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Abstract. Though graph grammars have been widely investigated for 40 years, few learning re-
sults exist for them. The main reasons come from complexity issues that are inherent when graphs,
and a fortiori graph grammars, are considered. The picture is however different if one considers
drawings of graphs, rather than the graphs themselves. For instance, it has recently been proved
that the isomorphism and pattern searching problems could be solved in polynomial time for
plane graphs, that is, planar embeddings of planar graphs. In this paper, we introduce the Plane
Graph Grammars (PGG) and detail how they differ to usual graph grammar formalism’s while at
the same time they share important properties with string context-free grammars. In particular,
though exponential in the general case, we provide an appropriate restriction on languages that
allows the parsing of a graph with a given PGG in polynomial time. We demonstrate that PGG
are well-shaped for learning: we show how recent results on string grammars can be extended to
PGG by providing a learning algorithm that identifies in the limit the class of substitutable plane
graph languages. Our algorithm runs in polynomial time assuming the same restriction used for
polynomial parsing, and the amount of data needed for convergence is comparable to the one
required in the case of strings.
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1. Introduction

Graph Grammars have been defined and studied for four decades from a language-theoretical stand-
point (see [33] for an overview), but the learning of these formalism’s is known to be intricate and
has hardly been investigated in the literature yet. Most contributions concern heuristics tailored for
graphs involved in restricted application domains. This is the case of both most famous algorithms,
Subdue [6] and FFSM [23], and their extensions [31, 25, 28].

On the theoretical side, it appears that learnability results are even rarer and often provide us with
preliminary results, rather than effective learning procedures. For instance, E. Jeltsch and H.-K. Kre-
owski [24] give an algorithm that generates the set of grammars consistent with a given set of graphs.
R. Brijder and H. Blockheel [3] investigate the inference of a grammar consisting of a single produc-
tion rule, given a graph and a distinguished pattern with many occurrences. Few necessary conditions
for the learning of graph grammars have also been established under unrestricted Gold’s paradigm
[7]. Besides, note that new learnability results are anticipated in the framework of recognizable series
of (hyper-)graphs [1]. The situation is a bit different in other branches of Machine Learning: several
techniques have been proposed to tackle classification problems over graphs in the scope of social
network analysis, biological network analysis or image analysis [20]. However, they generally hide
the complexity of the graph structures into abstract numerical structures such as graph kernels [26].

There exist many reasons for this, ranging from the profusion of incomparable graph grammar
formalism’s to the hardness of the model itself. Concerning the latter, many basic problems, such
as the search for a subgraph in a graph, and thus the possibility to parse a graph with a grammar,
are generally NP-complete [17]. Nevertheless, the main reason for this absence of positive learning
results is probably that no kind of graph grammars was designed with the aim of learning. Indeed,
two main characteristics have to be shared by the representation formalism if one wants to use it
as a model for inference. On the one hand, the graph isomorphism problem needs to be efficiently
solvable: the key point to learn graph grammars is to extract knowledge about the structure of the
graphs in the learning sample. In addition, for most applications, it suffices to view isomorphic graphs
as the same object, so the choice of vertices names is of less importance. If a low priority is given
to the understanding of the structure, general machine learning methods can be applied to graph data
with great success [36].

The second important characteristic is that the grammar formalism has to capture properties
that are observable in a set of data. The most obvious kind of observable properties concerns sub-
structures, e.g. the frequency or the relative positions of the subgraphs in the graphs of the sample. But
standard graph grammars of different types are not designed for the inference from the observation
of properties of sub-structures. For instance, in the framework of Hyperedge-Replacement Grammars
(HRG) [10], we can compute from a sample the set of external nodes for each sub-hypergraph. How-
ever, this set of vertices must be transformed into a sequence during the inference stage of a HRG, as
this sequence is necessary for the embedding mechanism that is used when a rule is applied to rewrite
a hypergraph. In other words, an essential piece of information for the inference of a HRG is not
observable in the sample.

From a general standpoint, one way to tackle the difficulties raised by the learning of generative
devices (grammars) consists in restricting the class of languages into consideration. That is, the suc-
cessful approach in Grammatical Inference is often to determine features that are learnable, which
usually correspond to observable properties in any set of examples, and then to focus only on the
languages that share these characteristics.
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Hence, in the case of graph languages, we should first determine which kind of graphs are likely
to be learnable, and then choose the kind of grammars to use. For reasons that will be developed in
this paper, a promising candidate is the class of plane graphs, that is, planar graphs embedded in the
plane (see Figure 1 for an example). Note that a planar graph has a set X of vertices and a set E of
edges as usual, but as soon as this graph is embedded in the plane, it also has a set F' of faces, one
of them - called the outer face - is different of the others as it corresponds to the part of the plane
where the graph is not bounded (it is thus infinite). A planar graph may have several incomparable
drawings, so we define a plane graph by fixing the embedding. More formally, a plane graph stands
for an isotopy class of planar embeddings for a given planar graph [16]. A plane graph is thus a planar
graph that is embedded in the plane without edge-crossing and up to continuous deformations. Given
a planar embedding of a planar graph, Fary [15] proved that it is always possible to move the vertices,
within the same isotopy class, so that the edges are drawn with straight-line segments. We shall use
such straight-line drawings in the following.

Now, as no common graph grammar formalism captures the specificities of such plane graphs,
we choose not to use existing general graph-grammar formalism’s, but propose in this paper a new
type of grammar, called the Plane Graph Grammars (PGG). These grammars can be seen as face-
replacement grammars, thus constitute an interesting alternative to standard node-replacement or
hyperedge-replacement grammars. Indeed, their rules replace one face by a new plane graph, which
is sewn in the mother graph using a syntactic gluing law. We provide theoretical results about these
grammars regarding the possibility to efficiently parse a plane graph, and compare them with other
types of graph grammars. More precisely, the restriction which allows to parse a graph in polyno-
mial time forces the number of subgraphs whose outer face contains a given number of nodes to grow
polynomially with the size of the graphs in the language represented.

We then investigate the learning of PGG, and prove that one can get formal learnability results
in this setting. We believe that this is quite an interesting improvement w.rt. the state of the art.
Concerning the difficulties, notice that when one is trying to learn from graphs, negative data are
usually not available. We know since the work by E. M. Gold [19] that it is not possible to identify
in the limit any superfinite class' of languages from positive data, and thus need to restrict ourselves
to a subclass of plane graph languages. The recent successes of distributional learning for string
grammars [4] and tree grammars [27] motivate us to define an analogue of substitutable context-free
languages [5] for plane graph languages.

Notice that a preliminary version of this paper appeared in the Proceedings of ICGI’12 [14], but
the present paper is substantially different: in [14] we tackled the problem of learning Binary Plane
Graph grammars, a type of PGG where the production rules had binary right hand-sides and were thus
similar to Chomsky normal forms. Moreover, we omitted the study of their properties. In this paper,
we consider general PGG, show that they have the same language expressiveness than binary PGG,
improve the definition of the rewriting mechanism and propose new conditions for the parsing problem
to be achievable in polynomial time. We also improve the learning algorithm and thus establish a more
general learnability result for substitutable plane-graph languages.

Preliminaries about plane graphs are given in Section 2. The definition of Plane-Graph Gram-
mars as well as the rewriting mechanism is detailed in Section 3, where we also compare them with
node-replacement grammars and hyperedge-replacement grammars. We prove formal properties of
these grammars in Section 4, in the scope of the parsing problem. Next Section 5 is devoted to the

'A class is superfinite if it contains all possible finite languages and at least one infinite language.
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learning of PGG, and is thus the core of the paper: the substitutability property is first adapted, then
the learning procedure is described, and a learnability result is finally proved for substitutable plane
graph languages. We conclude the paper with a discussion in Section 6.

2. On plane graphs

We have introduced the plane graphs using the notion of embeddings, i.e., functions that map vertices
to points, and edges to curves. However, this mathematical approach is quite unsuitable for designing
algorithms. As the set of faces is the corner stone to describe plane graphs, we introduce plane graph
systems [22] below, which allow us to describe any connected plane graph through its faces.

Let X C N be the alphabet of vertices. Let X* be the set of all strings over X, and e the empty
string. Given a string * = aj ... ay, we denote |x| = n its length and 2 the reverse string of x,
that is to say 2% = a, ...a;. We also define first(z) to be ai. A circular string is intuitively a
string in which the last symbol is followed by the first; more precisely, there is neither a first nor a
last symbol but a mapping associating to each symbol the next one. We denote a circular string by
[u], with the convention that if u and v are two strings, then [uv] = [vu]. The set of all circular
strings over X is denoted by X . We set [z]® = [2%]. Finally, given an alphabet X, we can extend
any function ¢ : X — X to strings: Vo = a;...ap, € X*, () = ¢(a1)...d(ay), to circular
strings: dA)([:f}) :A[d;(x)], to sets of strings: ¢(S) = {@(z) : = € S}, and to sets of pairs of strings:
o(C) = {{o(z), 9(z)} : {z, 2"} € C}.

