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Abstract

Anomaly detection is a standard problem in Machine Learning with various applications
such as health-care, predictive maintenance and cyber-security. In such applications, the
data is unbalanced: the rate of regular examples is much higher than the anomalous exam-
ples. The emergence of the Generative Adversarial Networks (GANs) has recently brought
new algorithms for anomaly detection. Most of them use the generator as a proxy for the
reconstruction loss. The idea is that the generator cannot reconstruct an anomaly. We
develop an alternative approach for anomaly detection, based on an Encoding Adversarial
Network (AnoEAN), which maps the data to a latent space (decision space), where the
detection of anomalies is done directly by calculating a score. Our encoder is learned by
adversarial learning, using two loss functions, the first constraining the encoder to project
regular data into a Gaussian distribution and the second, to project anomalous data out-
side this distribution. We conduct a series of experiments on several standard bases and
show that our approach outperforms the state of the art when using 10% anomalies during
the learning stage, and detects unseen anomalies.

Keywords: Anomaly Detection, Deep Learning, Encoding Network, Adversarial Learning,
Generative Adversarial Networks.

1. Introduction

Anomaly detection is a well-established topic in Machine Learning, with many applications
in domains such as fraud detection, cybersecurity, video surveillance and predictive mainte-
nance (Chandola et al., 2009; Kiran et al., 2018; Chalapathy and Chawla, 2019). Moreover,
the recent advances in Artificial Intelligence bring insight into future applications, as au-
tonomous transportation like self-driving cars. Many cyber-security threats can impact the
usability of those systems. The problem of anomaly detection highlights many risks related
to those threats and can help the standard security systems to face new threats.

We can formulate the anomaly detection problem as follows. Let D be a data set
containing a large number of normal examples (the normal states of the system) Xn, and a
relatively small number of anomalous examples Xa. A model M must learn the distribution
function pX over the normal data during training. Then, given any test example x, it must
determine whether x deviates from the learned distribution pX by using an anomaly score
function a(x).

Following Chalapathy and Chawla (2019), there exist three settings for anomaly de-
tection. The first is the unsupervised case, where an algorithm has to discover intrinsic
properties of the data to detect the anomalies without any label guidance(Campello et al.,
2015); The training set contains both normal and anomalous examples but the labels are
not available. The second is the supervised case, where an algorithm must usually face
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unbalanced datasets, with significant rates of normal data and few anomalous examples.
The third is the one-class classification, where the algorithm has access only to a large set of
normal data. Unlike the unsupervised case there are no anomalous examples in the training
set. In this paper, we focus on both the supervised and the one-class anomaly detection
problems. Notice that even though few anomalous examples may exist in the data, super-
vised learning algorithm are still challenging, because the set of anomalies often does not
form a homogeneous class, that is, a set of examples that shares some semantics.

A large number of papers propose machine learning-based anomaly detection models
(Chandola et al., 2009; Hodge and Austin, 2004; Pimentel et al., 2014). The recent advances
in the field of deep learning have made it possible to revise this problem (Chalapathy and
Chawla, 2019; Kiran et al., 2018). In particular, Generative Adversarial Network (GANs)
(Goodfellow et al., 2014a,b), that were proved very efficient in many application fields
(Creswell et al., 2018), have also been adopted in recent works on anomaly detection (Schlegl
et al., 2017; Zenati et al., 2018b,a; Akcay et al., 2018; Golan and El-Yaniv, 2018; Sabokrou
et al., 2018; Deecke et al., 2018).

In this article, we investigate several problems related to GAN-based anomaly detection
methods. We propose a new method, called AnoEAN (Encoding Adversarial Network
for Anomaly Detection). The principle of AnoEAN is to learn a function (Encoder) that
projects the original dataset into a latent space with a small dimension so that the normal
examples are projected in restricted region of the latent space and the anomalies outside
this region. This latent representation allows us to identify anomalies directly in the latent
space, by using a Mahalanobis distance on the distribution induced by the normal examples.
We thus eliminate all the problems related to the reconstruction loss function. To do so, we
develop a new approach that trains an encoder by adversarial learning. We assume that we
have a large amount of normal data and a small number of anomalies, which is a common
framework for anomaly detection. We finally conduct a series of experiments proving that
AnoEAN performs better than conventional anomaly detection techniques, including those
based on GANs, using both the MNIST base of handwritten digits (LeCun, 1998) and two
standard network intrusion detection databases (KDD’99, NSL-KDD) (Lichman., 2013;
Dhanabal and Shantharajah, 2015).

