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Abstract

We investigate graph narrowing as the operational semantics of functional
logic programming languages. We mainly show and discuss how weakly needed
narrowing as well as parallel narrowing may be extended to graph structures.

1 Introduction

Functional logic programming languages integrate, in a uniform way, functional
languages and logic languages. The resulting languages (e.g., [12, 13]) have the
advantages of both paradigms. Their operational semantics is often based on first-
order term narrowing (see [11]).

However, in practice, data structures are not always represented as first-order
terms but rather as cyclic graphs. Hence, several declarative languages such as
Haskell, Clean or Life allow to work with graphs explicitely.

There are many reasons which motivate the use of graphs. They allow to go be-
yond the processing of first-order terms by handling efficiently real-wold data types
represented as complex cyclic graphs. They also permit the sharing of subexpres-
sions which leads to efficient computations. Consider, for instance, the rule R =
O+Z → Z. In Fig. 1, the length of the first (term) narrowing derivation is 2p − 1
whereas the length of the second (graph) narrowing derivation is p.

In practice, many programming languages are constructor-based, i.e., operators
called constructors which are used to build the data structures are distinguished
from operators called defined functions which are defined by means of rewrite rules.
In this paper, we follow this discipline and study the narrowing relation induced by
the so-called weakly admissible graph rewriting systems (WAGRSs) [8].

Actually, using graph rewriting systems instead of term rewriting systems is not
an easy task. The classical properties of term rewriting systems such as confluence
or the completeness of the narrowing relation cannot be lifted without caution to
graph rewriting systems (see [6, 10]). Therefore, WAGRSs have been tailored so
that they preserve the wanted properties.

Moreover, WAGRSs extend the constructor-based weakly orthogonal term rew-
riting systems [3]. In this setting, efficient narrowing strategies have been proposed
such as (weakly) needed narrowing [2, 3] and parallel narrowing [3]. In this paper,
we show that (weakly) needed narrowing and parallel narrowing can be extended
to the framework of WAGRSs.

In the following section, we give briefly some preliminaries. Section 3 defines
the WAGRSs and the sequential and parallel rewrite relations they induce. Most
general narrowing and weakly needed narrowing are defined in Section 4 where we
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establish their completeness. Section 5 is devoted to parallel graph narrowing. We
conclude the paper in Section 6.

2 Definitions and Notations

Many different notations are used in the literature to investigate graph rewriting [9,
15, 16]. The aim of this section is to give briefly some key definitions in order to
make easier the understanding of the paper. We are mostly consistent with [5].

We consider a graph as a set of nodes and edges between the nodes. Each node
is labeled with an operation symbol or a variable. Let Σ = 〈S,Ω〉 be a many-sorted
signature, X a set of variables and N a set of nodes. A graph g over 〈Σ,N ,X〉 is a
tuple g = 〈Ng,Lg,Sg,Rootsg〉 such that Ng is a set of nodes, Lg : Ng → Ω ∪ X is a
labeling function which maps to every node of g an operation symbol or a variable,
Sg is a successor function which maps to every node of g a (possibly empty) string
of nodes and Rootsg is a set of distinguished nodes of g, called its roots. We also
assume three conditions of well definedness. (1) Graphs are well typed : a node n
is of the same sort as its label Lg(n), and its successors Sg(n) are compatible with
the rank of Lg(n). (2) Graphs are connected : for all nodes n ∈ Ng, there exist a
root r ∈ Rootsg and a path from r to n. (3) Let Vg be the set of variables of g. For
all x ∈ Vg, there exists one and only one node n ∈ Ng such that Lg(n) = x.

A term graph is a (possibly cyclic) graph with one root denoted Rootg. Two
term graphs g1 and g2 are bisimilar, denoted g1

.
= g2, iff they represent the same

(infinite) tree when one unravels them [4]. We write g1 ∼ g2 when the term graphs
g1 and g2 are equal up to renaming of nodes.

As the formal definition of graphs is not useful to give examples, we introduce a
linear notation [5]. In the following grammar, the variable A (resp. n) ranges over
the set Ω ∪ X (resp. N ) :
Graph ::= Node | Node + Graph

Node ::= n:A(Node,. . . ,Node) | n



The set of roots of a graph defined with a linear expression contains the first node
of the expression and all the nodes appearing just after a +.

Example 2.1 In Fig. 2, we give two examples of graphs denoted G and T . The
term graph G is given by (1) NG = {n1, . . . , n5}, (2) RootG = n1, (3) LG is defined
by LG(n1) = LG(n5) = c, LG(n2) = g, LG(n3) = s and LG(n4) = a and (4) SG

is defined by SG(n1) = n2.n5 , SG(n2) = n3.n3 , SG(n3) = n4, SG(n4) = ε and
SG(n5) = n3.n1, thus G = n1:c(n2:g(n3:s(n4:a),n3),n5:c(n3,n1)). On the
other hand, T is a graph with two roots {l1,r1} representing a rewrite rule (see
Def. 3.1) : T = l1:g(l2:s(l3:u),l4:s(l5:v)) + r1:s(r2:g(l3,l4)).
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r2:g

l5:v

l2:s

l1:g

l4:s

G T

Figure 2:

A subgraph of a graph g rooted by a node p, denoted g|p, is built by considering p
as a root and deleting all the nodes which are not accessible from p in g (e.g., G|n2 =
n2:g(n3:s(n4:a),n3) in Fig. 2). The sum of two graphs g1 and g2, denoted g1⊕g2,
is the graph whose nodes and roots are those of g1 and g2 and whose labeling and
successor functions coincide with those of g1 and g2.

