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Abstract

While some heuristics exist for the learning of graph grammars, few has been done on
the theoretical side. Due to complexity issues, the class of graphs has to be restricted:
this paper deals with the subclass of plane graphs, which correspond to drawings of planar
graphs. This allows us to introduce a new kind of graph grammars, using a face-replacement
mechanism. To learn them, we extend recent successful techniques developed for string
grammars, and based on a property on target languages: the substitutability property. We
show how this property can be extended to plane graph languages and finally state the first
identification in the limit result for a class of graph grammars, as far as we know.

1. Introduction

Although Graph Grammars have been defined and studied for 3 decades from a language-
theoretical standpoint (see [Rozenberg and Ehrig, 1997] for an overview), the learning of
graph grammars is a difficult problem that was poorly investigated in the literature yet. As
shown by Tim Oates in the tutorial he gave during ICGI’10, most contributions concern
heuristics tailored for graphs involved in restricted application domains. This is the case
of both most famous algorithms, Subdue [Cook and Holder, 2000] and FFSM [Huan et al.,
2003], and their extensions (see [Matsuda et al., 2002; Jonyer et al., 2003; Kukluk et al.,
2008] for the main ones). On the theoretical side, it appears that learnability results are
even more rare and often provide us with preliminary results, rather than effective learning
algorithms. E.g., Jeltsch and Kreowski [1991] give an algorithm that generates the set of
grammars consistent with a given set of graphs. Brijder and Blockeel [2011] investigate
the inference of a grammar consisting of one production rule only, given a graph and a
distinguished pattern with many occurrences. Few necessary conditions for the learning
of graph grammars have also been studied under unrestricted Gold’s paradigm [Costa-
Florencio, 2009]. The situation is a bit different in other branches of Machine Learning:
many techniques have appeared to tackle problems related to, e.g., Social or Biological
Networks. However, they generally hide the complexity of the graph structures into abstract
numerical structures (see graph kernels [Vishwanathan et al., 2010] for instance).
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There are many reasons for this, going from the profusion of incomparable graph gram-
mar formalisms to the hardness of the model itself. Concerning the latter, many basic
problems, such as the search for a subgraph in a graph, and thus the possibility to parse a
graph with a grammar, are generally NP-complete. Nevertheless, the main reason for the
absence of positive learning result for graph grammars is probably that no kind of graph
grammars was designed with the aim of learning. Indeed, one way to tackle the difficulties
induced by generative devices (grammars) consists in restricting the languages. That is,
the successful approach in Grammatical Inference is often to determine features that are
learnable, which usually correspond to observable properties in any set of examples, and
then to focus only on the languages that share these characteristics.

Hence, in the case of graph languages, we should first determine which kind of graphs
are likely to be learnable, and then choose the kind of grammars to use. For reasons that
will be developed in this paper, a promising candidate is the class of plane graphs, that is,
planar graphs embedded in the plane (see Fig. 1). Note that a planar graph has a set X
of vertices and a set E of edges as usual, but also a set F of faces, as soon as this graph
is embedded in the plane. A planar graph may have several incomparable drawings, so
we define a plane graph by fixing the embedding. More formally, a plane graph stands
for an isotopy class of planar embeddings for a given planar graph [Fusy, 2007]. A plane
graph is thus a planar graph that is embedded in the plane without edge-crossing and up to
continuous deformations. Given a planar embedding of a planar graph, Fáry [1948] proved
that it is always possible to move the vertices, within the same isotopy class, so that the
edges are drawn with straight-line segments. We shall use such straight-line drawings in
the following.

Now, as no graph grammar formalism captures the specificities of such plane graphs,
we choose not to use existing general graph-grammar formalisms, but propose a new one,
the binary plane graph grammars. These grammars can be seen as face-replacement gram-
mars, thus constitute an interesting alternative to standard node-replacement or hyperedge-
replacement grammars. Indeed, their rules replace one face by a new plane graph, that is
sewn in mother graph using a syntactic gluing law. Of course, it is beyond the scope of this
paper to provide a complete analysis of this formalism and thus some important features
will not be studied below. For instance, the production rules that we consider have binary
right hand-sides and thus are similar to those of the Chomsky normal forms for context-free
string grammars. Nevertheless, we do not study the generative capacities of our rules, thus
do not claim that any possible definition of a plane graph grammar would be equivalent to
a grammar made of our rules only.

On the other hand, we investigate below the learnability of this new type of graph
grammars, and prove that one can get formal learnability results in this setting. We believe
that this is quite an interesting improvement w.r.t. the state of the art. Concerning the
difficulties, note that when one is trying to learn from graphs, negative data are usually
not available. We know since the work by Gold [1967] that it is not possible to identify in
the limit any superfinite class of languages from positive data, and thus we need to restrict
ourselves to a subclass of plane graph languages. The recent successes of distributional
learning for string grammars [Clark, 2010] and tree grammars [Kasprzik and Yoshinaka,
2011] motivate us to define an analogue of substitutable context-free languages [Clark and
Eyraud, 2007] for plane graph languages.
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Preliminaries about plane graphs are given in Section 2. The substitutability property
is adapted and described in Section 3. In Section 4, we define the binary plane graph
grammars as well as the generation process. Section 5 is devoted to our learning procedure
and the proof of its convergence. We conclude the paper with a short discussion in Section 6.