2. Related works

According to the taxonomy of Golan and El-Yaniv (2018), there are two leading families
of methods. The first category, called Representation learning, consists in learning a rep-
resentation of the normal data, which is used to trigger an alarm when deviant behavior
is detected. Many machine learning techniques have been used to construct such models,
including one-class SVM (OCSVM) (Schölkopf et al., 2000). In this case, the problem re-
turns to find a hypersphere with a small radius that encloses the majority of the normal
data and keeps the anomalies outside. Contrary to the deep learning approaches, OCSVM
and other classic machine learning techniques require an explicit feature preprocessing. The
kernel methods also suffer from quadratically scaling, and require the storage of the support
vectors which can be restrictive for an embedded system. Notice that Ruff et al. (2018);
Chalapathy et al. (2018) have proposed a deep learning adaptation of one-class classification
that does not suffer from these limitations.
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The second category is based on a Reconstruction loss anomaly score. The model
constructs a compact representation of the characteristics of the normal examples and learns
to reconstruct the examples from this representation. These methods are based on the
assumption that it is more difficult to reconstruct an anomaly than normal examples. The
autoencoders were the first to be developed in this framework (Xia et al., 2015; Xu et al.,
2018), but the adversarial learning techniques became more and more popular, and several
GAN variants have been adapted to tackle anomaly detection problems (Schlegl et al., 2017;
Zenati et al., 2018a,b; Akcay et al., 2018; Golan and El-Yaniv, 2018; Sabokrou et al., 2018;
Deecke et al., 2018).

A Generative Adversarial Network (GAN) is composed of two neural networks: a gener-
ator G, that transforms a vector z drawn from simple prior distribution (latent space) into
an artificial data space (same dimension as a real data space), and a discriminator D whose
role is to differentiate artificial data from real data. One drives such a system competi-
tively: the generator must deceive the discriminator by implicitly learning to approximate
the distribution of real data (Goodfellow et al., 2014a). In the context of anomaly detec-
tion, AnoGAN (Schlegl et al., 2017) and its variants (Deecke et al., 2018), learn a GAN
from the normal data. Then, for a given test example x, the algorithm looks for a point
z in the latent space such that G(z) ≈ x; if it fails, then the example x is considered as
an anomaly. In other words, the GAN-based approaches work upon the inversion of the
generator: AnoGAN tries to compute z = G−1(x) under the assumption that G is invertible
only for normal examples. Nevertheless, AnoGAN does not explicitely invert the generator:
a reconstruction loss function is defined, typically Lr = ‖x − G(z)‖, and the techniques
consists in finding the point z which minimizes Lr withe respect to z. This is very time-
consuming because a gradient descent must be performed for each test example. Notice that
Creswell and Bharath (2018) improved this idea by inverting many images at once. The
GANs also suffer from the mode collapse (Salimans et al., 2016): The generator may have a
limited diversity during inference phase regardless of the input. In practice, it means that,
there exists a single point that the generator thinks as the most optimal point to generate,
whatever the input. See Fig. 1c, 1d.

In order to get around these problems, other algorithms like EGBAD and ALAD (Zenati
et al., 2018a,b) learn Bidirectional GANs (BiGANs) (Donahue et al., 2016; Dumoulin et al.,
2016; Li et al., 2017) rather than GANs. Their architectures are composed of three networks:
a generator G and a discriminator D as before, and a third network, called an encoder E,
whose role is to project the data to the latent space with E = G−1. The encoder is learned
alongside the GAN. Moreover, in this setting, finding a point z such that G(z) ≈ x is
immediate, since we have z = E(x). However, training an additional encoder network
may encourage over-fitting, resulting in poor reconstruction (Creswell and Bharath, 2018).
Moreover, in practice, the generator and the encoder are rarely exact inverses of each other:
they are inverse from a theoretical standpoint, after convergence. Furthermore, the BiGANs
may suffer from non-identifiability issues, as shown by Li et al. (2017): a single instance z
can potentially correspond to many possible values of x (see Fig. 1a, 1b). To deal with this
problem, ALICE (Li et al., 2017) uses conditional entropies to control the uncertainty of a
pair (z, x). More precisely, the authors bound the conditional entropy by using the criterion
of cycle-consistency (Zhao et al., 2018).
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(a) original data (b) reconstructed
data

(c) original data (d) reconstructed
data

Figure 1: (a) and (b) shows the non-identifiability issue: the generator performs well in
reconstruction, but the encoder has difficulties to retrieve the correct pairs between the
data space and latent space. (c) and (d) shows the mode collapse issue: the generator is
more likely to project every latent point to digit (6), which proves that the generator lacks
from diversity.