Now consider the plane graph of Figure 1. The outer face is f; and bounded (inner) faces are
f2 and f3. Each face has only one boundary since the graph is connected. Such a boundary can
be described by a circular string of vertices in which two consecutive vertices and the last and first
vertices are linked by an edge. Conventionally, we follow a boundary by leaving it to the right. In
other words, the bounded face is on the left of the walk. Hence, the boundary of face f3 is [53634], or
equivalently [63453], by circular permutation.

h

Figure 1. A plane graph with 3 faces.

We now introduce the following description system for connected plane graphs:

Definition 2.1. (Plane Graph System [22])
A plane graph system (PGS for short) is a tuple S = (X, E, F', 0, D) such that

1. (X, E) is a connected simple graph [18],

2. F'is a finite nonempty set of symbols called the faces,
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3. o € F'is aspecial face called the outer face and
4. D: F — X is a function, called the boundary descriptor, that maps any face to its boundary.

For sake of readability, we shall make no distinction between a face f and the description of its
boundary D(f). In consequence, function D will be kept implicit most of the time and we simply
denote by (X, E, F, o) the plane graph system S.

Note that every plane graph can be described with a plane graph system (see below for an exam-
ple), but the converse does not hold in general. We thus introduce further conditions below:

Definition 2.2. (Valid PGS)
APGS S = (X,E,F,o,D) isvalid if:

1. Forall f € Fandz,y € X and u € X*,if D(f) = [xyu] then {z,y} € E}

2. Forall e = {z,y} € E, there exist a unique face f € F such that D(f) = [zyu], and an unique
face f' € F such that D(f") = [yav], for some u,v € X*;

3. Forall f € Fand z,y,2,2” € X and u,v € X*, if D(f) = [zryzuxyz'v] or D(f) =
[zxyuz’zyv] then 2 = 2/;

4. Euler’s formula holds, that is, | X| — |E| + |F| = 2.

Validity allows any PGS to denote a plane graph. Indeed, the two first conditions ensures that the
sets of vertices and edges and faces are well-defined; the third condition eliminates all the circular
strings that cannot describe the boundary of any face in any planar embedding of any graph; the fourth
condition implies that the surface on which the graph is drawn has a null genus, and is thus is a plane
(thanks to the infinite face o).

This property is established by the following theorem. As the problem is quite far from the core
of this paper, the proof is given in Appendix A. Notice that all the PGS we shall consider in this paper
will be valid, so this property will be kept implicit, most of the time:

Theorem 2.3. Any valid PGS describes an unique plane graph (up to continuous deformation).

Let G be the set of all the (valid) plane graph systems. The size of a PGS G = (X, E, F,0) is
|G| = >_ter | f]. Given any edge e, we denote by faces(e) the set of faces incident to edge e. Notice
that faces(e) can contain either 1 or 2 faces (only one in the case of a pendant edge). We use nodes( f)
and edges(f) for the set of vertices and edges along the boundary of face f, respectively.

For instance, consider the plane graph of Figure 1. The corresponding PGS is S = (X, E, F, 0)
with X ={1,2,3,4,5,6}, E={{1,2},{1,3},{2,4},{3,4}, {3,5},{3,6},{4,5}}, F={f1, f, f3},
o = firand f; = [13542], fo = [1243], f3 = [34536]. Moreover, we have faces({3,4}) = {f2, f3},
faces({3,6}) = {f3}, nodes(f3) = {3,4,5,6} and edges(f3) = {{3,4}, {4,5},{5,3},{3,6}}.

Definition 2.4. (Set of connected faces)

Let S = (X, E, F,0) be a PGS. Two distinct faces f, f' € F are adjacent if 3e € E : faces(e) =
{f, f'}. The faces of a subset K C F are connected ifVf, f' € K, asequence f = fo, f1,... fn = f
of faces in K exists such that Vi € {0,1,...,n — 1}, f; and f; 1 are adjacent.
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Given a subset K C F' of connected inner faces, we denote by outer(K') the (boundary of the)
outer face of that set. For instance, on the PGS of Figure 1, outer({ f2, f3}) = f1 and outer({f3}) =
[354]. Notice that outer(K') can be computed in polynomial time using the normalization procedure
introduced in [22].

Let us finally introduce the notion of subgraph that we will use throughout the rest of this paper:

Definition 2.5. (Pattern)

Given a PGS G = (X,FE,F,0) and a set F/ C F \ {o} of connected faces, the PGS G' =
(nodes(F"),edges(F"’), F' U {outer(F’)}, outer(F")) is called a pattern of G. By extension, any
renaming of the vertices and edges and faces of G’ will also be called a pattern of G.

For instance, the PGS G of Figure 1 has 3 patterns: ({1,2,3,4},{{1,2},...},{[1243], [1342]}, [1342]),
({3,4,5,6},{{3,4},...},{[34536], [354]}, [354]), and G itself.

More general notions of subgraphs exist (based on subsets of vertices and edges, independently
on faces), but they often induce intractable problems. In particular, it was shown in [22] that searching
for a pattern in a PGS is tractable in polynomial time, whereas searching for general subgraphs in
planar graphs is a N"P-complete problem. In other words, the drawing of a planar graph is much
more informative than the planar graph alone. In the following, term subgraph will exclusively mean
pattern.

2.1. Concatenation

The concatenation of two PGS is a basic operation that allows one to glue together two distinct plane
graphs using their outer face.

Definition 2.6. Let G; = <X1,E1,F1,01> and Gy = <X2,E2,F2,02> be two PGS, and ¢ :
nodes(o;) — nodes(02) a partial bijective function. We say that G; and G are concatenable fol-
lowing ¢ if

e FiNFy= 0,
e (X; \ nodes(01)) N (X2 \ nodes(oz2)) = 0, and

o 3> 1 3(X1) N X = {8ar), ., H(as)} and o = a1 ... agy) and 03 = [B(ar) ... H(ar)2]
withy € (X1 \ X2)*and z € (X2 \ X1)* and |yz| > 1.

Intuitively, two PGS are concatenable following ¢ if they can be glued together by merging pair-
wise nodes of their outer face following ¢. This requires that they can only share nodes of their outer
face, and that consecutive edges of one outer face correspond to reverse consecutive edges in (the
image by ¢ of) the other outer face. In consequence, the gluing stage does not modify the inner faces.

Definition 2.7. (Concatenation)

Let Gy = (X1, Ey, F1,01) and Gy = (X2, E9, F, 02) be two PGS concatenable following function ¢.
The concatenation of G and G following ¢, written G ¢4 Go, is the PGS G = (X1 U X3 \
{al,.. . ,ak},El U Ey \ {{ai,aiﬂ} 1 <1< k},¢(F1 \ {01}) U (FQ \ {02}) U {0},0) with
o= [p(ak)yo(ar)z].
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Figure 2. Example of concatenation: H; and Hs are concatenable following the identity function and so is Hy
and Hy. The same occurs for H; © Hy and Hs. Hs and H3 are not concatenable following the identity function,
which is also the case of H; and Hy.

If the function ¢ is the identity, we shall write G; ¢ G2 instead of G ¢;4. Ga.

Concatenation is well-defined, that is, if G'1 and G are valid concatenable PGS, then G ¢4 G is
necessarily a valid PGS. Indeed, the conditions on the external faces ensure that no new face is created
by concatenation, but the outer one which is modified; moreover, the concatenability property ensures
us that the technical properties on the boundaries are satisfied; finally, Euler’s relation holds, since
(IX1]+ | X2| = k) — (|1 + |E2] = (k=1))+ (|[F1| =1+ |F2| —141) =2.

Examples of concatenable and non-concatenable PGS are given in Figure 2. For instance H; and
H, are concatenable following the identity function but it is not the case of H; and Hj since the third
requirement of Definition 2.6 is not met. These examples also show that the associativity of graph
concatenation is not ensured: (H; ¢ Hy) and H3 are concatenable following the identity function, but
Hs and Hj are not concatenable following the identity and thus H; ¢ (Hs ¢ Hs) is not defined. In the
absence of brackets in a sequence of concatenations, we will consider the left to right organization:
Hy o Hy o Hs is to be read as (H; o Hy) © Hs.

2.2. Plane isomorphism

We finally need a way to compare two PGS:

Definition 2.8. (Plane isomorphism [22])

Let G1 = (X4, E1, F1,01) and Go = (X3, Fa, F5, 09) be two PGS. We say that G1 and G, are plane-
isomorphic, written G'1 =, Go, if there exist a 1-to-1 mapping x : X1 — X over the vertices and
a 1-to-1 mapping £ : F; — F; over the faces such that (1) the outer face is preserved: £(01) = 09

and (2) the boundaries are preserved: Vf1 € Fi, fo € Fo, if {(f1) = fo and f1 = [a;1...ay] then
f2=Ix(a1) ... x(an)] .