2. On Plane Graphs

We have introduced the plane graphs using the notion of embeddings, i.e., functions that
map vertices to points, and edges to curves. However, this mathematical approach is quite
unsuitable for designing algorithms. As the set of faces is the corner stone to describe plane
graphs, we introduce plane graph systems below, which allow us to describe any connected
plane graph through its faces.

Let X ⊂ N be the alphabet of vertices. Let X∗ be the set of all strings over X, and
ε the empty string. Given a string x = a1 . . . an, we denote |x| = n its length and xR the
reverse string of x, that is to say xR = an . . . a1.

A circular string is intuitively a string in which the last symbol is followed by the first:
there is no first symbol but just a mapping associating to each symbol the next one. We
denote a circular string by [u], with the convention that if u and v are two strings, then
[uv] = [vu]. The set of all circular strings over X is denoted by X>. We set [x]R = [xR].

Now consider the plane graph of Figure 1. The outer face is f1 and bounded (inner)
faces are f2 and f3. Each face has only one boundary since the graph is connected. Such a
boundary can be described by a circular string of vertices in which two consecutive vertices
and the last and first vertices are linked by an edge. Conventionally, we follow a boundary
by leaving it to the right. In other words, the bounded face is on the left of the walk. Hence,
the boundary of face f3 is [53634 ], or equivalently [63453 ], by circular permutation.

Figure 1: A plane graph with 3 faces.

We now introduce the following description system for connected plane graphs:

Definition 1 (Plane Graph System) A plane graph system (PGS for short) is a tuple
S = 〈X,E, F, o,D〉 such that (1) 〈X,E〉 is a connected planar simple graph [Gibbons, 1985],
(2) F is a finite nonempty set of symbols called the faces, (3) o ∈ F is a distinguished symbol
called the outer face and (4) D : F → X> is a function, called the boundary descriptor,
that maps any face to its boundary. For sake of simplicity, we shall confuse any face f with
the description of its boundary D(f). Hence, function D will be kept implicit and we simply
denote by 〈X,E, F, o〉 the plane graph system S. At last, let G be the set of all plane graph
(systems). Any subset of G is called a plane graph language.
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The size of a PGS G = 〈X,E, F, o〉 is |G| =
∑

f∈F |f |. Given any edge e, we denote by
faces(e) the set of faces incident to edge e. Notice that faces(e) can contain either 1 or 2
faces (only one in the case of a pendant edge). We use nodes(f) and edges(f) for the set of
vertices and edges along the boundary of face f , respectively.

For instance, consider the plane graph of Fig. 1. The corresponding PGS is S =
〈X,E, F, o〉 with X = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 5}, {3, 6}, {4, 5}},
F = {f1, f2, f3}, o = f1 and f1 = [13542 ], f2 = [1243 ], f3 = [34536 ]. More-
over, we have faces({3, 4}) = {f2, f3}, faces({3, 6}) = {f3}, nodes(f3) = {3, 4, 5, 6} and
edges(f3) = {{3, 4}, {4, 5}, {5, 3}, {3, 6}}. Note that every plane graph can be described
with a plane graph system, but the converse does not hold in general. E.g., if two faces of
a PGS are declared to have [123] and [124] as respective boundaries, then no plane graph
exists with such faces. Less straightforward examples exist. In order to get round these
technical difficulties, it seems nevertheless possible to add further syntactic conditions in
Def. 1. This work is still in progress.

Definition 2 (Set of contiguous faces) Let S = 〈X,E, F, o〉 be a PGS. Two distinct
faces f, f ′ ∈ F are adjacent if ∃e ∈ E : faces(e) = {f, f ′}. The faces of a subset K ⊆ F are
contiguous if ∀f, f ′ ∈ K, a sequence f = f0, f1, . . . fn = f ′ of faces in K exists such that
∀i ∈ {0, 1, . . . , n− 1}, fi and fi+1 are adjacent.

Given a subset K ⊆ F of contiguous faces. We denote by outer(K) the (boundary of
the) outer face of that set. For instance, on the PGS of Fig. 1, outer({f2, f3}) = f1 =
outer({f2, f3, f1}) and outer({f3}) = [354]. Although beyond the scope of this paper, note
that face outer(K) can be computed in polynomial time using the normalization procedure
introduced in [de la Higuera et al., 2012].

We also need a concatenation operation to glue together 2 distinct plane graphs whose
outer faces share edges.

Definition 3 (Concatenation) Let G1 = 〈X1, E1, F1, o2〉 and G2 = 〈X2, E2, F2, o2〉 be
two PGS such that F1 ∩F2 = ∅ and X1 ∩X2 = {a1, . . . ak}, k > 1, and o1 = [a1 . . . aky] and
o2 = [ak . . . a1z] with y ∈ X∗1 , z ∈ X∗2 and |y| ≥ 2, |z| ≥ 2. The concatenation of G1 and
G2, written G1 �G2, is the PGS G = 〈X1 ∪X2, E1 ∪ E2, (F1 \ {o1}) ∪ (F2 \ {o2}) ∪ {o}, o〉
with o = [yz].

