On Graph Rewriting and Narrowing

Rachid Echahed and Jean-Christophe Janodet
Laboratoire LEIBNIZ-Institut IMmAG, CNRS
46, avenue Felix Viallet F-38031 Grenoble - France
Email : First-name.Last-name@imag.fr

Abstract

Functional logic programming languages integrate, in a uniform way, the most impor-
tant features of functional programming and logic programming paradigms. See [7] for
a survey and [9, 8] for recent language propositions.

The operational semantics of most functional logic programming languages is based
on first-order term rewriting and narrowing. These techniques are well mastered now
and optimal strategies have been proposed in the literature, e.g., [2, 3].

However, in practice data structures are not always represented as first-order terms
but rather as (cyclic) graphs. Some declarative programming languages such as Haskell,
Clean or Life allow to work with graphs explicitly.

There are many reasons that motivate the use of graphs. They actually allow
sharing of subexpressions which leads to efficient computations. They also permit to
go beyond the processing of first-order terms by handling efficiently real-world data
structures (e.g. Data bases).

We propose new optimal strategies for graph rewriting and narrowing which are
good candidate for the implementation of functional logic languages. For this purpose,
we first introduce the framework of admissible graph rewriting systems which could be
seen as a natural extension to graphs of the well known class of orthogonal constructor-
based term rewriting systems. A graph is admissible if none of its defined operations
belongs to a cycle.

Orthogonal graph rewriting systems are not confluent in general. This is due to
the presence of so-called collapsing rules. A rule is collapsing if its right-hand side is
a variable. We show that admissible graph rewriting is a confluent relation even in
the presence of collapsing rules. In addition, we show that admissible graph rewriting
relation is confluent modulo bisimulation. Two graphs are bisimilar iff they represent
the same rational tree. This last result is necessary, for instance, to show the soundness
of the implementation of first-order terms as dags.

Afterwards, we define a sequential graph rewriting strategy by using Antoy’s def-
initional trees [1] and show that the resulting strategy computes only needed redexes
and develops optimal derivations w.r.t. the number of steps. Finally, we tackle the
graph narrowing relation over admissible graphs and propose a sequential narrowing
strategy which computes independent solutions and develops shorter derivations than
most general graph narrowing.

The reader may find in [5, 4] the detailed definitions and proofs. An extended
abstract could be consulted in [6].



References

[1]

2]

[4]

S. Antoy. Definitional trees. In Proc. of the 4th Intl. Conf. on Algebraic and Logic
programming, pages 143—157. Springer Verlag LNCS 632, 1992.

S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc.
21st ACM Symposium on Principles of Programming Languages, pages 268-279,
Portland, 1994.

S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional

logic languages. In Proc. 14th International Conference on Logic Programming,
pages 138-152, Leuven, 1997.

R. Echahed and J. C. Janodet. Introducing graphs in functional logic pro-
gramming languages. Technical report, IMAG, 1997. Available via URL :
ftp://ftp.imag.fr/pub/LEIBNIZ/ATINF /c-graph-narrowing.ps.gz.

R. Echahed and J. C. Janodet. On constructor-based graph rewrit-
ing systems. Technical report, IMAG, 1997. Available via URL
ftp://ftp.imag.fr/pub/LEIBNIZ/ATINF /c-graph-rewriting.ps.gz.

R. Echahed and J. C. Janodet. Admissible graph rewriting and narrowing. In Proc.
of the 1988 Joint International Conference and Symposium on Logic Programming,
Manchester, 1998.

M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19820:583-628, 1994.

M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www-i2.informatik.rwth-aachen.de/“hanus/curry, 1997.

J. W. Lloyd. Combining functional and logic languages. In Proc. of Int. Logic
Programming Symposium, pages 43-57, 1994.