Plane-isomorphism is decidable in O(|E1| - | E2|) time [22]. The key property to prove this result
is that, given a PGS G and an edge e, we can define an ordering over all the other edges which is
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unique and computable in linear time thanks to a traversal of the PGS. So the isomorphism algorithm
consists in finding two edges e; in G; and ey in G2, generating the ordering of all the edges in both
PGS and using them to generate possible isomorphism functions. A similar strategy is used to check
whether a given PGS is a pattern of any other PGS, that is, searching for patterns is also tractable in
polynomial time [22].

We can now define the notion of plane graph language:

Definition 2.9. A set L of PGS is a plane graph language if it is closed under plane-isomorphism: for
all G1, G2 € G such that Gy =), Go, wehave Gy € L <= G € L.

The following technical but crucial lemma deals with the link between concatenation and plane-
isomorphism. Informally, if two graphs are concatanable then graphs that are plane-isomorphic to
them are also concatenable (using a different function). Moreover, the concatenated graphs are plane-
isomorphic.

Lemma 2.10. Let Gy, G', G5 and G5 be four PGS such that G =, G} and G5 =, G},. Suppose that
G4 and G are concatenable following a function ¢. Then there exist a PGS G such that G =, G/,
and a function ¢’ such that G7 and G are concatenable following ¢’ and G ¢4 G2 =, G oy GY,.

Proof:

As G =), G (resp. G2 =, GY), there exist two 1-to-1 mapping x1 : Xg, — X¢r (resp. X2 :
Xa, = Xgy)and & : Fy — Fj (resp. & @ Fy — [7) fulfilling the conditions of plane-isomorphism.
As (1 and Gy are concatenable following ¢, there exist vertices ay, ..., a; and (possibly empty)
sequences of nodes y and z such that og, = [a1 ...axy] and og, = [¢(ag) ... ¢(a1)z]. Moreover we
have og, = [x1(a1) ... x1(ax)X1(y)] and oy = [x2 © ¢(ak) - . . x2 © P(a1)X2(z)].

Let ' = xyoo¢o Xfl. Let us denote a; = xi(a;) forall 1 < ¢ < k. Clearly we have og, =
[a} ... ajxa(y)] and og, = [¢(a},) - . ¢'(a1)X2(2)]. Moreover, [{1(y)X2(2)| = [yz| > 1. Finally, if
Xar \ nodes(og;) N X¢y, \ nodes(og;) # (), we can rename the inner nodes of G to create a new
PGS G such that none of its inner nodes share the same name with a node of G5, and G| =, G.
Therefore G1 =, G/ and G/ and G are concatenable following ¢'.

We need to show that Gy o4 G2 =), G oy GY5. Let x| and & the functions defining the plane-
isomorphism between G and GY. Let x : X¢y0,6, — Xayo, cy be the function such that x(v) =
Xj(v) if v € X¢g, and x(v) = x2(v) if v € Xg,. As x} and 2 are 1-to-1 mappings over distinct
domains, so is x. Now let § : Faio,6, = Fero,,cy be the function such that E(f) = &(f) if
f € Fg,, and £(f) = &(f) if f € Fa,, and £(0Gy0,G,) = 0G0, Gy AS & and & are 1-to-1
mapping and Fg, N Fg, = 0, we deduce that £ is a 1-to-1 mapping. In addition, as (x},&]) and
(x2, &2) preserve the boundaries of the faces, it is also the case of (, &) by construction. a

3. The grammars for plane graph languages

The new graph grammar formalism which is introduced below is based on the following idea: a
grammar consists of rules that explain how to replace some face by a pattern that can be made of
several faces but whose outer face is the same than the one being replaced. Two types of rules must be
given: the plane graph productions which allow one to get infinite and rich languages of plane graphs,
and the lexical rules which allow one to stop the generation process.
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We first need to introduce non-terminal symbols, which are essentially the names that we give to
the faces that are replaced by the rules of the grammar. As in the framework of the tree grammars [12],
we suppose that we have a ranked alphabet for soundness and type-checking reasons.

Definition 3.1. (Non-terminal symbol)
A non-terminal symbol is a couple (N,r) where N is a name and r > 2 is the rank of the non-
terminal. For sake of simplicity, we assume that for all non-terminal symbols (N1, 71) and (Na, r2), if

N1 = Ny, then r; = ro. We shall thus unambiguously write rank(/V) for the rank r of non-terminal
(N, 7).

In a grammar rule, a non-terminal symbol may be attached to some face whose number of nodes
is equal to the rank of the non-terminal. In order to describe these faces, we introduce the following
non-terminal gadgets:

Definition 3.2. (Non-terminal gadget)
o A non-terminal gadget is a couple denoted N, where x = a; . .. a, is a sequence of r pairwise-
distinct vertices and (N, r) is a non-terminal symbol.

e Any non-terminal gadget N, with x = a; ... a, implicitly denote a (valid) PGS with a unique
inner face which is bounded by string x. This PGS is formally defined as follows: [N,] =
(X, E, {[z], [#]®}, [z]®) with X = {a1,...a,}and E = {{a;,a;41} : 1 <i < r}U{(ar,a1)}.

e We say that two gadgets N, and N2, are concatenable if PGS [N}, ] and [N2 ] are concaten-
able (following the identity). In this case, we denote by [N; N2 ] the PGS [N, ] o [NZ,].

An example of non-terminal gadget is given in Figure 3: the left-hand PGS corresponds to gadget
Aj934, and is more precisely the graphical representation of the PGS [A1234]. Notice that we attach
the non-terminal symbol (here A) with a dashed line to the vertex that appears at the head of the
string that defines the non-terminal gadget (here vertex 1, that is, the first vertex in the string of
gadget Aj034). With this convention, one can equivalently use textual and graphical description of

Figure 3. A graphical representation of the plane graph lexical rule A1234 — ({1,2,3,4,5},{(1,2),(2,3),
(3,4),(4,5)}, {[123454], [1432]}, [1432]). Notice that it is possible to simplify the textual notation of a lexical
rule: the PGS on the right handside is fully determined by its inner face. In this example we shall write
A1234 — [123454]. In order to get a complete drawing (which would allow one to deduce the textual description
of the rule), a dashed line attaches the non-terminal symbol to the vertex that appears at the head of the string
describing the non-terminal gadget of the left-hand side. Note that in the rest of this manuscript, the textual
description of the rule will generally be sufficient, thus no equivalent graphical representation will be given in
most cases.
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non-terminal gadgets. Many other examples of non-terminal gadgets appear in both the left-hand side
and the right-hand side of Figure 4. The reader may check that gadgets Ass41 and Nogys on the one
hand, and Nogy5 and Basgg on the other hand are respectively concatenable.

We now define the two types of grammar rules used in our grammars. The former denotes the
terminal rules while the latter denotes the recursive rules.

Definition 3.3. (Plane graph lexical rule)
A plane graph lexical rule is a pair (N,, G.), written N, — Gx, where (1) N, is a non-terminal
gadget and (2) G, = (X,, E,, F, o,) is a valid PGS such that |F,| = 2 and 0, = [:UR].

A graphical representation of plane graph lexical rule is shown in Figure 3. Notice that in any
rule N, — G., the outer face of G, must be [27], which is exactly the same as that of [IN,.], but the
boundary of the (unique) inner face is not necessarily [x]: there may be pendant edges.

Definition 3.4. (Plane graph production)

A plane graph production is a tuple (N0 | ... fok), written Ngo — N} Y k  where

xo? " T
1. Ngo, e ,Nﬁk are k + 1 non-terminal gadgets with k£ > 2 and
2. Nj,,...,NE, are consecutively concatenable, that is, PGS [N, ... N. ] and [NjH! ] are con-

catenable for all 2 < i < k, so that final PGS [N}, ... ka]] is valid, and
3. the outer face of PGS [N}, ... N ] is [20] ", which is exactly the same as that of [N, ].
A production can be seen as the development of a face f made of rank(N?) vertices into k

adjacent faces whose overall shape is the same as that of f. Figure 4 graphically shows the plane
graph production N2341 — A2541 N2645 B2346-

Figure 4. A graphical representation of the (recursive) plane graph production Nogq; — Aasa1 Nogas B234e-
Recall that the dashed lines attach each non-terminal symbol to the vertex appearing at the head of the string
corresponding to that face in the non-terminal gadget.