A multiple pointer redirection ρ from the nodes p1, . . . , pn to the nodes q1, . . . , qn

is a function ρ : N → N such that ρ(pi) = qi for all i ∈ 1..n and ρ(p) = p
for all nodes p such that p 6= p1, p 6= p2, . . . and p 6= pn. Given a graph g and
a pointer redirection ρ = {p1 7→ q1, . . . , pn 7→ qn}, we define ρ(g) as the graph
whose nodes and labeling function are those of g, whose successor function satisfies
Sρ(g)(n) = ρ(n1) . . . ρ(nk) if Sg(n) = n1 . . . nk for some k ≥ 0 and whose roots are
Rootsρ(g) = {ρ(n1), . . . , ρ(nk)} ∪ {n1, . . . , nk} if Rootsg = {n1, . . . , nk}.

Given two term graphs g and u and a node p of the same sort as Rootu, we
define the replacement by u of the subgraph rooted by p in g, denoted g[p ← u], in
three stages : (1) Let H = g ⊕ u. (2) Let ρ be the pointer redirection from p to
Rootu, H ′ = ρ(H) and r = ρ(Rootg). (3) g[p ← u] = H ′

|r.

Example 2.2 Let G be the term graph of Example 2.1 and D =
r1:s(r2:g(n4:a,n3:s(n4))). The sum G ⊕ D is given by
n1:c(n2:g(n3:s(n4:a),n3),n5:c(n3,n1)) + r1:s(r2:g(n4,n3)) (see Fig. 3).
Let ρ be the pointer redirection such that ρ(n2) = r1 and ρ(p) = p for all p 6= n2.
The graph ρ(G⊕D) is defined by n1:c(r1:s(r2:g(n4:a,n3:s(n4)),n5:c(n3,n1))

+ n2:g(n3,n3). Thus the replacement by D of the subgraph rooted by n2 in G is
G[n2 ← D] = n1:c(r1:s(r2:g(n4:a,n3:s(n4)),n5:c(n3,n1)).

A (rooted) homomorphism h from a graph g1 to a graph g2, denoted h : g1 → g2,
is a mapping from Ng1

to Ng2
such that Rootsg2

= h(Rootsg1
) and for all nodes

n ∈ Ng1
, if Lg1

(n) /∈ X then Lg2
(h(n)) = Lg1

(n) and Sg2
(h(n)) = h(Sg1

(n)) and if
Lg1

(n) ∈ X then h(n) ∈ Ng2
. If h : g1 → g2 is a homomorphism and g is a subgraph
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of g1 rooted by p, then we write h(g) for the subgraph g2|h(p). If h : g1 → g2 is a
homomorphism and g is a graph, h[g] is the graph built from g by replacing all the
subgraphs shared between g and g1 by their corresponding subgraphs in g2.

A term graph l matches a graph g at node n if there exists a homomorphism
h : l → g|n. h is called the matcher of l on g at node n. Two term graphs g1 and g2

are unifiable iff there exist two graphs G and H and a homomorphism h : G → H
such that (1) g1 and g2 are both subgraphs of G and (2) h(g1) = h(g2). h is called a
unifier of g1 and g2. If g1 and g2 are unifiable, we can prove that there exists a most
general unifier in the following sense : there exist a graph g and a homomorphism
h : (g1⊕g2) → g such that (1) h(g1) = h(g2) = g and (2) for all unifiers h′ : G → H,
there exists a homomorphism φ : g → h′(g1 ⊕ g2).

Example 2.3 Consider the subgraph G|n2 of Example 2.1, let L =
l1:g(l2:s(l3:u),l4:s(l5:v)) and µ the mapping from NL to N(G

|n2) such that

µ(l1) = n2, µ(l2) = µ(l4) = n3 and µ(l3) = µ(l5) = n4. µ is a homomor-
phism from L to G|n2, thus L matches G at node n2. On the other hand, let
R = r1:s(r2:g(l3:u,l4:s(l5:v))). R and L share the subgraphs l3:u and
l4:s(l5:v) whose images by µ are respectively n4:a and n3:s(n4:a). Hence
µ[R] = r1:s(r2:g(n4:a,n3:s(n4))), i.e., µ[R] is the graph D of Example 2.2.
Finally, let L1 = n1:f(n2:a,n3:x) and L2 = m1:f(m2:y,m3:s(m4:a)). L1 and
L2 are unifiable since there exist a term graph L3 = p1:f(p2:a,p3:s(p4:a)) and
a homomorphism υ : (L1 ⊕ L2) → L3 such that υ(L1) = υ(L2) = L3.