One can easily prove that the definition of G1 �G2 corresponds to the one of a PGS.
We finally need a way to compare two PGS:

Definition 4 (Plane isomorphism [de la Higuera et al., 2012]) Let G1 =
〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉 be two PGS. We say that G1 and G2 are
plane-isomorphic, written G1

∼=p G2, if there exist a 1-to-1 mapping χ : X1 → X2 over the
vertices and a 1-to-1 mapping ξ : F1 → F2 over the faces such that (1) the outer face is
preserved: ξ(o1) = o2 and (2) the boundaries are preserved: ∀f1 ∈ F1, f2 ∈ F2, if ξ(f1) = f2
and f1 = [a1 . . . an] then f2 = [χ(a1) . . . χ(an)] .

Plane-isomorphism is decidable in O(|E1| · |E2|) time [de la Higuera et al., 2012]. Moreover,
notice that if G1

∼=p G
′
1 and G2

∼=p G
′
2, and both G1 � G2 and G′1 � G′2 are defined, then

G1 �G2
∼=p G

′
1 �G′2.
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3. The Substitutability Property for Plane Graph Languages

Definition 5 (Plane context) A plane context is a tuple C = 〈X,E, F, h, o〉 such that
(1) 〈X,E, F, o〉 is a plane graph system and (2) h ∈ F \ {o} is a distinguished face called
the hole of context C and (3) h has no pendant edge.

The plane-isomorphism relation is extended to contexts in the obvious way: two con-
texts C = 〈X,E, F, h, o〉 and C ′ = 〈X ′, E′, F ′, h′, o′〉 are plane-isomorphic if 〈X,E, F, o〉 ∼=p

〈X ′, E′, F ′, o′〉 and the image of h by the bijection on the faces is h′, i.e. ξ(h) = h′.
Let S = 〈X,E, F, o〉 and S′ = 〈X ′, E′, F ′, o′〉 be two PGS such that X ∩ X ′ = ∅. Let

f ∈ F and f ′ ∈ F ′ be two faces. Every 1-to-1 mapping φ : nodes(f) → nodes(f ′) can
be extended to the set of all vertices X as follows: φ̂ : X → nodes(f ′) ∪ X such that
φ̂(a) = φ(a) if a ∈ nodes(f) and φ̂(a) = a otherwise. This function is extended to faces:
φ̂([a1 . . . an]) = [φ̂(a1) . . . φ̂(an)], to set of faces: φ̂(F ) = {φ̂(f) : f ∈ F} and to set of
edges: φ̂(E) = {{φ̂(a), φ̂(b)} : {a, b} ∈ E}. By extension, given a PGS G = 〈X,E, F, o〉,
φ̂(G) = 〈φ̂(X), φ̂(E), φ̂(F ), φ̂(o)〉.

We can now define the gluing or wrapping operation.

Definition 6 (Gluing) Let C = 〈X,E, F, h, o〉 be a context and S = 〈X ′, E′, F ′, o′〉 be
a PGS such that X ∩ X ′ = ∅. Let φ be a bijective function from nodes(o′) to nodes(h).
The gluing of S into C following gluing function φ, denoted C �φ S, is the PGS G =

〈XG, EG, FG, oG〉 such that (1) XG = X ∪X ′ \ nodes(o′), (2) EG = E ∪ φ̂(E′), (3) FG =
(F \ {h}) ∪ φ̂(F ′ \ {o′}) and (4) oG = o. In this case, we say that S is a subgraph or a
pattern of G.

Note that a pattern is actually a subset of contiguous faces in a plane graph. More general
notions of subgraphs exist (based on subsets of vertices and edges, independently on faces),
but they generally induce intractable problems. E.g., the search of a pattern in a plane
graph is tractable, whereas the search of a general subgraph is NP-complete for plane
graphs [de la Higuera et al., 2012]. In the following, term subgraph exclusively means
pattern.

Definition 7 (Substitutability) Two PGS G = 〈X,E, F, o〉 and G′ = 〈X ′, E′, F ′, o′〉 are
substitutable w.r.t. a plane graph language L if whenever there exist two contexts C and
C ′, C ∼=p C

′, and two gluing functions φ and φ′ such that C �φ G is in L and C ′ �φ′ G′ is
in L, then for all contexts C ′′,(

∃φ1 : C ′′ �φ1 G ∈ L
)
⇐⇒

(
∃φ2 : C ′′ �φ2 G′ ∈ L

)
where for all a ∈ nodes(o), for all b ∈ nodes(o′), if φ(a) = φ′(b) then φ1(a) = φ2(b).

If G and G′ are substitutable, we will note G ≡LS G′, or G ≡S G′ when there is no ambiguity.

Lemma 8 Let G,G′ and G′′ be PGS. If G ∼=p G
′ and G′ ≡S G′′ then G ≡S G′′.

Proof [Hint] Let χ be the 1-to-1 function that maps the vertices of G onto those of G′ (as
in the definition of plane isomorphism). Let C be a context such that there exists a gluing
functions φ such that C �φ G′′ in L. As G′ ≡S G′′ there exists φ′ such that C �φ′ G′ in L.
By construction we have C �φ′oχ G = C �φ′ G′ and thus C �φ′oχ G is in L.
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4. The Design of Binary Plane Graph Grammars

Definition 9 (Plane non-terminal) A plane non-terminal is a couple (N, r) where N is
a symbol and r an integer greater than 2 called the rank of N . In the following, we assume
that any symbol has a unique rank, that is, if (N, r1) and (N, r2) are plane non-terminals,
then r1 = r2.