We can now introduce the plane graph grammars that we consider in this paper:

Definition 3.5. (Plane graph grammar)

A plane graph grammar (PGG) G is a tuple (N, Pr, P, A) such that A/ is a set of non-terminal
symbols, Py, is a set of plane graph lexical rules, P is a set of plane graph productions and A C N is
the set of axioms.
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Example 3.6. Let G; be the grammar ({(N,4),(A4,4),(B,4)}, Pr,P,{(N,4)}), with P, =
{A1234 — [123454], B1234 — [15123634], N1234 — [1234]} and P = {N2341 — A2541 N2645 BZ346}-
The unique production of this grammar is the one represented in Figure 4 while the first of the three
lexical rules is depicted in Figure 3. Both latter lexical rules are easy to draw from their definition.

In order to describe the derivation process of a PGS in a PGG, we need to introduce the plane
graph analogue of string grammar sentential forms. Contrary to the string case, where such forms are
just strings containing both terminal and non-terminal symbols, a plane sentential form consists of a
PGS together with a labeling function. The role of this function is to attached non-terminals to faces:
if a face is not labeled with a non-terminal, then it cannot be rewritten and can thus be considered as a
terminal face; on the other hand, a face that is labeled can be seen as a non-terminal face: all the rules
rewriting this non-terminal can be applied.

Definition 3.7. (Plane sentential form)

Let G = (N, Pp, P, A) be a plane graph grammar. A plane sentential form is a couple (G, L) where
G=(X,E,F,o)isavalid PGS and £ : FF — N x X is a partial function such thatif £(f) = (N, a),
then [nodes(f)| = rank(/V) and a € nodes(f).

Function £ labels some faces with non-terminal symbols. It more precisely attaches the label to one
distinguished vertex a of the face. This allows us to introduce some control during the application of
arule. Indeed, this trick is used to avoid all possible rotations of the right hand-side of the rule when
this right hand-side is glued in the mother graph. We formally detail this below and a sequence of
plane sentential forms is given in Figure 5.

3.1. Applying a lexical rule

Let S = (G, L), with G = (X, E, F,o0), be a sentential form. Consider a variant of lexical rule
R : Ng,..a,, — G, thatis, a version of this rule where the vertices and the faces were consistently
replaced with names that do not appear in G. We assume that G, = (X, E.,{fs«, 04}, 04) with
0x = lag...an]"

We say that rule R is applicable to the sentential form S if there exists a face f = [a} ...a],] € F
of G such that £(f) = (N, a}). In this case, we denote ¢ the matching function {a1 — al, ..., am —
ay,}, extended to all other vertices of G (and more precisely, of f.) by setting ¢p(a) = a if a &
{ai,...am}.

Applying lexical rule R to sentential form S consists in replacing the face f of S by the PGS G.,
which is sewn to the rest of S using matching function ¢. The result is a new sentential form where
L(f) is not defined anymore. More formally, applying R to S following f consists in creating the
sentential form S’ = (G', £') with G’ = (X', E', F’, o) such that

o« F'= F\{f}Ud(£);

/

e 0 =o;

Ve F, f"# f,if L(f') is defined then L'(f") = L(f).
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Plane graph grammars associate no semantics to the names chosen for the nodes and the faces,
and generate plane graphs whose nodes and faces all have distinct names. This is explicit when a rule
is applied: we use rule variants. This property will be essential to prove context-freeness properties
(see next section).

Another interesting consequence is that the PGS G’ which is created by applying a lexical rule is
valid as soon as the PGS G which is rewritten is valid. Indeed, PGS G and G do not share any face
nor vertex names, which implies the syntactic conditions for validity. As for Euler’s formula, we have
| X«| = |Ey| (since |Fy| = 2),s0 | X'| — |E'|+ |F'| = |X|—|E|+ |F|-1+1=2.

Example 3.8. The lexical rule Aj234 — [123454] in G; of Example 3.6 is applicable to the sentential
Ss of Figure 5. Once applied, the result is the sentential form Sy of the same figure.

3.2. Applying a production

Let S = (G, L), with G = (X, E, F, 0), be a sentential form. Consider a variant of a production R :

NY% o = NL . ...NK . Asabove, we say that rule R is applicable to sentential form S if
10m 170y 1--an

there exists a face f = [a} ...a},] € F such that £(f) = (N, a}). We denote ¢ as well the matching

function {a? — af, ... al, — al,}, extended to all other vertices of PGS [[N;%_”a}l1 e Nf’f...aﬁk]] by

setting p(a) = aifa & {al,...,ad}.

Applying R to S following f consists in creating the sentential form S’ = (G', L) with G’ =
(X', E', F’, o) such that

o F'=(F\{f})Ui<icifolai . a )}

e 0 =0

o X'=XUicick nodes(¢([al .. -ah 1))

o IV =EU<icy edges(o([dl . .. at 1)

New labeling function £’ is as follows:

~ . .

- L'(¢([a} ... a.])) = (N*, ¢(a})) forall 1 < i < k,and
- Vf e F, f'# f,if L(f') is defined, then L£'(f") = L(f").

Example 3.9. The production Nosy; — Aos41 Nogas Bosgg in Gy of Example 3.6 is applicable to the
sentential .S of Figure 5 (and it is also applicable to .S2). When applying it, the sentential form Sz in
the same figure is created.

Concerning the preservation of validity, note that the syntactic conditions holds again thanks to the
renaming of the production before we apply the rule. Checking for Euler’s formula is nevertheless a
bit more complicated, because the intersections of the sets which are used to define X’ and E’ are not
empty. So let us step back: the application of rule R returns to plug PGS G, = [[N;% g N |

k

gy, a'l‘...an
in the hole left by face f. Suppose that G, = (X, Es, F,, 0,). Due to the validity of G, (justified

in Section 2.1), we have | X,| — |E,| + |Fs| = 2. Moreover, the outer face of G, matches the string

ad...a%, so face o, is described with m vertices and m edges. Finally, the application of a rule
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eliminate inner face f in G, and outer face o, of G,. Therefore, we have |X'| — |E'| + |F'| =
(I X+ | Xs| =m) — (|E| + |Es| —m) + (|F| — 1+ |Fs| — 1) = 2, and Euler’s formula holds.

Hence, the application of a lexical rule or a production to a PGS replaces a face by a PGS whose
outer face is the previous face, while the rest of the graph is unchanged. As we have seen above, these
mechanisms preserve the validity of the PGS, and are thus well-defined and consistent.

3.3. Representable languages

Given a plane graph grammar G = (N, Pp, P, A), we say that a plane graph G = (X, E, F, 0) is
generated by G, or that G derives G, if there exists a sequence of sentential forms S1, . . .,.S,, such that

e S1 = (G4, L1) is an initial sentential form, that is, G1 = (X1, E1, F1, 01) with Fi = {of, 0}
and 0; = o and L is only defined for o: £;(0%) = (N, a), with N € A and a € nodes(o®),

e Vi, 1 <4 < n:S;y is obtained from S; by applying a rule of G,

e S, = (Gy, Ly,) with G, = G and Vf, L, (f) is not defined.

Figure 5. A graphical representation of an example of a derivation in the grammar G; in Example 3.6. This
derivation corresponds to the sequence of sentential forms Sy, So, S3,S4, S5. The functions £;, 1 < ¢ < 5, are
represented via dash lines.

The length of the derivation is n — 1. An example of a derivation of length 4 is given in Figure 5.
Notice that every PGS generated by a PGG is necessarily valid because the application of any type of
rules (lexical rule or production) preserves validity.

We will write N =¢ G, or simply N =" G if G is obvious from the context, when G =
(X, E, F,o) is derivable with G using an initial sentential form S; where £; is defined only on o’
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and L1(0®) = (N, a), for some a € nodes(of?). If the length of the derivation is n, we shall write
N =¢ G as usual.

The language represented by G is L(G) = {G : 3G’,3N € As.t. N =5 G' NG =, G}

Note that any PGS can be represented by a PGG. Indeed, we simply need an axiom of the grammar
to generate the outer face of the PGS and the concatenation of the faces of PGS (without pendant
edges), each of them labeled with a different non-terminal. Then we add as many lexical rules as the
number of non-terminals to complete each face with pendant edges. Nevertheless, as it is discussed
later on, not all then plane graph languages can be generated with a PGG.

3.4. Plane graph grammars and related formalism’s

Two main types of graph grammars have been investigated in the literature. The first one is the family
of node replacement grammars [32] and relies on a mechanism that replaces one given node by a
subgraph using gluing conditions; many gluing conditions were studied and yield several subfamilies
of node-replacement grammars. This is clearly different from how the generative process occurs with
plane graph grammars and thus a comparison between these two formalism’s is difficult. However,
a dual graph can be built from each planar graph [37], where each node corresponds to a face in the
original graph, edges in one graph being edges in the other. From this standpoint, replacing a face in
the primal graph (i.e. the original PGS) by a pattern corresponds to substituting a node of the dual
graph by the corresponding dual subgraph. Embeddings? in node replacement grammars differ from
embeddings in plane graph grammars in that it relies on node label semantics.