Independently of homomorphisms, we need substitutions in order to define so-
lutions computed by narrowing. A substitution σ is a partial function from the set
of variables X to a set of term graphs. Dσ denotes the domain of σ, i.e., the set of
variables x such that σ(x) is not a graph reduced to a single node labeled with the
variable x. By Id, we mean any substitution such that D(Id) = ∅. The restriction
of σ to a set V of variables, σ|V , is such that D(σ|V ) = V ∩ Dσ and σ|V (x) = σ(x)
for all x ∈ D(σ|V ).

σ(g) denotes the graph built from g by replacing all the variables x ∈ Dσ by their
images σ(x). Applying a substitution on a graph is roughly the same as applying a
substitution on a first-order term, except that it preserves the sharing of subgraphs.

Given two term graphs g1 and g2, we write g1

.

≤ g2 iff there exists a substitution
θ such that θ(g1)

.
= g2. The composition of two substitutions σ1 and σ2 is the

substitution σ2 ◦ σ1 such that D(σ2 ◦ σ1) = Dσ1 ∪ Dσ2 and σ2 ◦ σ1(x) = σ2(σ1(x))
for all x ∈ Dσ1 and σ2 ◦ σ1(x) = σ2(x) for all x ∈ (Dσ2 − Dσ1). An idempotent
substitution satisfies σ ◦ σ = σ. Given two substitutions σ1 and σ2 and a set V of
variables, we say that σ1 is more general than σ2 on V , denoted σ1

.

≤ σ2 [V ], if



there exists a substitution θ such that θ ◦ σ1(x)
.
= σ2(x) for all x in V . We write

σ1
.
= σ2 [V ] iff σ1

.

≤ σ2 [V ] and σ2

.

≤ σ1 [V ]. Finally, let A be a set of substitutions.
We denote by A/

.
= the “quotient” set which consists of substitution representatives

of A up to renaming and bisimilarity.

Example 2.4 Let σ(u) = σ(v) = n4:a. The reader may check that σ(L) =
l1:g(l2:s(n4:a),l4:s(n4)). Let σ′ = {x 7→ m1:b(m2:u,n4:a)}. Then,
(σ ◦ σ′)|{x,u} = {x 7→ m1:b(n4:a,n4), u 7→ n4:a}.

3 Weakly Admissible Graph Rewriting Systems

This section introduces briefly the graph rewriting systems (GRSs) we consider
(see [8] for details). Let Σ = 〈S, C,D〉 be a constructor-based signature [14]. In
Example 2.1, we assume that c, s and a are constructors (∈ C) and g is a defined
operation (∈ D). A functional node (resp. constructor node, variable node) is a node
labeled with a defined operation (resp. constructor, variable).

In this paper, we investigate graph narrowing for the class of what we call ad-
missible term graphs (atg) [8]. Roughly speaking, an atg corresponds, according to
the imperative point of view, to nested procedure (function) calls whose parameters
are complex constructor cyclic graphs (i.e., classical data structures).

Definition 3.1 A term graph g is an admissible term graph (atg) if there exists
no path from a functional node of g to itself. An atg is a pattern if it has a tree
structure (i.e., linear first-order term) which has one and only one defined operation
at its root. A constructor graph is a graph with no functional node.
A rewrite rule is a graph with two roots, denoted l → r, such that (1) l is a pattern
(thus an atg), (2) r is an atg, (3) l is not a subgraph of r and (4) Vr ⊆ Vl. We say
that two rules l1 → r1 and l2 → r2 overlap iff their left-hand sides are unifiable.

In Fig. 2, G is an atg and T is a rewrite rule. As for z:g(z,z) and z:g(n:s(z),n),
they are not atgs since g is a defined operation which belongs to a cycle. Condi-
tion (3) in the definition of rewrite rule is necessary to prove the stability of the set
of atgs w.r.t. the rewrite relation [8].

Definition 3.2 A weakly admissible graph rewriting system (WAGRS) is a pair
SP = 〈Σ,R〉 where Σ is a constructor-based signature and R is a set of rewrite rules
such that if two rules l1 → r1 and l2 → r2 of R overlap, then their instantiated right-
hand sides are equal up to renaming of nodes, i.e., if there exist a graph g and a
homomorphism h : (l1 ⊕ l2) → g such that h(l1) = h(l2) = g, then h[r1] ∼ h[r2].

Example 3.3 The following set of rules defines a WAGRS :

(R1) l1:f(l2:a,l3:x) -> r1:d(r1,l3:x)

(R2) l1:f(l2:x,l3:s(l4:y)) -> r1:d(r1,r2:s(r3:a))

(R3) l1:g(l2:a,l3:a,l4:x) -> l4:x

(R4) l1:h(l2:a) -> l2:a

(R5) l1:i(l2:a,l3:x,l4:y) -> r1:a

(R6) l1:i(l2:x,l3:a,l4:y) -> l2:x

(R7) l1:i(l2:x,l3:y,l4:a) -> l2:x

Indeed, the rules R1 and R2 (resp. R5, R6 and R7) overlap and their instantiated
right-hand sides are equal up to renaming of nodes.