A non-terminal is just the shape of a plane graph. That is, it can be viewed as a PGS with
a unique inner face made of r vertices and no pendant edge.

We now define the two types of grammar rules used in our grammars.

Definition 10 (Plane graph lexical rule) A plane graph lexical rule is a pair (Ax, G∗),
written Ax → G∗, where (1) x is a string, (2) (A, |x|) forms a plane non-terminal and (3)
G∗ = 〈X,E, F, o〉 is a plane graph system such that |F | = 2 and o = [xR].

Notice that the (unique) inner face of G∗ does not have to be [x]: there may be pendant
edges.

Definition 11 (Plane graph binary production) A plane graph binary production is
a tuple written Ax → ByCz, where (1) (A, |x|), (B, |y|) and (C, |z|) are plane non-terminals,
and (2) x, y, z are strings with no repeated symbols such that 〈X,E, {[y], [z], [xR]}, [xR]〉 is
a PGS, with X = nodes([y]) ∪ nodes([z]) and E = edges([y]) ∪ edges([z]).

A production can be seen as the development of a face A made with rank(A) vertices into 2
adjacent faces whose overall shape is the same as A. Fig. 2 gives a graphical representation
of an example of a plane graph binary production.

Figure 2: A graphical representation of the (recursive) plane graph binary production
A1234 → A1564 B123465. The dashed lines attach each non-terminal to the vertex
appearing at the head of the string corresponding to that face in the rule.

Definition 12 (Binary plane graph grammar) A binary plane graph grammar (or
simply plane graph grammar) G is a tuple 〈N , PL, PB,A〉 such that N is a set of plane
non-terminals, PL is a set of plane graph lexical rules, PB is a set of plane graph binary
productions and A ⊆ N is the set of axioms.
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Definition 13 (Plane sentential form) Let G = 〈N , PL, PB,A〉 be a plane graph gram-
mar. A plane sentential form is a couple 〈G,L〉 where G = 〈X,E, F, o〉 is a PGS and L :
F → N×X is a partial function such that L(f) = (N, a) implies that |nodes(f)| = rank(N)
and a ∈ nodes(f).

Function L labels some faces with non-terminal symbols. It more precisely attaches the
label to one distinguished vertex a of the face. This allows us to introduce some control
during the application of a rule. Indeed, this trick is used to avoid all possible rotations
of the right hand-side of the rule when this right hand-side is glued in mother graph. We
formally detail this below.

4.1. Apply a lexical rule

A lexical rule R : Aa1...am → G∗, withG∗ = 〈X∗, E∗, {f∗, o∗}, o∗〉, is applicable to a sentential
form S = 〈G,L〉, with G = 〈X,E, F, o〉, if there exists a face f = [a′1 . . . a

′
m] ∈ F such that

L(f) = (A, a′1). The resulting sentential form corresponds to S where L(f) is not defined
anymore and f is replaced by the graph G∗, whose vertices are consistently renamed. More
formally, applying R to S following f , consists in creating the sentential form S′ = 〈G′,L′〉
with G′ = 〈X ′, E′, F ′, o′〉 such that

• F ′ = F \ {f} ∪ φ̂(f∗)

• ∀f ′ ∈ F, f ′ 6= f : if L(f ′) is defined then L′(f ′) = L(f ′)

• X ′ = X ∪ φ̂(X∗)

• E′ = E ∪ φ̂(E∗)

where φ is a injection defined as follow: ∀i, 1 ≤ i ≤ m, φ(ai) = a′i; otherwise φ(c) ∈ N \X.

4.2. Apply a binary production rule

A production ruleR : Aa1...am → Bb1...bn Cc1...cp is applicable to a sentential form S = 〈G,L〉,
where G = 〈X,E, F, o〉, if there exists a face f = [a′1 . . . a

′
m] ∈ F such that L(f) = (A, a′1).

Applying R to S following f , consists in creating the sentential form S′ = 〈G′,L′〉 with
G′ = 〈X ′, E′, F ′, o′〉 s.t.

• F ′ = F \ {f} ∪ {φ̂([b1 . . . bn]), φ̂([c1 . . . cp])}

• ∀f ′ ∈ F, f ′ 6= f : if L(f ′) is defined then L′(f ′) = L(f ′)

• L′(φ̂([b1 . . . bn])) = (B,φ(b1)), L′(φ̂([c1 . . . cp]) = (C, φ(c1))

• X ′ = X ∪ nodes(φ̂([b1 . . . bn])) ∪ nodes(φ̂([c1 . . . cp]))

• E′ = E ∪ edges(φ̂([b1 . . . bn])) ∪ edges(φ̂([c1 . . . cp]))

where φ is a injection defined as follow: ∀i, 1 ≤ i ≤ m, φ(ai) = a′i; otherwise φ(c) ∈ N \X.
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4.3. Representable languages

Given a plane graph grammar G = 〈N , PL, PB,A〉, we say that a plane graph G =
〈X,E, F, o〉 is derivable with G, or that G belongs to the language of G, if there exists
a sequence of sentential forms S1, . . . , Sn such that

• S1 = 〈G1,L1〉 is an initial sentential form, that is, G1 = 〈X1, E1, F1, o1〉 with F1 =
{oR, o} and o1 = o and L1 is only defined for oR: L1(oR) = (N, a), with N ∈ A and
a ∈ nodes(oR),

• ∀i, 1 ≤ i < n: Si+1 is obtained from Si by applying a rule of G,

• Sn = 〈Gn,Ln〉 with Gn ∼=p G and ∀f,Ln(f) is not defined.

n is said to be the length of the derivation. An example of a derivation is given in Fig. 3.