Hyperedge replacement grammars [10] are another type of graph grammar formalism’s that seems
closer to the one introduced in this paper. Indeed, in these grammars, a hyperedge, i.e. a labeled
entity that links up several nodes together, is replaced by a subgraph. One can imagine that plane
graph grammars are a special kind of hyperedge replacement grammars, seeing a face labeled by a
non-terminal as a hyperedge with the same label. However, these two elements are of different nature.
For instance, there is no order on the outer nodes of a hyperedge and it is not possible to define a
unique one. This implies that if the same non-terminal can be derived following two different ordering
of the external nodes, then it needs to corresponds to two different hyperedges.

The main difference between these formalism’s and plane graph grammars is the semantics they
attach to the node label. Indeed, in both cases, the labels of the nodes of a glued subgraph are the
ones the right hand-side of the rule, and if a rule is used several times, it generates the same node
labels each time. As a consequence, the set of labels that can be found in a graph generated by such
a grammar is bounded. Plane graph grammars are of different nature as each node has a unique
label, which allows the closure of graph languages under isomorphism. The embedding mechanism
(described in Section 3) does thus not rely on label value. Together with the polynomial testability of
sub-isomorphism, this is a remarkable property from a learning standpoint: extracting and comparing
patterns from a set of graphs is easy and informative. We shall see in detail how this is useful in
Section 5. If one want the nodes to carry semantic information, the formalism is easily modifiable
with the adding of a labeling function, without modifying the core of its generative mechanism.

It is worth noticing that other rewriting formalism’s have been introduced for graph data in partic-
ular practical contexts (see for instance the work on 3Gmap L-systems for fruit modeling [2]). These
types of formalism usually use a large number of parameters and constraints on rule application which
does not make them good candidates for learning.

2An embedding is the information about how to glue the new subgraph within the rest of the graph
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4. Properties of plane graph grammars

4.1. Context-freeness property

A class of grammars that has the context-freeness property corresponds to a formalism where parts
of a derivation that start from different non-terminals of a sentential form do not interfere with each
other [8]. Intuitively, this is not the case of Plane Graph Grammars as the name of a node created
during the derivation is linked with the name of pre-existing nodes. Hence, the distinct parts of a
derivation cannot be treated in any order since the resulting PGS will not have the same node names.

However, this only affects the names of the nodes, and if one is interested in the structure of the
generated PGS then each parts of the derivation can be done independently. In other words, the order
in which the rules are applied will generate different PGS, but they will all be plane-isomorphic. We
thus will be able to describe a derivation tree and a parsing procedure based on the CYK algorithm for
string grammars.

The following theorem states that when a PGS is derived from a non-terminal, either it is given
directly by a lexical rule, or it is the concatenation of plane graphs obtained from non-terminals that
appear together on the right handside of a production whose left handside is the given non-terminal.

Theorem 4.1. (Context-freeness)
Let G = (N, P, P, A) be aPGG. Let (N, r) € N and H a PGS. N =* H if and only if

e N — Hin Py,
e Or

1. HNm%le...NgninPand

2. there exist m PGS Hy, ... H,, such that
- Vi, 1 <i<m, N'=*H;
-H=,Hio...0H,

Proof:

[Sketch] —

Let N =" H. There thus exists a sequence of sentential forms (G1,L1),...,(Gry1, Lry1) such
that Vj < k, G4 is obtained from G; by applying a rule of the grammar, (G, L) is an initial
sentential form with El(ogl) = (N, a), for some a € nodes(ogl), and G4 = H. If G is obtained
from Gy using a lexical rule, then ¥ = 1 and N — H is in Pr. Otherwise, the first rule is a
production N, — N} ... N and Gy = [N} ... N | = (X¢,, Eqy, Ut<i<m{ [z JU[z5}, [2 1)),
Lo([x;]) = (N, first(x;)), Vi. As a rule does not modify the pre-existing nodes and applies only
to a specific face, the other steps of the derivation replace one of the faces [z;] by a PGS: no step
replacing [z;], or the set of faces previously derived from [x;], interferes with the steps that rewrite
[z;], 1 < j,i < m,i# j. Hence, for all i < m, the sequence of steps that recursively rewrites [z;]
generates a PGS H; and we have H = H;¢...o H,, (which is correctly defined since the outer face of
H; is [z;]F, Vi). As each face [z;] of G5 is labeled by the non-terminal N?, we also have N* =* H;.

P —
Suppose AN, — N%l ... N;" in P and there exist m PGS Hy, ..., Hy, such that N' =* H,
forall 1 < i < m, and H =, H; o ... o Hy,. Then the initial sentential form (G, L),
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with G; = (nodes([z]), edges[z]), {[z], [zF]}, [zF]) and L£1([z]) = (N, first(x)), can be rewrit-
ten into the sentential form (G2, £2), with G2 = (Xg,, Egy, Ui<i<m{[z:]} U {[z]}, [z®]) and
Lo([z]) = (N first(z;)), Vi (using the rule). There then exists a sequence of sentential forms

(GQ,[,Q), e (Gk,ﬁk) such that G, = <XG;?7EG;€,FH1 Us<i<m {[ml]} U {[LER]}, [:URD and Ly,
is defined only on [z;], with L, ([z;]) = (N% first(z;)), Vi,2 < i < m. As N2 =* H,,
there exist a sequence of sentential forms (G, Lg), . .., (G, £;) that rewrite the face [x2] of G

into a subgraph HY such that H) &, Hy (the label of some internal nodes of H> can already ex-
ists in G and thus another label has to be chosen). Repeating the same reasoning for the other
non-terminals of the rule, we obtain that for all 2 < 7 < m, a PGS HZ’ =, H,; exists such
that N =* H' = Hy o Hj)o...H,. We have Hy ¢ H) =, H; o Hy, and for all i < m
Hyo...oH;joHj | =, H o...o H; o Hiy. Notice that H; o ... o H; and H] , are con-

catenable following the identity function since outer(H;, ) = outer(H;;1) by construction. This

implies H' =, H. O

One of the consequences of this result is that we can define a normal form for plane graph gram-
mars, where the number of non-terminals on the right hand-side is exactly two. Indeed, given any
production rule N, — N;l ...NZ* with m > 2, one can replace it by two rules N, — N/, N and
N!, = N} ...NI'"! with 2/ = outer({[z;] : 1 <i < m — 1}), which are both correctly defined
rules. The set of graphs that NV can derive is unchanged and the process can be recursively reproduced
until only 2 non-terminals appear in each right hand-sides.

We will consider in the rest of this paper that all the PGG are in such a normal form.

4.2. A parsing algorithm

Theorem 4.1 provides a straightforward parsing algorithm, given as pseudo-code in Algorithm 1.

Algorithm 1: Plane graph grammar parsing algorithm

Input: A PGG G = (N, Pp, P, A) in normal form and a PGS G
Output: TRUE if G € L(G), FALSE otherwise
1 foreach N € A do

2 | if DERIVE(G,N,G) then
3 | return TRUE
4 return FALSE

Proposition 4.2. For all PGS G, Algorithm 1 terminates and yields TRUE iff G € L(G).

Proof:
Algorithm 1 is nothing else than an algorithmic version of the context-freeness lemma. Since the size
of the patterns H; and H> is smaller than the size of H, the algorithm must eventually terminate. O

Since there is only a finite set of lexical rules and of productions in G, there are only polynomially
many possibilities to consider in steps (1) and (3) of the DERIVE procedure. The plane-isomorphism
can also be tested in polynomial time. Hence, there is a single point that may cause an exponential
running time of the algorithm: the number of candidates H; and H> to test in step (4). Therefore we
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Algorithm 2: DERIVE Procedure
Input: A PGG G = (N, Pp, P, A) in normal form, a non-terminal N € A/ and a PGS G
Output: TRUE if N = G, FALSE otherwise

1if N = H ¢ P, and H =, G then

2 L return TRUE

foreach N, — N, N? € P do
if 3H,, Ho such that DERIVE(N', H,) and DERIVE(N?, Hs) and G =, H o H5 then
| return TRUE

(7 B~

6 return FALSE

aim at finding a condition to impose on L(G) that implies a polynomial upper bound on the number
of such candidates. The following restriction is inspired by the k-separability, defined for hyperedge
replacement grammars [29].

Definition 4.3. (Rank)
For k in N, the k-rank of a PGS G is the number of patterns of G whose outer face contains k£ nodes.
For every language L of PGS, ranky, : N — L is defined by

rankz,(n) = Mari<p<order(rn)1k-rank(G) : G € L and |G| < n}
where order(L,n) = max{|outer(S)|: S is a pattern of G € L and |G| < n}.

Note that the order of a language L and an integer n is the maximal number of nodes of the outer face
of a pattern of a plane graph G in L whose size is at most n.