Below, we recall the definition of a graph rewriting step [5].

Definition 3.4 Let g1 be an atg, g2 a graph, R a rewrite rule and p a node of g1. A
rewriting step from g1 to g2 at node p using the rule R is defined by g1 →[p, l→r] g2

iff there exist a variant l → r of R and a homomorphism h : l → g1|p (i.e., l matches
g1 at node p) such that g2 = g1[p ← h[r]]. In this case, g1|p is called a redex of g1

rooted by p.
∗
→ denotes the reflexive and transitive closure of →.

In [8], we have proved that the rewrite relation is confluent (and confluent mod-
ulo the bisimilarity) w.r.t. atgs and WAGRSs.

Example 3.5 According to Example 2.3, L matches G at node n2 with homomor-
phism µ and µ[R] = r1:s(r2:g(n4:a,n3:s(n4))). We infer that G[n2 ← µ[R]] =
n1:c(r1:s(r2:g(n4:a,n3:s(n4))),n5:c(n3,n1)), since µ[R] is the atg D of Ex-
ample 2.2. Let G′ be this last graph. By Definition 3.4, G →[n2,L→R] G′.

We now introduce parallel graph rewriting over admissible graphs. If parallel
rewriting can be easily conceived in the framework of first-order terms, this is un-
fortunately not the case when one deals with graph structures. The main difficulty
comes from the sharing of subgraphs. The reader may find more details in [8].

Definition 3.6 Let g1 be an atg, g2 a graph, p1, . . . , pn n distinct nodes of g1

and R1, . . . , Rn n rewrite rules. A parallel rewriting step from g1 to g2 at nodes
p1, . . . , pn using the rules R1, . . . , Rn, denoted g1 −→bb [p1,R1]...[pn,Rn] g2, is given by :

1. Let li → ri be a variant of Ri and hi : li → g1|pi
for all i ∈ 1..n.

2. Let H = g ⊕ h1[r1] ⊕ . . . ⊕ hn[rn].

3. Let ρ1, . . . , ρn be the pointer redirections such that for all i ∈ 1..k,
ρi(pi) = Roothi[ri] and ρi(p) = p for all nodes p such that p 6= pi.

4. Let ρ = ρµ(1) ◦ . . . ◦ ρµ(n) where µ : 1..n → 1..n is a permutation such that
if i < j, then there exists no path from pµ(i) to pµ(j).

5. Let H ′ = ρ(H) and r = ρ(Rootg).

6. g2 = H ′
|r.

Condition (4) in the previous definition can always be fulfilled. Its rôle is to take
into account the relative positions of the different redexes to be transformed so that
the parallel rewrite relation −→bb can be simulated by the rewrite relation → (i.e., if

g1 −→bb g2 then g1
∗
→ g2).

Example 3.7 Let g = p1:d(p2:u(p3:a),p4:v(p2)) be an atg and l1 → r1 and
l2 → r2 two rules such that l1 = l1:u(l2:x), r1 = r1:s(l2:x), l2 = l3:v(l4:y)

and r2 = l4:y. l1 matches g at node p2 using the homomorphism h1 : l1 → g|p2
and h1[r1] = r1:s(p3:a). On the other hand, l2 matches g at node p4 using the
homomorphism h2 : l2 → g|p4 and h2[r2] = p2:u(p3:a). Let H = g ⊕ h1[r1] ⊕

h2[r2] = p1:d(p2:u(p3:a),p4:v(p2)) + r1:s(p3) + p2. (see Fig. 4). Let ρ1 =
{p2 7→ r1} and ρ2 = {p4 7→ p2}. There exists a path from p4 to p2 in g but none
from p2 to p4. So we define ρ = ρ1 ◦ ρ2 = {p2 7→ r1, p4 7→ r1}. The reader may
check that ρ(H) = H ′ = p1:d(r1:s(p3:a),r1) + r1 + p2:u(p3) + p4:v(r1)

and ρ(Rootg) = p1. Hence, by Def. 3.6, g −→bb [p2, l1→r1][p4, l2→r2]
g2 where g2 =

p1:d(r1:s(p3:a),r1).
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4 Weakly Needed Graph Narrowing

In this section, we define graph narrowing and extend weakly needed term narrow-
ing [3] to graphs. Roughly speaking, a graph g2 is obtained from a graph g1 by
means of graph narrowing iff there exists a substitution σ such that σ(g1) rewrites
into g2 :

Definition 4.1 Let g1 be an atg, R a rewrite rule, p a non variable node of g1, σ
a substitution and g2 a graph. A narrowing step from g1 to g2 at node p using the
rule R and the substitution σ is defined by g1 ;[p,R,σ] g2 ⇐⇒ σ(g1) →[p,R] g2.