Figure 3: A graphical representation of an example of a derivation in the grammar G =
〈{(A, 4), (B, 6)}, PL, PB, {(A, 4)}〉, with PL = {A1234 → [123534], B123465 →
[123465]} (for sake of simplicity, inner faces are given instead of PGS) and
PB = {A1234 → A1564B123465}. This derivation corresponds to the sequence of
sentential forms S1, S2, S3, S4, S5, S6. The functions Li, 1 ≤ i ≤ 6, are represented
via dash lines.

We will write N ⇒∗G G when G = 〈X,E, F, o〉 is derivable with G using an initial
sentential form S1 where L1 is defined only on oR and L1(oR) = (N, a), for some a ∈
nodes(oR). The language represented by G is L(G) = {G : ∃G′, ∃N ∈ A s.t. N ⇒∗G
G′ ∧G′ ∼=p G}. Notice that this definition implies that the language is closed under plane
isomorphism.

5. Learning Binary Plane Graph Grammars

5.1. The Learner

As we are interested in the class of substitutable plane graph languages, the learning al-
gorithm has to deal with the distribution of contexts between subgraphs. The following
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definition is adapted from the work on substitutable string languages [Clark and Eyraud,
2007]:

Definition 14 (Substitution graph) Given a finite set of plane graphs LS, the substi-
tution graph SG = 〈V,E〉 corresponding to LS is defined as followed : The set of vertices V
is composed of all subgraphs extractable from the elements of LS. There is an edge between
two nodes G and G′ if their outer face contains the same number of vertices and there
exist two contexts C and C ′, C ∼=p C

′, and functions φ, φ′ such that C �φ G ∈ LS and
C ′ �φ′ G′ ∈ LS.

The aim of that graph is to help the inference of the reductions rules: all subgraphs in
the same connected component are substitutable, and thus will be derived by the same
non-terminal.

Given a set of contiguous inner faces F , we define split(F ) to be the set of couples
(F1, F2) such that F1 ∪ F2 = F and GF1 � GF2 is defined, where for i ∈ {1, 2}, GFi =
〈nodes(Fi), edges(Fi), Fi ∪ {outer(Fi)}, outer(Fi)〉. The function number nodes(C) returns
the number of nodes of the outer face of the graphs in the connected component C of a
substitution graph.

Our learning algorithm is described in Algorithm 1.

Algorithm 1: SGL for graphs

Input: A learning set of plane graph systems LS = {Gi}ni=1

Output: A plane graph grammar 〈N , PL, PB,A〉
SG = 〈V,E〉 ← create substitution graph(LS);
N ← ∅; PL ← ∅; PB ← ∅; A ← ∅;
foreach Connected component Ci of SG do
N ← N ∪ {(N i, number nodes(Ci))};
foreach G in Ci do
N t(G)← N i;
if G ∈ LS then
A ← A∪ {N i}

foreach G = 〈XG, EG, FG, [(a1 . . . an)R]〉 in V do
if |FG| = 2 then

PL ← PL ∪ {N t(G)a1...an → G};
else

foreach (F1, F2) ∈ split(FG \ {oG}) do
PB ← PB ∪ {N t(G∗)a1...am → N t(G1)b1...bn N t(G2)c1...cp} where
[b1 . . . bn] = outer(F1), [c1 . . . cp] = outer(F2), b1 = b, c1 = c and
∀i : Gi = 〈Xi, Ei, Fi ∪ {outer(Fi)}, outer(Fi)〉;

return 〈N,PL, PB,A〉

5.2. Time complexity

The number of contexts that can be generated from a given PGS can be exponential in the
size of that PGS (it is the case for instance of the plane graph corresponding to a grid, like
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a chest board). So the size of the substitution graph is in general exponential in the size of
the learning sample. This is a well-known problem while using graph grammar formalisms
as it has to be tackled to obtain an efficient parsing algorithm. Thus, different restrictions
on graphs have been designed that allow a polynomial number of subgraphs (and therefore
of contexts). For instance, while one is interested by hyper-edge replacement grammars,
requirement of a logarithmic k-separability [Lautemann, 1989] is a usual way to tackle this
problem. This property can be adapted to plane graphs in a quite straightforward way that
the lack of place unfortunately does not allow us to detail here.

To create the substitution graph, we first need to compare all pairs of contexts to decide
if they are plane isomorphic. This can be done in polynomial time in the size of the
contexts [de la Higuera et al., 2012]. For the same reason, testing if two PGS are plane
isomorphic can be done in polynomial time and so is the construction of the substitution
graph.