Informally, the rank for n of a language considers the graphs of the language whose size are less
than n and corresponds to the maximum number of patterns having the same number of nodes on the
outer face among all of these graphs. In other word, to evaluate ranky,(n) for a given n, we need to
look at all the graphs of size less than n in the language, for each of these graphs to count how many
patterns have the same number of nodes on their outer face, and to return the maximum obtained.

The idea behind the rank of a plane graph language is to link the size of the PGS of the languages
with the number of their subgraphs that have an outer face of a given size. The aim is to tackle the
combinatorial explosion that can occur when one is checking whether a rule can be applied. Indeed,
to test if a rule N, — Nz} N2 can be applied to derived a PGS G, Algorithm 2 needs to be recursively
called on all decompositions of G into two patterns whose outer faces contain |y| and |z| nodes. In
general, the number of such decompositions is exponential in the size of the grammar: this is the case
for example of the PGS that correspond to a checkerboard.

Proposition 4.4. Let G be a PGG. If rank (g (n) is polynomial in n then Algorithm 1 can be imple-
mented in time polynomial in the size of its input.

Proof:

Given a production N, — N, N7 only patterns of |y| (resp. |z|) nodes on the outer face can be derived
from N' (resp. N?). As rank r(g(n) is polynomial, there are a polynomial number of patterns with
ly| (resp. |z|) external nodes on outer face. The number of candidates Hy, Hs is thus polynomial if
G e L(G). O
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5. Learning substitutable plane graph languages

This section shows how plane graph grammars are good candidates for grammatical inference: their
nice properties allow to extend works on distributional learning of string grammars. The simplest
string class that has been proven learnable in this approach, is the one of substitutable context-free
languages [5].

5.1. Substitutable plane graph languages

The core of the learning algorithm for this class is to observe the distribution of substrings into contexts
and then to use the simple properties of substitutable languages to infer a correct grammar. For this
reason we first need a notion of context to transpose this work to plane graph languages.

Definition 5.1. (Plane context)
A plane context is a tuple C = (X, E, F, h, 0) such that (1) (X, E, F’, 0) is a plane graph system and
(2) h € F'\ {o} is a distinguished face called the hole of context C' and (3) h has no pendant edge.

The plane-isomorphism relation is extended to contexts in the obvious way: two contexts C' =
(X,E,F,h,0) and C" = (X', E', F', I/, o) are plane-isomorphic if (X, E, F,0) =, (X', E', F', o)
and the image of h by the bijection on the faces is 1/, i.e. {(h) = }/.

Let S = (X,E,F,0)and S’ = (X', E', F',0') be two PGS such that X N X’ = (). Let f € F
and f' € F’ be two faces. Every 1-to-1 mapping ¢ : nodes(f) — nodes(f’) can be extended to the
set of all vertices X as follows: ¢ : X — nodes(f’) U X such that ¢(a) = ¢(a) if a € nodes(f) and
gz%(a) = a otherwise. It can then be extended in the usual way to sets of nodes, faces, sets of faces, to
PGS, and to plane contexts.

We can now define the gluing or wrapping operation.

Definition 5.2. (Gluing)

Let C = (X, E, F,h,0) be acontext and S = (X', E', F’, 0’) be a PGS such that X N X’ = (). Let ¢
be a bijective function from nodes(0’) to nodes(h). The gluing of S into C following gluing function
¢, denoted C' ®4 S, is the PGS G = (X, Eq, Fg, og) such that

e X =XUX'\nodes(o),

e Eg=FEU¢(E,

o Fg = (F\ {h})U(F"\ {o'}) and
® 0c = o.

Notice that S'is a pattern of G.

Figure 6 gives an example of a plane context in (a), of a plane graph in (b), of the gluing in (¢) of
the graph in (b) into the context in (a).

We now need to define the notion of substitutability. Informally, two patterns of a given language
are substitutable if the fact that they appear in the same context once, implies they always appear in
the same context, glued in a similar way.
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(a) (b) (c)

Figure 6. (a) A context whose hole is the face h. (b) A plane graph. (c) The gluing of the graph into the
context following the gluing function ¢(11) = 1, $(12) = 2, ¢(13) = 5, ¢(14) = 4.

Definition 5.3. (Substitutability)

Two PGS G = (X, E, F,0) and G' = (X', E', F', 0') are substitutable w.r.t. a plane graph language
L if whenever there exist two contexts C' and C’, C' =, C’, and two gluing functions ¢ and ¢’ such
that C' ©4 G isin L and C' ©4 G’ is in L, then for all contexts C”,

(3p1: C" 0y, GEL) <= (3p2: C" ®y, G' € L)

where ¢; and ¢9 are gluing functions such that, for all @ € nodes(0), for all b € nodes(0’), if

¢(a) = ¢'(b) then ¢y (a) = ¢2(b).

If G and G are substitutable w.xz. a language L, we will note G =% G’, or G =g G’ when there is no
ambiguity.
The following lemma states that substitutability is not affected by plane-isomorphism.

Lemma 5.4. Let G,G' and G” be PGS. If G =, G’ and G' =5 G" then G =5 G".

Proof:

[Sketch] Let x be the 1-to-1 function that maps the vertices of G onto those of G’ (as in the definition
of plane isomorphism). Let C be a context such that there exists a gluing functions ¢ such that
C ©g G" in L. As G' =g G” there exists ¢’ such that C' ©4 G’ in L. By construction we have
C Ogoy G =, C Oy G and thus C Oy, G isin L. O

We can then define substitutable plane graph languages:

Definition 5.5. (Substitutable languages)
A plane graph language L is substitutable iff all pairs of patterns that share a context are substitutable
wrt. L.

The following technical lemma states that substitutability in a substitutable language is a congru-
ence with respect to concatenation:

Lemma 5.6. Let L be a substitutable plane graph language and G1, G2, G, GY, be 4 PGS s.t. both G4
and G2, and G| and G, are concatenable following the identity function. If G1 =% G and G2 =L G
then G ¢ Go =L Gll <o G/Q
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Proof:
[Sketch] We index each element of the definition of a PGS by its name. For instance X, are the
vertices of G1, F,0a, are the faces of Gy ¢ Go, 0@ 0y is the outer face of G o G,

Let C be a plane context such that there exists a gluing function ¢: C ©4 G1 ¢ G2 is in L.
We suppose w.l.o.g. that the set of nodes of C' is distinct of the set of nodes of the 4 PGS under
consideration. We want to show that there exists a function x such that C' ®, G} ¢ G}, € L.

Let Cpogia,y = (Xo U d(Xe,) Unodes(d(oc,)). Ec U d(Ec,) U edges((0a,)), (Fo \ h) U
o(Fa, \ 0og,) U gb(o&), qb(ogQ), OC>.ALess formally, C¢. 5, is the context C' with G glued in it
following ¢ (its hole is thus the face qﬁ(oa)). Notice that C, 3(G1) is correctly defined as its faces
are connected since, by definition of the concatenation, there exists e € F¢,, e € edges(og,0a,) and
¢ : nodes(0G,0G,) — nodes(h). It is easy to verify by using the definitions that CC<><;3(G1) O¢ Ga =
C Oy Gy 0 Ga.

As Gy =g G, there exists ¢’ such that Ceodicr) O G, € L. But Ceod(cr) O G, is equal

by construction to C' ©;q ¢(G1) o ¢/ (Gh) where id is the identity function. Using the same kind of
construction, we can construct the context CC b/ (G1) such that C’C b (G) ®idd(G1) = C O p(G1) @
2 2

¢ (Gh) € L. As Gy =5 G and $(G1) =2, Gy, there exists ¢ such that CC<><;§'(G’2) O G} € L.

Again, this is equivalent to write C' ®;q ¢ (G')) o ¢'(GY), and as ¢ (G}) o ¢'(G) =2, G, o GY then
by Lemma 5.4 and the closure under plane-isomorphism of L, there exists x: C ©, G} oG5 € L. O

Finally, we can define a notion of congruence classes:

Definition 5.7. (Congruence classes)

Given a plane graph language L and a pattern GG of a graph of the language, the congruence class of
G in L, denoted [G'|1, (or simply [G]), is the set of all patterns substitutable with G in L: [G]1 =
{G":G' = G}.

In a substitutable plane graph language, if two patterns appear once in the same context, they
belong to the same congruence class.

5.2. The learner

Our learning algorithm is described in Algorithm 3.

As we are interested in the class of substitutable plane graph languages, the learning algorithm
has to deal with the distribution of contexts between subgraphs. To do so, it computes, from a finite
set S of PGS of the language, the observable congruence classes: two PGS G and G’ are in the same
observable congruence class if there exist £ > 2 and Gy, ..., Gy such that G = G1, G’ = Gy, and
Vi < k, G; and G411 appear at least once in the same context in the sample S. As in the case of
strings, this computation can be done using a substitution graph [5] or by hashing from subgraphs to
list of contexts. Notice that two PGS that are observed in the same congruence class are substitutable
but that the converse is not true in general: two PGS that are substitutable may not be observed in the
same congruence class in a given sample.