In this paper, we deliberately use substitutions within narrowing steps instead
of homomorphisms [6] for a better readability. Such a substitution may be, for
instance, the most general unifier of g|p w.r.t. the left-hand side of R :
We say that an atg g is unifiable w.r.t. a pattern l iff there exist an idempotent
substitution σ and a homomorphism h : (g⊕l) → σ(g) such that h(g) = h(l) = σ(g).
σ is called a unifier of g w.r.t. l. We say that σ is a most general unifier of g w.r.t. l
iff (1) σ is a unifier of g w.r.t. l, (2) the homomorphism h : (g⊕ l) → σ(g) is a most

general unifier of g and l and (3) σ
.

≤ η for all unifiers η of g w.r.t. l.

Example 4.2 Let H = n1:c(n2:g(n3:x,n3),n4:c(n3,n1)) and L → R the rule
represented in Fig. 2. We claim that H|n2 is unifiable w.r.t. L. Indeed, let σ =
{x 7→ m1:s(m2:z)}. Then, σ(H) = n1:c(n2:g(m1:s(m2:z),m1),n4:c(m1,n1))

and there exists a homomorphism υ from (H|n2⊕L) to σ(H|n2) such that υ(n2) =
υ(l1) = n2, υ(n3) = υ(l2) = υ(l4) = m1 and υ(l3) = υ(l5) = m2. The reader
may check that if H1 = n1:c(p1:s(p2:g(m2:z,m1:s(m2))),n4:c(m1,n1)), then
σ(H) →[n2,L→R] H1. So we conclude that H ;[n2,L→R,σ] H1.

Narrowing is used to solve goals. A solution of a goal is often represented by
a substitution. We say that a substitution σ is computed by a narrowing deriva-
tion from an atg g1 to an atg g2 and write g1

∗
;σ g2 iff there exists a derivation

g1 ;[p1, l1→r1,σ1] . . . ;[pk, lk→rk,σk] g2 and σ = (σk ◦ . . . ◦ σ1)|Vg1
.

Example 4.3 Let H ;[n2,L→R,σ] H1 be the narrowing step of Example 4.2. Con-
sider a second narrowing step starting with H1 and the rule L′ → R′ where L′ =
l1:g(l2:a,l3:w) and R′ = l3:w. H1|p2 and L′ unify and an m.g.u. of H1|p2
w.r.t. L′ is σ′ = {z 7→ m3:a}. Therefore, H1 ;[p2,L′→R′,σ′] H2 where H2 =

n1:c(p1:s(m1:s(m2:z)),n4:c(m1,n1)). Hence, H
∗
;θ H2 with θ = (σ′ ◦ σ)|VH

=
{x 7→ m1:s(m3:a)}.

Below, we recall the notions of soundness and completeness of narrowing. These
definitions do not consider narrowing as an inference rule for solving some partic-
ular goals but rather as a general computational model for arbitrary expressions



(graphs). The traditional goals such as equations can be represented as boolean
expressions.

Definition 4.4 We say that the narrowing relation ; is sound iff for all atgs g,
constructor graphs c and substitutions θ such that g

∗
;θ c, there exists a constructor

graph s such that θ(g)
∗
→ s and s

.
= c. We say that the narrowing relation ;

is complete iff for all atgs g, constructor graphs c and constructor substitutions θ
such that θ(g)

∗
→ c, there exist a constructor graph s and a substitution σ such that

g
∗
;σ s, s

.

≤ c and σ
.

≤ θ [Vg].

In [6], we have established that most general narrowing ; is sound and complete.
We now define a sequential graph narrowing strategy, denoted Λ̄, which extends

weakly needed term narrowing [3] to atgs. A sequential graph narrowing strategy,
e.g. Λ̄, is a partial function which takes an atg g and returns a set of tuples of
the form (p,R, σ) such that g ;[p,R,σ] g′ for some atg g′. We write g ;Λ̄ g′ iff
g ;[p,R,σ] g′ and (p,R, σ) ∈ Λ̄(g).

The sequential graph narrowing strategy Λ̄ is based on the organization of WA-
GRSs as forests of definitional trees. A definitional tree [1] is a hierarchical structure
whose leaves are the rules of a WAGRS used to define some operation. In the fol-
lowing definition, branch and rule are uninterpreted symbols, used to construct the
nodes of a definitional tree.

Definition 4.5 A tree T is a partial definitional tree, or pdt, with pattern π iff
one of the following cases holds :

• T = rule(π → r), where π → r is a variant of a rule of R.

• T = branch(π, o, T1, . . . , Tk), where o is a variable node of π, o is of sort s,
c1, . . . , ck (k > 0) are different constructors of the sort s and for all j ∈ 1..k,
Tj is a pdt with pattern π[o ← p : cj(o1 : X1, . . . , on : Xn)], such that n is the
number of arguments of cj, X1, . . . ,Xn are new variables and p, o1, . . . , on are
new nodes.