All other steps of Algorithm 1 are polynomial in the size of the substitution graph.

5.3. Identification in the limit

We now define our learning criterion. This is identification in the limit from positive text
[Gold, 1967], with polynomial bounds on data and computation [de la Higuera, 1997]. Note
that the size of a set of plane graphs LS is defined as |LS| =

∑
G∈LS |G|.

Definition 15 (Polynomial identification in the limit) A representation class R is i-
dentifiable in the limit from positive data with polynomial time and data iff there exist two
polynomials p(), q() and an algorithm A such that: (1) Given a positive sample LS of size
m A returns a representation R ∈ R in time p(m); (2) For each representation R of size n
there exists a characteristic set CS of size less than q(n) such that if CS ⊆ LS, A returns
a representation R′ such that L(R) = L(R′).

However, this definition initially designed for the learning of regular string languages, is
already unsuitable as a model for context free string grammars [de la Higuera, 1997], so
one cannot expect all requirements to be fulfilled in the case of graph grammars. As it is
beyond the scope of this paper to attempt to resolve this difficulty, we shall thus adopt this
approach in this paper.

5.3.1. Proof the hypothesis is not too large

We first need the following technical lemma, that states that substitutability is a congruence
with respect to concatenation:

Lemma 16 Let G1, G2, G
′
1, G

′
2 be 4 PGS s.t. G1 �G2 and G′1 �G′2 are defined. If G1 ≡S G2

and G′1 ≡S G′2 then G1 �G2 ≡S G′1 �G′2

Proof [Sketch] We index each element of the definition of a graph by its name. For instance
XG1 are the vertices of G1, FG1�G2 are the faces of G1 � G2, oG′1�G′2 is the outer face of
G′1 �G′2. Let C = 〈XC , EC , FC , h, oC〉 be a plane context such that there exists a bijection
φ: C �φ G1 � G2 is in L. Let CC�φ̂(G1)

= 〈XC ∪ φ̂(XG1) ∪ nodes(φ̂(oG2)), EC ∪ φ̂(EG1) ∪
edges(φ̂(oG2)), (FC \h)∪ φ̂(FG1 \oG1)∪ φ̂(oG2), φ̂(oG2), oC〉. Notice that CC�φ̂(G1)

is correctly
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defined as its faces are contiguous since, by definition of the concatenation, there exists
e ∈ EG1 , e ∈ edges(oG1�G2) and φ : nodes(oG1�G2)→ nodes(h). It is easy to verify by using
the definitions that CC�φ̂(G1)

�φ G2 = C �φ G1 �G2.

As G2 ≡S G′2 there exists φ′ such that CC�φ̂(G1)
�φ′ G′2 ∈ L. But CC�φ̂(G1)

�φ′ G′2 =

〈XC ∪ φ̂(XG1)∪ φ̂′(XG′2
), EC ∪ φ̂(EG1)∪ φ̂′(EG′2), (FC \h)∪ φ̂(FG1 \ oG1)∪ φ̂′(FG′2 \ oG2), oC〉

and thus it is equal to C �id φ̂(G1) � φ̂′(G′2) where id is the identity function. Us-
ing the same kind of construction, we can define the context CC�φ̂′(G′2)

such that

CC�φ̂′(G′2)
�id φ̂(G1) = C �id φ̂(G1) � φ̂′(G′2) ∈ L. As G1 ≡S G′1 and φ̂(G1) ∼=p G1,

there exists φ′′ such that CC�φ̂′(G′2)
�φ′′ G′1 ∈ L. Again, this is equivalent to write

C �id φ̂′′(G′1) � φ̂′(G′2), and as φ̂′′(G′1) � φ̂′(G′2) ∼=p G′1 � G′2 then there exists χ:
C �χ G′1 �G′2 ∈ L.

Lemma 17 If G = 〈X,E, F, o〉 is a subgraph of a sample LS, then there exists a plane
graph G′ such that N t(G)⇒∗ G′ and G ∼=p G

′.

Proof [Sketch] The proof can be done by induction on the number of faces of the graph. if
|F | = 2, then by the construction of the grammar there is a lexical rule N t(G)an...a1 → G
with [a1 . . . an] = o. Suppose the property holds for graphs with |F | = k > 2 faces. Let G be
a graph such that |F | = k + 1. Let G1 = 〈nodes(F1), edges(F1), F1 ∪ outer(F1), outer(F1)〉
and G2 = 〈nodes(F2), edges(F2), F2 ∪ outer(F2), outer(F2)〉 such that G1 �G2. G1 and G2

are also subgraphs of LS by definition and, by construction of the grammar, there exists
a rule N t(G)a1...am → N t(G1)b1...bnN t(G2)c1...cn with [a1 . . . am] = o, [b1 . . . bn] = outer(F1)
and [c1 . . . cp] = outer(F2).

This rule can be applied to the sentential form 〈G′,L′〉, with G′ = 〈X ′, E′, {oR, o}, o〉,
L′(oR) = (N t(G), a1). It gives the sentential form 〈G′′,L′′〉, with G′′ =
〈X ′′, E′′, {φ̂(outer(F1)), φ̂(outer(F2)), o}, o〉, L′′(outer(F1)) = (N t(G1), b1) and
L′′(outer(F2)) = (N t(G2), c1) By the inductive hypothesis there exist G′1 and G′2
such that N t(G1) ⇒∗ G′1, N t(G2) ⇒∗ G′2, G1

∼=p G′1 and G2
∼=p G′2. Thus we have

N t(G)⇒∗ G′1 �G′2 and G ∼=p G
′
1 �G′2.

