition 13. Let SP = 〈Σ,R〉 be a WAGRS, g an atg, p the leftmost-
outermost defined node of g, f the label of the node p in g and F =
{T1, . . . , Tk} a forest of definitional trees of f . Φ̄ is the partial function
defined by Φ̄(g) = Outer(g, S) where S = ϕ̄(g|p, T1) ∪ . . . ∪ ϕ̄(g|p, Tk).

Example 12. Consider the fdts of Example 11. Let g =
n1:c(n2:f(n3:h(n4:g(n5:a,n5),n6:g(n4,n5)),n6),n7:c(n6,n1)).
By Definition 13, Φ̄(g) = Outer(g, S) where

S = ϕ̄(g|n2, T 1
f) ∪ ϕ̄(g|n2, T 2

f)

= ϕ̄(g|n3, Th) ∪ ϕ̄(g|n6, T 1
g) ∪ ϕ̄(g|n6, T 2

g)

= {(n3, k1:h(k2:X1,k3:X2) → k4:h(k2,k3))}∪
ϕ̄(g|n4, T 1

g) ∪ ϕ̄(g|n4, T 2
g)∪

{(n6, k4:g(k5:X3,k6:a) → k7:s(k5))}
= {(n3, k1:h(k2:X1,k3:X2) → k4:h(k2,k3)),

(n4, k4:g(k5:a,k6:X3) → k7:s(k8:a)),
(n4, k4:g(k5:X3,k6:a) → k7:s(k5)),
(n6, k4:g(k5:X3,k6:a) → k7:s(k5))}

By Condition (2) in Def. 12, Outer(g, S) selects the outermost redexes
of S in g, thus Φ̄(g) = {(n3, R6), (n6, R4)}. Notice that S contains two
pairs with the node n4, namely (n4, R3) and (n4, R4). If g|n4 was also an
outermost redex of g, then Condition (1) of Def. 12 requires to choose one
pair among (n4, R3) and (n4, R4) in order to compute Φ̄(g). This choice
is irrelevant since rewriting g using R3 or R4 leads to the same graph (by
the definition of a WAGRS).

Theorem 4. The redexes computed by Φ̄(g) constitute a necessary set of
redexes.

As a particular case of the theorem above, it is easy to see that if SP
is an AGRS such that for all defined operations f , there exists one defi-
nitional tree which contains all the rules defining f , then Φ̄(g) computes
a singleton {(p, R)} such that g|p is a needed redex in g [6].

From the previous theorem, we deduce that if an atg g can be rewritten
to a constructor graph c, then every derivation from g to c must contain
a step which rewrites a node p using a rule R for some (p, R) ∈ Φ̄(g).

Theorem 5. Φ̄ is c-hyper-normalizing (thus c-normalizing).

5 Conclusion

We gave new confluence results for a wide class of programs described by
means of constructor-based graph rewriting systems and conjecture that
the bisimilar weakly orthogonal admissible graph rewriting systems are
confluent modulo bisimilarity. We also proposed a c-hypernormalizing
parallel graph rewriting strategy, Φ̄, which computes necessary sets of
redexes in the presence of weakly orthogonal admissible graph rewriting
systems. In fact, this set is optimal with respect to strategies that do
not consider the right-hand sides of the rules. The proof of this claim
needs for example the machinery of so-called arbitrary reductions. The

reader may find in [16, 2] good hints for it. Our strategy, which computes
redexes that can be reduced in parallel, departs from the parallel graph
rewriting proposed in [13] where emphasis is made on the way parallelism
could be implemented on parallel machines. However, Φ̄ can be efficiently
implemented by using the annotations proposed in [13]. Φ̄ can also be
lifted to a complete narrowing strategy by extending the results in [8].

References

[1] S. Antoy. Definitional trees. In Proc. of ALP’92, pages 143–157. LNCS 632, 1992.
[2] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional

logic languages. In Proc. of ICLP’97, pages 138–152, Portland, 1997. MIT Press.
[3] Z.M. Ariola and J.W. Klop. Equational term graph rewriting. Fundamenta

Informaticae, 26(3-4), 1996.
[4] Z.M. Ariola, J.W. Klop, and D. Plump. Confluent rewriting of bisimilar term

graphs. Electronic Notes in Theoretical Computer Science, 7, 1997.
[5] H. Barendregt, M. van Eekelen, J. Glauert, R. Kenneway, M. J. Plasmeijer, and

M. Sleep. Term graph rewriting. In PARLE’87, pages 141–158. LNCS 259, 1987.
[6] R. Echahed and J. C. Janodet. On constructor-based graph rewrit-

ing systems. Technical report, IMAG, 1997. Available via URL :
ftp://ftp.imag.fr/pub/LEIBNIZ/ATINF/c-graph-rewriting.ps.gz.

[7] R. Echahed and J. C. Janodet. On weakly orthogonal constructor-
based graph rewriting. Technical report, 1998. Available via URL :
ftp://ftp.imag.fr/pub/LEIBNIZ/ATINF/wa-c-graph-rewriting.ps.gz.

[8] R. Echahed and J.C. Janodet. Admissible graph rewriting and narrowing. In
Proc. of JICSLP’98, pages 325–340. MIT Press, June 1998.

[9] H. Ehrig and G. Taentzer. Computing by graph transformation : A survey and
annotated bibliography. Bulletin of the EATCS, 59:182–226, June 1996.

[10] J. R. Kennaway, J. K. Klop, M. R. Sleep, and F. J. De Vries. On the adequacy of
graph rewriting for simulating term rewriting. ACM Transactions on Program-

ming Languages and Systems, 16(3):493–523, 1994.
[11] J. R. Kennaway, J. K. Klop, M. R. Sleep, and F. J. De Vries. Transfinite reduction

in orthogonal term rewriting systems. Information and Computation, 119(1):18–
38, 1995.

[12] M. J. O’Donnell. Computing in Systems Described by Equations. LNCS 58, 1977.
[13] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison-Wesley, 1993.
[14] D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and

G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph

Transformation, volume 2. World Scientific, to appear.
[15] Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph

Transformations, volume 1. World Scientific, 1997.
[16] R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic: Beyond

strong sequentiality. Information and Computation, 104(1):78–109, May 1993.
[17] M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors. Term Graph

Rewriting. Theory and Practice. J. Wiley & Sons, Chichester, UK, 1993.