We write pattern(T ) to denote the pattern argument of T .
A definitional tree T of an operation f is a finite pdt with a pattern of the form
p : f(o1 :X1, . . . , on :Xn) where n is the number of arguments of f , X1, . . . ,Xn are
new variables and p, o1, . . . , on are new nodes. A forest of definitional trees (fdt) F
of an operation f is a set of definitional trees such that every rule defining f appears
in one and only one tree in F .

Example 4.6 Consider the WAGRS of Example 3.3. A definitional tree Tg of the
operation g is represented in Fig. 5 and formally defined by :

Tg = branch(k1:g(k2:X1,k3:X2,k4:X3), k2,
branch(k1:g(k5:a,k3:X2,k4:X3), k3,

rule(k1:g(k5:a,k6:a,k4:X3) → k4:X3)))

Notice that the rules R1 and R2 of Example 3.3 cannot be represented in only
one definitional tree. This is why we introduced the notion of fdts. In Fig. 5,
we represent possible fdts Ff = {T 1

f , T 2
f }, Fg = {Tg}, Fh = {Th} and Fi =

{T 1
i , T 2

i , T 3
i } corresponding to the operations f, g, h and i.



k1:i(k2:X1,k3:X2,k4:X3)

k6:a

T 1
i

k1:i(k5:a,k3:X2,k4:X3)

k1:f(k2:X1,k3:X2)

k1:f(k4:a,k3:X2)

k5:d(k5,k3:X2)

T 1
f

k1:f(k2:X1,k3:X2)

k1:f(k2:X1,k4:s(k5:X3)

k6:d(k6,k7:s(k8:a)

T 2
f

k1:i(k2:X1,k3:X2,k4:X3)

k2:X1

T 2
i

k1:i(k2:X1,k5:a,k4:X3)

T 3
i

k1:h(k3:a)

k3:a

Th

k1:h(k2:X1)

k1:g(k2:X1,k3:X2,k4:X3)

k1:g(k5:a,k3:X2,k4:X3)

k1:g(k5:a,k6:a,k4:X3)

k4:X3

Tg

k2:X1

k1:i(k2:X1,k3:X2,k4:X3)

k1:i(k2:X1,k3:X2,k5:a)

Figure 5:

Our sequential graph narrowing strategy Λ̄ is a partial function that operates
on atgs in the presence of WAGRSs. Λ̄(g) returns, when it is possible, a set of
tuples (n, l → r, σ) such that g is narrowable at node n using the rule l → r and the
substitution σ. σ is a particular unifier of g|n w.r.t. l, which is generally not a most
general unifier of g|n w.r.t. l. Actually, σ may assign some variables of g which are
not variables of g|n. Λ̄ uses an auxiliary function λ̄ which takes two arguments : an
operation-rooted atg and a pdt of this operation.

Definition 4.7 Let g be an atg. Λ̄ is the partial function such that
Λ̄(g) = λ̄(g|p, T1)∪ . . .∪ λ̄(g|p, Tn) where p is the leftmost-outermost functional node
of g and {T1, . . . , Tn} is an fdt of the label of p in g.
Let g be an operation-rooted atg and T a pdt such that pattern(T ) unifies g at the
root. λ̄(g, T ) is a set of triples of the form (p,R, σ), where p is a non variable node
of g, R is a rewrite rule and σ is a unifier of g|p w.r.t the left-hand side of R.
λ̄(g, T ) is defined as the smallest set such that :

λ̄(g, T ) ⊇




















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






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




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






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
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











{(p,R, σ)} if T = rule(π → r), p = Rootg, R = π → r and
σ is a most general unifier of g w.r.t. π ;

λ̄(g, Ti) if T = branch(π, o, T1, . . . , Tk) and
g and pattern(Ti) unify for some i ∈ 1..k ;

{(p,R, σ)} if T = branch(π, o, T1, . . . , Tk),
τ is a m.g.u. of g w.r.t. π and
there exists a homomorphism h : π → τ(g),
h(o) is labeled with a defined operation f ,
F = {T ′

1 , . . . , T ′
k} is an fdt of f ,

S = λ̄(τ(g|h(o)), T
′
1 ) ∪ . . . ∪ λ̄(τ(g|h(o)), T

′
k),

(p,R, σ′) ∈ S and σ = σ′ ◦ τ .

Example 4.8 Consider the WAGRS of Example 3.3. Let g =
n1:f(n2:g(n3:x,n4:y,n5:h(n4)),n6:i(n5,n7:h(n4),n8:a).

Λ̄(g) = λ̄(g|n1, T 1
f ) ∪ λ̄(g|n1, T 2

f )

= λ̄(g|n2, Tg) ∪ λ̄(g|n6, T 1
i ) ∪ λ̄(g|n6, T 2

i ) ∪ λ̄(g|n6, T 3
i )



= {(n2, R3, σ1)} ∪ λ̄(g|n5, Th) ∪ λ̄(g|n7, Th) ∪ {(n6, R7, Id)}
= {(n2, R3, σ1), (n5, R4, σ2), (n7, R4, σ2), (n6, R7, Id)}

where the substitutions σ1 and σ2 are defined by
σ1 = {x 7→ r1 : a, y 7→ r2 : a} and σ2 = {y 7→ r3 : a}.