Lemma 18 For all subgraphs G of a learning sample LS, for all PGS G′, if N t(G)⇒∗ G′
then G and G′ are substitutable.

Proof [Hint] Let G = 〈X,E, F, o〉. As the lemma holds for G′ ∼=p G, we restrict ourselves
to the case G′ 6∼=p G. By induction on the length of the derivation k. If k = 1, then it
means that a lexical production N t(G)a1...an → G′′ is applied and that G′′ ∼=p G

′. By the
construction of the lexical rules, it means that G′′ is a subgraph of LS that appears in
the same component than G and thus G and G′′ are substitutable. Lemma 8 implies that
G′ ≡S G.

Suppose this is true for all derivations of length less than k and let G′ be a
PGS obtained from N t(G) using k derivation steps. It means that there exists a
sequence of sentential form S1, . . . , Sk, ∀i, Si is derived from Si−1, Si = 〈Gi,Li〉
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such that G1 = 〈X1, E1, {oR, o}, o〉, L1(oR) = (N t(G), a) for some a ∈ nodes(o), and
Gk ∼=p G′, Lk being undefined for all faces of Gk. S2 is obtained from S1 applying
a rule N t(G)a1...am → N t(GF1)b1...bnN t(GF2)c1...bp , where outer(F1) = [b1 . . . bn] and
outer(F2) = [c1 . . . cp], GFi = 〈XFi , EFi , Fi ∪ outer(Fi), outer(Fi)〉, for i ∈ {1, 2}. We have
GF1 �GF2 ≡S G since they appear in the same connected component. There exist G′F1

and
G′F2

such that N t(GF1) ⇒∗ G′F1
, N t(GF2) ⇒∗ G′F2

and Gk = G′F1
� G′F2

. By recursion,
G′F1

≡S GF1 and G′F2
≡S GF2 . A Lemma 16 holds, we have G′F1

� G′F2
≡S GF1 � GF2 and

thus Gk ≡S G.

Theorem 19 For all samples of a language L, the output G of Algorithm 1 is such that
L(G) ⊆ L.

Proof Let G ∈ L(G). Then there exists a plane graph G′ in the learning sample and a
plane graph G′′ such that N t(G′) ⇒∗ G′′ and G′′ ∼=p G. Lemma 18 states that G′′ and G′

are substitutable and thus G ≡S G′. As G′ is an element of L, G ∈ L.

5.3.2. Proof the hypothesis is large enough

To prove that the hypothesis is large enough, we need to define a characteristic set, i.e. a
subset of the target language L∗ which ensures that the output G of the algorithm is such
that L(G) = L∗.

Construction of a characteristic sample. Let G∗ = 〈N∗, PL∗, PB∗,A∗〉 be a tar-
get grammar. We will assume without loss of generality, that G∗ is reduced, that
is to say for every non-terminal Nk ∈ N∗, there is a sequence of sentential forms
〈G1,L1〉, . . . , 〈Gk,Lk〉, . . . 〈Gn,Ln〉 such that 〈G1,L1〉 is an initial sentential form and
∃f1 ∈ FG1 : L1(f1) = (N j , aj) with N j ∈ A∗, ∀i, 1 ≤ i < k, 〈Gi+1,Li+1〉 is obtained
from 〈Gi,Li〉 by applying a rule of G∗, ∃fk ∈ FGk

: Lk(fk) = (Nk, ak), and ∀f ∈ FGn :
Ln(f) is not defined. We are going to define a set CS(G∗) of plane graphs of L∗, such that
Algorithm 1 will identify L∗ from any superset of CS(G∗).

Given a non-terminal Nk, we define C(Nk) to be one of the smallest con-
text 〈XGk

, EGk
, FGk

, hk, oGk
〉 such that there exists a sequence of sentential forms

〈G1,L1〉, . . . , 〈Gk,Lk〉 with 〈G1,L1〉 being an initial sentential form and FG1 = [oGk
, oRGk

],

L1(oGk
) = (N i, a1), N

i ∈ A∗, ∀i, 1 ≤ i < k, 〈Gi+1,Li+1〉 is obtained from 〈Gi,Li〉 by
applying a rule of G∗, Lk(hk) = (Nk, ak) for some ak ∈ nodes(hk), Lk undefined on other
faces.

We also define G(Nk) to be one of the smallest PGS such that Nk ⇒∗G∗ G(Nk).

