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Issues Overview

We can formulate the anomaly detection problem as
follow. Let D be a data set containing a large number of
normal examples (the normal states of the system). A
model M must learn the distribution function Pyover the
normal data during training. Then, given any test example
x , it must determine whether x deviates from the learned »
distribution Py by using an anomaly score function a(x).
In this work “Encoding Adversarial Network”, consists to
project the example X,,and X into a small space, called
decision space.

Where given an example x we measure the degree of
anomaly of an example a(x).
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Encoder Adversarial Network

Architecture

@)EAN is composed of two neural networks.
We call encoder, the neural network that
projects the examples from the original
space into the decision space E(x) by
projecting normal examples in P_,and
anomalies outside P,

we use a second network called
discriminator. In the same way as GANSs,
which receives as input a vector of the
decision space Z and predicts if this vector

comes from P, or from the encoder by
\ returning a probability /
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In the inference phase, the prediction of the anomalies \
requires only the use of the encoder.

The anomaly score is the Mahalanobis distance between E(x)
and L.

This distribution is supposed to tend to E(x) = N(0; I).
Because of the finite size of the training set, our experiments
showed that the projection distribution of normal examples
could diverge slightly from P,. We represent this distribution

ssessed with a validation base.

Q/a Gaussian distribution N(; ))) whose parameters are /
a

Algorithm and Theoretical analysis
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3 . ! e toma Projection of latent space (E(X )/E(X,)) During different training steps
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We added an new constraint on the loss function compared to original GANs. By doing\
this The encoder must therefore both misleads the discriminator on the normal example
projection E(Xn) to make it believe that it comes from P, and help the discriminator

differentiate P, from the projection of the anomalies E(X ).

Lp = —E.p.[log(D(2))] = Eq,np,, [log(1 — D(E(zn)))] = Egynp,, [log(1 = D(E(24)))]

Lg = Eq,np,, [l0g(1 = D(E(20)))] + Ezgmpg, l02(D(E(24))))

\ a() = \/(E(x) — p)TE-1(E(z) — p) /
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Experimentation and results

2.0

1.8

1.6

1.4

1.2

1.0

0.8

S00

— escriminator
Encoder

1000

Step

1500

Loss

1.2

500 1000

Step

— 4og(D(E(Xa)))
Jog(D(E(Xn)))
—— Jog(D(E(Z))

1500

/

The green and blue curves show that the discriminator is confused through the
learning steps: it cannot differentiate between the distributions over zand E(X ).

Therefore, the encoder is getting better with respect to the approximation of P,,. At
the same time, we see that the orange loss curve keeps decreasing, which means

K that the distribution of anomalous examples E(X ). diverges from P,
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Image Dataset (Mnist)
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Network Dataset (KDD)

AUC F1 ROC accuracy Modle AUC F1 ROC accuracy Modle
79.6 80.5 82.3 81.9 AnoGAN 729 734 79.3 77.1 AnoGAN
93.8 &7.1 954 97.3 EGBAD 954 96.6 984 98.6 EGBAD
93.7 &88.1 95.7 97.0 ALAD 89.1 93.9 979 97.6 ALAD
94.1 &9.3 97.0 97.2 OCSVM 73.8 87.0 88.3 88.1 OCSVM
98.0 95.0 99.1 98.0 AnoEAN 97.5 96.3 99.1 98.5 AnoEAN
97.3 93.3 98.9 97.2 SVM 97.2 98.7 98.7 99.1 SVM

Table 1: NSL-KDD
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Table 2: KDD99

Conclusion and future work

Adapt our method to the case where no anomalies are available in
the training set.
Time series approaches to learn the normal behavior of linux
kernel embedded in autonomous cars
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