Theorem 4.9 Weakly needed graph narrowing ;Λ̄ is sound and complete.

5 Parallel Graph Narrowing

A graph narrowing step uses a single rewriting step. Therefore, we can improve
weakly needed graph narrowing by using a parallel rewriting step instead :
A parallel narrowing step from an atg g1 to an atg g2 at nodes p1, . . . , pn using the
rules R1, . . . , Rn and the substitution σ is defined by g1 ;bb [p1,R1]...[pn,Rn],σ g2 ⇐⇒

σ(g1) −→bb [p1,R1]...[pn,Rn] g2.
The definition of a parallel narrowing step needs the computation of substitu-

tions as well as the computation of the different positions used to rewrite in paral-
lel. The computation of substitutions is performed by the parallel graph narrowing
strategy ¯̄Λ which is defined below :

Definition 5.1 Let g be an atg. ¯̄Λ is the partial function such that :

¯̄Λ(g) =
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∃(p,R, σ) ∈ Λ̄(g),
(∀(q, S, θ) ∈ Λ̄(g),

if θ
.

≤ σ [Vg] and θ 6= Id [Vg],
then σ

.
= θ [Vg])

σ|Vg
such that and

(∃C ∈ Pathsg(Rootg, p),
∀(q, S, θ) ∈ Λ̄(g),

if θ
.

≤ σ [Vg] and q ∈ C,
then σ

.
= θ [Vg])


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

/
.
=

In the definition of ¯̄Λ(g), the first condition selects the least instantiated substi-
tutions among those of Λ̄(g) which are not the identity, in addition to the identity
substitution if there exists some triple (p,R, Id) in Λ̄(g). The second condition
allows to eliminate substitutions which are below the identity in every path of the
graph. Notice that this condition departs from the one given in [3] due to the
sharing of subgraphs.

Example 5.2 Following Example 4.8, we consider the case of the different triples

of Λ̄(g) in order to compute ¯̄Λ(g). (n2, R3, σ1) must be eliminated because σ2

.

≤
σ1 [Vg]. (n7, R4, σ2) must be deleted because the only path from n1 to n7 (i.e.,

[n1, 2, n6, 2, n7]) contains the node n6 and (n6, R7, Id) ∈ Λ̄(g) and Id
.

≤ σ2 [Vg].
(n5, R4, σ2) is kept since there exists a path C = [n1, 1, n2, 3, n5] such that for all

(q,R, θ) ∈ Λ̄(g), if p ∈ C (e.g., n2), then σ2

.

≤ θ [Vg]. The triple (n6, R7, Id) is kept

for the same reason. Hence, we conclude that ¯̄Λ(g) = {Id, σ2}.

Since a parallel narrowing step requires the computation of a parallel rewriting
step, we recall below the definition of the parallel graph rewriting strategy Φ̄. Fur-
ther details and examples may be found in [8]. A parallel graph rewriting strategy,



e.g. Φ̄, is a partial function which takes an atg g and returns a set of pairs (p,R) such
that g →[p,R] g′ for some atg g′. We write g →Φ̄ g′ iff g →[p,R] g′ and (p,R) ∈ Φ̄(g).

The parallel graph rewriting strategy Φ̄ uses two auxiliary functions ϕ̄ and
Outer. ϕ̄ takes two arguments : an operation-rooted atg and a pdt of this op-
eration.

Definition 5.3 Let g be an operation-rooted atg and T a pdt such that pattern(T )
matches g at the root. We define the partial function ϕ̄ by :

ϕ̄(g, T ) =
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
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{(p,R)} if T = rule(π → r), p = Rootg and R = π → r ;
ϕ̄(g, Ti) if T = branch(π, o, T1, . . . , Tk) and

pattern(Ti) matches g for some i ∈ 1..k ;
S if T = branch(π, o, T1, . . . , Tk),

π matches g using the homomorphism h,
h(o) is labeled with a defined operation f in g,
F = {T ′

1 , . . . , T ′
k} is an fdt of f and

S = ϕ̄(g|h(o), T
′
1 ) ∪ . . . ∪ ϕ̄(g|h(o), T

′
k).

In the definition above, ϕ̄(g, T ) computes a set S of pairs (p,R) where p is a
node of g and R is a rule whose left-hand side matches g at node p. Some pairs
(p,R) in S may be useless. Therefore, we define the function Outer(g, S) which
chooses a maximal set consisting of outermost functional nodes of S w.r.t. g. If
an outermost functional node p occurs several times in S, only one pair (p,R) will
appear in Outer(g, S). Outer(g, S) can be defined in a deterministic way by using
some ordering on the rewrite rules.

Definition 5.4 Let g be an atg and S = {(p1, R1), . . . , (pn, Rn)} a set of pairs such
that pi is a node of g and Ri is a rewrite rule. We define Outer(g, S) as a maximal
subset {(q1, S1), . . . , (qk, Sk)} of S such that :

1. For all i, j ∈ 1..k, i 6= j =⇒ qi 6= qj.

2. For all i ∈ 1..k, there exists a path [Rootg, i0, u1, i1, . . . , ik−1, qi] such that for
all j ∈ 0..k − 1, for all rewrite rules R, (uj , R) /∈ S.