We can now define the characteristic set CS(G∗). For each production N i
x → N j

yNk
z in

PB∗, we add to CS(G∗) the PGS C�φ χ̂(G1)�χ̂(G2) where φ : nodes([x])→ nodes(h) is a bi-
jective function, C = C(N i), G1 = G(N j), G2 = G(Nk) and χ : nodes(oG1)∪ nodes(oG2)→
nodes([y]) ∪ nodes([z]) is a bijective function such that χ̂(oG1) = [y] and χ̂(oG2) = [z].
For each lexical rule N i

x → G in PL∗ we add to CS(G∗) the PGS C �φ G where
φ : nodes([x])→ nodes(h) is a bijective function and C = C(N i).
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The cardinality of this set is at most |PB∗|+|PL∗| which is clearly polynomially bounded.
In general the cardinality of the set will not polynomially bound the size of the sample, as
it is already the case for string context-free grammars (see [Clark and Eyraud, 2007] for
a detailed discussion). However, notice that if there exists a polynomial-sized structurally
complete sample – that is to say a sample where there is at least a plane graph that uses each
production rule [Dupont et al., 1994] – then the size of our characteristic set is polynomial.

Convergence. We must show that for any substitutable plane graph grammar G∗, if
the sample LS contains the characteristic sample CS(G∗), then L(G) = L(G∗) where G =
〈N , PL, PB,A〉 is the inferred grammar.

Lemma 20 If N ⇒∗G∗ G then there exists a subgraph G′ of the learning sample and a plane
graph G′′ such that N ⇒∗G∗ G

′, N t(G′)⇒∗G G′′ and G′′ ∼=p G.

Proof [Sketch] By recursion on the number of derivation steps k in G∗. If k = 1 then
there exists N → G′ in PL∗, G

′ ∼=p G. By construction of the characteristic sample, G′ is a
subgraph of LS and thus N t(G′)→ G′ is in PL.

Suppose it is true for all derivations of size less than k > 1. There exist a sequence of
sentential forms 〈G1,L1〉, . . . , 〈Gk,Lk〉 such that 〈G1,L1〉 is an initial sentential form with
L(f1) = (N, a), Si+1 is obtained from Si by using a rule of G∗, Gk = G and Lk is not defined
for any face. Let Nx → N i

yN
j
z be the rule applied to S1 to obtain S2. By construction,

there exist G1 and G2, N
i ⇒∗G∗ G1, N

j ⇒∗G∗ G2, and G1 �G2 = G.
By recursion, there exist two subgraphs of LS, G′1 and G′2, and two PGS G′′1 and G′′2 such

that N i ⇒∗G∗ G
′
1, N

j ⇒∗G∗ G
′
2, N t(G′1) ⇒∗G G′′1, N t(G′2) ⇒∗G G′′2 and G′′1

∼=p G1, G
′′
2
∼=p G2.

Notice that this implies there exists a renaming function φ on the vertices of the external
faces of G′′1 and G′′2 such that φ̂(G′′1) � φ̂(G′′2) is defined and φ̂(G′′1) � φ̂(G′′2) ∼=p G.

By construction of the characteristic sample, there exist two subgraphs G′′′1 and G′′′2 of
LS such that G′′′1 � G′′′2 is a subgraph of LS, G′′′1

∼=p G(N i) and G′′′2
∼=p G(N j). As L(G∗)

is a substitutable language, we have G′′′1 ≡S G′1 and G′′′2 ≡S G′2. Thus G′1 and G′′′1 appear
in the same component and thus correspond to the same non-terminal (and similarly for
G′′′2 and G′2). As there is a rule N t(G′′′1 � G′′′2 )x → N t(G′′′1 )yN t(G′′′2 )z in PB, we have

N t(G′′′1 �G′′′2 )⇒∗G φ̂(G′′1) � φ̂(G′′2).

Theorem 21 Let G∗ be the target plane graph grammar corresponding to a substitutable
plane graph language. Algorithm 1 returns a grammar G from any sample containing CS(G∗)
such that L(G) = L(G∗).

Proof If G ∈ L(G∗) then there exists N ∈ A∗ such that N ⇒∗G∗ G. By Lemma 20, it implies
that there exists a subgraph G′ of the learning sample and a plane graph G′′ such that
G′ ∈ L(G∗), N t(G′) ⇒∗G G′′ and G′′ ∼=p G. By construction of the grammar, N t(G′) ∈ A
and thus G ∈ L(G). Therefore L(G∗) ⊆ L(G). Due to Theorem 19, we have L(G) = L(G∗).
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6. Discussion

In addition to substitutability, other restrictions on the learned class have been done, ex-
plicitly or not. First, the grammar formalism implies that the number of nodes of the outer
face of any generated PGS has to be bounded; otherwise an infinite number of axioms would
be needed. In addition, the use of the concatenation operation in the definition of the split
operations used by the learner also restricts the class. The requirement for a polynomial
number of contexts is a strong restriction, but the condition we gave has to be refined and
further analysis is needed.

Another important drawback of this work concerns the absence of a parsing algorithm
for plane graph grammars. Clearly, we needed in this paper to define both a new graph
grammar formalism and a learning algorithm, which is impossible due to the lack of space.
Nevertheless, concerning this particular point, the results on the polynomiality of the search
for patterns in plane graphs [de la Higuera et al., 2012] let us think that a CYK-like approach
is likely to be tractable. This is a piece of work in progress.

Despite all these issues, this paper describes, to our knowledge, the first positive formal
learning result for a class of graph grammars. Moreover, due to the interest of PGS in image
processing [Samuel et al., 2010], we think that the learning of plane graph grammars, and
more generally grammatical inference techniques, could be used to tackle image classification
tasks.
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