Given a set of connected inner faces F', we define split(F) to be the set of couples (F, F3) such
that F; U F5 = F and G, and G, are concatenable following the identity, where for i € {1, 2},
Gr, = (nodes(F;),edges(F;), F; U {outer(F;)}, outer(F;)). The function number_nodes(C')
returns the number of nodes of the outer face of the graphs in the observable congruence class C'.
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Algorithm 3: Learning algorithm for substitutable plane graph languages

Input: A learning set of plane graph systems LS = {G;}!' ;
Output: A plane graph grammar (N, P, P, A)

1 CC < compute_observable_congruence_classes(LS);
2 N« 0; P+ 0; P« 0; A« 0

3 foreach Observable congruence class C; of CC do

4 | N+ NU{(N? number nodes(C;))};

5 foreach GG in C; do

6 NYG) + Nt

7 if G € LS then

8 L A+ AU{N'}

9 foreach G = (Xq, Eq, Fa, (a1 ...a,)®]) in V do
10 if | Fz| = 2 then
11 L Pr +— P U {/\/ﬁk(G)al._.an — G},

12 else
13 foreach (I, F») € split(Fg \ {oc}) do
14 P+~ PU {Nt(G*)al...am — Nt(Gl)bl---bn Nt(G2)Cl~~-Cp} where

[b1...b,] = outer(F), [c1...cp] = outer(Fh), by =b, ¢y = cand
Vi: G; = (Xi, Ei, F; U {outer(F;)}, outer(F;));

15 return (N, Py, P, A)

5.3. Identification in the limit

We now define our learning criterion. This is set-driven identification from positive text, with a poly-
nomial bound on computation:

Definition 5.8. (Set-driven identification in polynomial time)
A representation class R is set-driven identifiable from positive data in polynomial time iff there exist
a polynomial p and an algorithm 4 such that:

1. Given a positive sample LS of size m, A returns a representation R € R in time p(m);

2. For each representation R € R there exists a characteristic set C'S such that if C'S C LS, A
returns a representation R’ such that L(R) = L(R’).

Note that the size of a set of plane graphs LS is defined as |LS| = > 1.5 |G|

The initial definition of this learning paradigm requires the size of the characteristic sample to be
polynomial in the size of the target representation [21]. However, this definition, initially designed
for the learning of regular string languages, is already unsuitable as a model for context free string
grammars [38]: classes of languages made of one element are not learnable in this paradigm if the
unique element of the language is exponentially larger than the corresponding grammar. The same
argument holds for graph grammars so one cannot expect this requirements to be fulfilled. As it is
beyond the scope of this paper to attempt to resolve this difficulty, we shall thus adopt this approach
in this paper: for a complete discussion, the reader is referred to devoted chapter in [13].



424 R. Eyraud et al. / Designing and Learning Substitutable PGG

5.3.1. Time complexity

The number of patterns (and thus of contexts) that can be generated from a given PGS can be expo-
nential in the size of that PGS (it is the case for instance of the plane graph corresponding to a grid,
like a chest board). So the size of observable congruence classes is in general exponential in the size
of the learning sample. This is a well-known problem while using graph grammar formalism’s as it
is related to the one of having an efficient parsing algorithm. However, the requirement of having a
language of polynomial rank, needed for efficient parsing (see Section 4.2) implies that the number
of patterns to considerate is polynomial in the size of the learning sample. Therefore the number of
elements that have to be taken into account to compute the congruence classes is polynomial.

To compute these observable congruence classes, we also need to compare all pairs of contexts
to decide if they are plane isomorphic. This can be done in polynomial time in the size of the con-
texts [22]. For the same reason, testing if two PGS are plane isomorphic can be done in polynomial
time and thus so is the construction of the congruence classes.

All other steps of Algorithm 3 are polynomial in the size of the observable congruence classes.

5.3.2. Proof the hypothesis is not too large

The following lemma states that patterns in the sample can be generated by the output grammar.

Lemma 5.9. If G = (X, E, F,0) is a subgraph of a sample LS, then there exists a plane graph G’
such that V*(G) =* G' and G =, G

Proof:
[Sketch] The proof can be done by induction on the number of faces of the graph. if |F| = 2,
then by the construction of the grammar there is a lexical rule N’ t(G)anma1 — G with [ay ...ay,] = o.
Suppose the property holds for graphs with |F'| = k > 2 faces. Let F; and F; be two sets of connected
faces such that F; N Fy» = () and F} U Fy = Fg \ {og}. Let Gy (resp. G2) be the PGS whose inner
faces are F (resp. F>). We have G1 ¢ Go = G. G1 and G5 are also subgraphs of LS by definition
and, by construction of the grammar, there exists a rule N*(G)a, . a,, — N (G1)py . 6, N (G2)ey...cn
with [a1 ...am] =0, [b1...b,] = outer(Fi)(=og,) and [¢c1 . .. ¢p] = outer(F2)(= og,).

This rule can be applied to the sentential form (G’,L'), with G' = (X', E' {0, 0},0),
L' (o) = (NY(G), a1). It gives the sentential form (G, £"), with G” = (X", E", {$(outer(F})),
p(outer(Fy)),0},0), L" (outer(Fy)) = (N*(G1),b1) and L (outer(Fy)) = (N*(G2),¢1) By the
inductive hypothesis there exist G| and G}, such that N'(G1) =* G|, N'(G2) =* G, G1 ¥, G}
and G =, GY. G and G might not be concatenable, as they can have inner nodes that share the
same label. However, w.l.o.g. one can change the labels of one of the graph, for instance G, in
order to obtain a PGS G that is plane-isomorphic to G and concatenable to G%. Thus we have
NYG) =* GY o G} and, by Lemma 2.10, G &, G © G5, O

Lemma 5.10. For all subgraphs G of a learning sample LS, for all PGS G, if N*(G) =* G’ then G
and G’ are substitutable.

Proof:
[Sketch] Let G = (X, E, F,0). As the lemma holds for G’ =, G, we restrict ourselves to the case
G’ %, G. By induction on the length of the derivation k. If k& = 1, then it means that a lexical
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production N*(G)g, ..a, — G” is applied and that G” =, G'. By the construction of the lexical rules,
it means that G” is a subgraph of LS that appears in the congruence class than G and thus G and G”
are substitutable. Lemma 5.4 implies that G’ =g G.

Suppose this is true for all derivations of length strictly less than & and let G’ be a PGS ob-
tained from A*(G) using k derivation steps. It means that there exists a sequence of sentential form
Si,..., Sk, such that Vi, S; is derived from S;_1, S; = (G, L;) with G; = (X1, Ey, {oR,o},o>,
L1(0®) = (NY(G),a) for some a € nodes(o), and G, = G’, L}, being undefined for all faces
of Gj. Sy is obtained from Sy applying a rule N*(G)a,...a,, = N (GF)py..6,N'(GRy)e,...5,» Where
outer(Fy) = [by...b,) and outer(Fz) = [c1 ...¢p), GF, = (XF,, ER,, F;Uouter(F;), outer(F;)),
fori € {1,2}. By construction, there exists G in the same observable congruence class of G such that
G. = GF, © Gp, and thus G, © GF, =g G. There exist G, and G, such that N (G, ) =* G,
N'(Gp,) =* Gy, and Gy = G, © G',. By recursion, G, =5 Gp, and G, =5 Gp,. As
Lemma 5.6 holds, we have G, © G, =s G, © GF, and thus G, =5 G. O

Theorem 5.11. For all samples of a language L, the output G of Algorithm 3 is such that L(G) C L.

Proof:

Let G € L(G). Then there exists a plane graph G’ in the learning sample and a plane graph G” such
that V(G') € A, N'(G') =* G” and G” =, G. Lemma 5.10 states that G” and G’ are substitutable
and thus G =% G'. As @' is anelementof L, G € L. O

5.3.3. Proof the hypothesis is large enough

To prove that the hypothesis is large enough, we need to define a characteristic set, i.e. a subset of the
target language L. which ensures that the output G of the algorithm is such that L(G) = L.

Construction of a characteristic sample. Let G, = (N, Pr., Py, A.) be a target grammar. We
will assume without loss of generality, that G, is reduced, that is to say for every non-terminal [V,
(1) there exists a derivation that starts from an axiom and labels at least one face with NV, and (2) a
PGS without any non-terminal labeling a face can be derived from a sentential form where one face is
labeled by N. We are going to define a set C'S(G.) of plane graphs of L., such that Algorithm 3 will
identify L, from any superset of C'S(G).