Definition 5.5 Let g be an atg, p the leftmost-outermost functional node of g, f
the label of the node p in g and F = {T1, . . . , Tk} an fdt of f . Φ̄ is the partial
function defined by Φ̄(g) = Outer(g, S) where S = ϕ̄(g|p, T1) ∪ . . . ∪ ϕ̄(g|p, Tk).

Example 5.6 We have shown in Example 5.2 that σ2 ∈ ¯̄Λ(g) where σ2 = {y 7→
r3 : a} and g = n1:f(n2:g(n3:x,n4:y,n5:h(n4)),n6:i(n5,n7:h(n4),n8:a). Let
g′′ = σ2(g) = n1:f(n2:g(n3:x,r3:a,n5:h(r3)),n6:i(n5,n7:h(r3),n8:a).
By Definition 5.5, Φ̄(g′′) = Outer(g′′, S) where

S = ϕ̄(g′′|n1, T 1
f ) ∪ ϕ̄(g′′|n1, T 2

f )

= ϕ̄(g′′|n2, Tg) ∪ ϕ̄(g′′|n6, T 1
i ) ∪ ϕ̄(g′′|n6, T 2

i ) ∪ ϕ̄(g′′|n6, T 3
i )

= ∅ ∪ ϕ̄(g′′|n5, Th) ∪ ϕ̄(g′′|n7, Th) ∪ {(n6, R7)}

= {(n5, R4), (n7, R4), (n6, R7)}

Outer(g′′, S) selects the outermost redexes of S in g′′. Since every path from Rootg′′

to n7 goes through n6, the pair (n7, R4) is eliminated. So Φ̄(g′′) = {(n5, R4), (n6, R7)}.
The reader may check that g′′ −→bb Φ̄ g′ where g′ = n1:f(n2:g(n3:x,r3:a,r3),r3).



In [8], we have proved that the redexes computed by Φ̄(g) constitute a necessary
set of redexes. As a particular case, it is easy to see that in the case of induc-
tively sequential WAGRSs1 , Φ̄(g) computes a singleton {(p,R)} such that g|p is a
needed redex in g [6]. Finally, Φ̄ is a hyper-normalizing strategy (thus a normalizing
strategy) w.r.t. the atgs which have a constructor normal form.

Definition 5.7 The ¯̄Λ-parallel graph narrowing relation ;bb ¯̄Λ induced

by ¯̄Λ and Φ̄ is defined by g1 ;bb ¯̄Λ,σ
g2 ⇐⇒ σ ∈ ¯̄Λ(g1) and σ(g1) −→bb Φ̄ g2.

Example 5.8 In Example 5.6, we have seen that σ2 ∈ ¯̄Λ(g) and
σ2(g) −→bb Φ̄ g′. So we conclude that g ;bb ¯̄Λ,σ2

g′.

Theorem 5.9 ¯̄Λ-parallel graph narrowing ;bb ¯̄Λ is sound and complete.

The ¯̄Λ-parallel narrowing relation ;bb ¯̄Λ inherits all optimality properties of par-
allel term narrowing [3] :

• ;bb ¯̄Λ computes only needed graph narrowing derivations [6] in the case of
inductively sequential WAGRSs1.

• ;bb ¯̄Λ normalizes deterministically ground atgs to constructor atgs.

In addition to the above properties, graph structures induce new improvements
for narrowing. Actually, the implementation of λ̄ is more efficient than its corre-
sponding one for terms. Indeed, thanks to the sharing of subexpression in graph
structures, λ̄ can avoid redundant computations which occur when λ̄ has to revisit
several times a same shared subgraph. This kind of improvements are not possible
for tree (term) structures.

6 Conclusion

In this paper, we have extended weakly needed term narrowing and parallel term
narrowing [3] to graphs in the framework of weakly admissible graph rewriting

systems. These new graph narrowing strategies, denoted Λ̄ and ¯̄Λ are sound and
complete. Moreover, they preserve the same nice properties as that of the term
narrowing strategies. As graph narrowing is more efficient than term narrowing, ¯̄Λ is
a good candidate to the implementation of logic functional programming languages.

Nevertheless, parallel graph narrowing can be optimized by using graph collaps-
ing [7]. We say that a graph g1 collapses into a graph g2 if both g1 and g2 represent
the same information but g2 is more compact than g1. Therefore, a graph g2 is
obtained from a graph g1 by means of collapsing graph narrowing if there exist
a substitution σ and a graph g′1 such that σ(g1) collapses into g′1 and g′1 rewrites
into g2. In [7], we have extended parallel graph narrowing to parallel collapsing
graph narrowing and established that this strategy develops the shortest narrowing
derivations that a narrowing based algorithm might ever compute.

1An inductively sequential WAGRS is a WAGRS such that the rules of each operation may be

stored within one definitional tree.
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