Given a non-terminal N*, we define C(N¥) to be one of the smallest context (X, , Eg,
Fg,, hi,o0q,) such that there exists a sequence of sentential forms (G1,L1),. .., (Gk, L) with
(G1, L) being an initial sentential form such that Fi;, = [OGk,,ogk], ﬁl(ogk) = (N%,a1), N* € A,,
and Vi,1 < i < k, (Giy1,L;41) is obtained from (G;, £;) by applying a rule of G., Lix(hy) =
(N*, ay,) for some ay, € nodes(hy), Ly, is undefined on other faces.

We also define G(N*) to be one of the smallest PGS such that N* =5 G(N )

We can now define the characteristic set C'S(G,). For each production N — Ng NFin P,, we add
to C'S(G,) the PGS C ©y X(G1) © X(G2) where ¢ : nodes([z]) — nodes(h) is a bijective function,
C = C(N"),G; = G(N7),Gy = G(N¥) and x : nodes(og,) U nodes(og,) — nodes([y]) U
nodes([z]) is a bijective function such that x(og,) = [y] and x(og,) = [z]. For each lexical rule
N! — Gin Pr, we add to C'S(G) the PGS C ®4 G where ¢ : nodes([z]) — nodes(h) is a bijective
function and C' = C'(N?).

The cardinality of this set is at most |Py| + | Pr.| which is clearly polynomially bounded. In
general the cardinality of the set will not polynomially bound the size of the sample, as it is already
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the case for string context-free grammars (see [5] for a detailed discussion). However, notice that if
there exists a polynomial-sized structurally complete sample — that is to say a sample where for each
production rule there is at least one plane graph that can be generated by using it [11] — then the size
of our characteristic set is polynomial. In addition, one can show that the size of this characteristic set
is polynomial in the size of the target grammar and of its thickness®, following the refinement of the
learning paradigm suggested by Ryo Yoshinaka [38].

Convergence. We must show that for any substitutable plane graph grammar G,, if the sample LS
contains the characteristic sample C'S(G,.), then L(G) = L(G.) where G = (N, P, P, A) is the
inferred grammar.

Lemma 5.12. If N = G then there exists a subgraph G’ of the learning sample and a plane graph
G" such that N =§ G', NHG") =5 G and G" =, G.

Proof:

[Sketch] By recursion on the number of derivation steps & in G,. If £ = 1 then there exists N — G’
in Pr., G’ =, G. By construction of the characteristic sample, G’ is a subgraph of LS and thus
NYG") — G'isin Pp.

Suppose it is true for all derivations of size less than & > 1. There exists a sequence of sentential
forms (G1, L1),...,(Gk, Lx) such that (G, L) is an initial sentential form with £(f1) = (N, a),
Si11 is obtained from .S; by using a rule of Gy, G, = G and Ly, is not defined for any face. Let N, —
N;N 7 be the rule applied to S; to obtain Sy. By construction, there exist G1 and Go, N i :5* G,
NI :>E* GQ, and G1 < G2 =G.

By recursion, there exist two subgraphs of LS, G| and G5, and two PGS G and GY such that
N' =% Gl N/ =5 Gy NYGY) =5 G NN GY) =5 Gy and G =, G1, G5 =, G. Notice that
this implies there exists a renaming function ¢ on the vertices of the external faces of GY and GY such
that ¢(GY) and ¢(GY%) are concatenable and ¢(GY) ¢ ¢(GY) =, G (Lemma 2.10).

By construction of the characteristic sample, there exist two subgraphs G'" and G%' of LS such
that G’ o G is a subgraph of LS, GY' =, G(N%) and G} =, G(N’). As L(G,) is a substitutable
language, we have G|" =g G} and G} =g GY. Thus G} and G’ appear in the same component
and thus correspond to the same non-terminal (and similarly for G’ and GY%). As there is a rule
NUGY 0 GY)y = NYGT )y N (GY'). in P, we have N'(GY' o GY') =5 (GY) o (GY). ]

Theorem 5.13. Let G, be the target plane graph grammar corresponding to a substitutable plane graph
language. Algorithm 3 returns a grammar G from any sample containing C'S(G,) such that L(G) =
L(G).

Proof:

If G € L(G.) then there exists N € A, such that N :E* G. By Lemma 5.12, it implies that there
exists a subgraph G” of the learning sample and a plane graph G” such that G’ € L(G.), N*(G') =§
G" and G” =, G. By construction of the grammar, N*(G’) € A and thus G € L(G). Therefore
L(Gy) € L(G). Due to Theorem 5.11, we have L(G) = L(G.). O

3The thickness of a grammar is the size of the largest element in the set of the smallest elements that can be generated by
each non-terminal.
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6. Discussion

In addition to substitutability, other restrictions on the learned class have been done, explicitly or not.
First, the grammar formalism implies that the number of nodes of the outer face of any generated PGS
has to be bounded: otherwise an infinite number of axioms would be needed. Then, the requirement
of having a polynomial rank, that is used both for efficient parsing and for the polynomial computation
time of the learning algorithm, is clearly restrictive.

Despite all these issues, this paper describes, to our knowledge, one of the first positive formal
learning result for a non-trivial class of graph grammars. The work on substitutable string lan-
guages [5] has been the starting point of several positive learning results on more complex classes,
and similar developments are likely to be tractable for plane graph languages. It seems to be the case
for instance of the extension to contexts with several holes [39] using multiple context-free grammars
(that are a context-sensitive formalism with a polynomial time parsing algorithm). It might also be
possible to adapt the learning algorithm in a way that allows a learning result in the PAC paradigm [35].
Finally, due to the interest of planar graphs in image processing [34], it is likely that the learning of
plane graph grammars, and more generally grammatical inference techniques, could be used to tackle
image classification tasks.
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Proof of Theorem 2.3

In this appendix, we prove that if a PGS S = (X, E, F, 0, D) is valid, then it denotes a plane graph.
Let us remark that (X, F) is a connected simple graph by assumption. Moreover, Condition (1) of
Def. 2.2 ensures that the boundary of every face is made of well-defined edges. Typically, no face can
be described with a boundary like [zz . ..], and if a boundary like [zy . ..] appears, then {z,y} is an
edge. Notice that sets X and F are redundant in a valid PGS, since we can compute them from the
boundaries of the faces.

Now, in order to prove Theorem 2.3, we are going to show that a valid PGS actually defines a 2D-

combinatorial map M = (D, «, 3), thus a structure such that D is a finite set of darts, « : D — D is
a permutation over D (that is, a one-to-one mapping) and 8 : D — D is an involution over D (that is,
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a one-to-one mapping such that 5 o 3(d) = d for all d € D). The semantics of combinatorial maps
and equivalent formalism’s such as generalized maps has been pioneered by Lienhardt [30].

Let us first define the set of darts as follows: D = {2y : 3f € F,Ju € X*, D(f) = [zyul}.
We now define mapping 5 : D — D by declaring f(2y) = y&. We claim that 3 is well-defined
and obviously an involution over D. Indeed, if 2y € D, then there exists a face f € F' such that
D(f) = [zyu] for some u € X*. By Condition (1) of Def.2.2, we deduce that pair {z, y} is an edge.
So by Condition (2), there exists a face f* € F such that D(f") = [yzv] for some v € X*, thus
yxr € D.

The definition of o : D — D is a bit more intricate. Consider a dart 2y € D. Then there exists
an unique face f € F such that D(f) = [zyu] for some u € X*. We can assume without loss of
generality that |u| > 0. Otherwise, face f is bounded by a single edge, and as the graph (X, E) is
connected, this graph is actually reduced to a single edge, thus the property straightforwardly holds.
Hence, we assume that there exists z € X such that D(f) = [zyzu| for some v € X*, and we set
a(7y) = y.

We claim that « is a permutation over D. Firstly, any dart £3 has a unique image by «. Indeed,
suppose that a(2y) = y%. By Condition (2) of Def.2.2, there exists an unique face f € F such that
D(f) = [xyzu] for some v € X*. So if £ was a-sewn with another dart yz" , then we would have
D(f) = [ryzuxyz'v] for some u,v € X*. By Condition (3), we have z = 2’ in this case.

Secondly, « is injective: suppose that «(2%) = 2% and a(zra:) = 2. By Condition (2) of Def. 2.2,
there exists an unique face f € F such that D(f) = [zyzu] for some u € X*. If both 7z and 2/z are
a-sewn with dart 7, then we have D(f) = [zzyuz'zyv] for some u,v € X*. By Condition (3), we
also have z = 2’ in this case.

Finally, thanks to Condition (4) of Def. 2.2, the genus [9] of map M is null, so it can be embedded
on a sphere with no crossing edges. Moreover, the fact that we distinguish face o as the external face in
the PGS allows us to (1) eliminate this face from the map and (2) continuously deform the sphere into
a plane so that we finally get a plane graph (remember that a plane is isomorphic to a sphere minus a
point). Note that if Condition (4) does not hold, then a PGS may denote a drawing with no crossing
edges on a surface whose genus is > 0, thus a torus with £ > 0 holes.