Most of GAN-based approaches work upon the assumption that the generator is in-
vertible. The inverse of the generator is obtained either by driving another network which
simulates the inverse of the generator, or via an optimization process. But it has been
shown experimentally that in both cases, the approximated function is not the inverse of
the generator everywhere (see Fig. 1a and 1b). Thus applying again the generator on the
antecedent of a datum x generally fails to reconstruct x, even though datum x was a normal
example. In practice, this phenomenon dramatically increases the rate of false alarms.

3. AnoEAN algorithm

3.1. Formulation

We consider a problem in which we monitor the data x ∈ Rp describing the state of a system
with p variables. Our goal is to trigger an alert when the data shows that the system is out
of normal behavior. For this, we construct an anomaly score a(x) : Rp → [0,+∞[ measuring
the degree of anomaly of an example x, the normal example must have a score close to 0. To
learn this function, we have a training set containing N examples corresponding to a normal
behavior {xni | i = 1..N} and M examples corresponding to anomalies {xai | i = 1..M} with
M � N . Notice that unlike normal data, the anomalies do not form a homogeneous class.

Our method, named AnoEAN for Anormaly Detection by Encoding Adversarial Network,
consists in projecting the examples xn and xa into a small space, called decision space, in
which the distribution of normal examples is Gaussian. We call encoder, the neural network
that projects the examples from the original space into the decision space E(x) : Rp → Rd
with d� p. Let pz be a Gaussian distribution N (0, I) in the decision space. The purpose
of the encoder is to project the normal examples in pz and the anomalies outside pz.

For this, in the same way as the GANs, we use a second network called discriminator
D(z) : Rd → R which receives as input a vector of the decision space and predicts if this
vector comes from pz or from the encoder. D(z) returns the probability that the vector z
comes from pz. The encoder must therefore both misleads the discriminator on the normal
example projection E(xn) to make it believe that it comes from pz and help the discriminator
differentiate pz from the projection of the anomalies E(xa). The architecture of our AnoEAN
model is shown in Fig. 2. The discriminator and the encoder must respectively minimize
the following LD and LE loss functions:
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Figure 2: The training phase of AnoEAN: the Encoder and the Discriminator are adversar-
ially learnt.

LD =−Ez∼pz [logD(z)]−Exn∼pxn [log(1−D(E(xn)))]−Exa∼pxa [log(1−D(E(xa)))] (1)

LE =Exn∼pxn [log(1−D(E(xn)))] + Exa∼pxa [log(D(E(xa)))] (2)

In Eq. (1) and (2), the two first terms of loss function LD, and the first term of loss
function LE are similar to the basic loss functions of a GAN. Instead of a noise vector
in the input of the generator of the GAN, in AnoEAN a vector representing a normal
example is in the input of the encoder. By maximizing D(z) and minimizing D(E(xn)), the
decoder learns to differentiate vectors drawn from pz and projections of normal examples
E(xn). By maximizing D(E(xn)) the encoder gets the distribution of the projections of
normal examples E(xn) closer to pz. If we do not add the terms D(E(xa)) in LD and LE
then there are no constraints on the projections of the anomalies, and the encoder tends
to project both normal examples and anomalies on pz. The consequence is that we can
not differentiate normal examples from anomalies in the decision space. On the contrary,
by minimizing D(E(xa)), we get that (i) the decoder learns to differentiate vectors drawn
from pz and projections of normal examples E(xa), and (ii) the encoder also minimizes the
overlap between the distribution of projections of the anomalies E(xa) and pz.

Fig. 3 shows a toy dataset illustrating the objective of the encoder. The 2-dimension
dataset (left panel) corresponds of 550 training examples; The normal examples are repre-
sented with 500 red points, which are drawn from a normal distribution; The remaining 50
blue points are drawn from multiple other Gaussian distributions and scattered around to
simulate anomalous examples. The 1-dimension decision space is represented in the right
panel, where the green, red and blue curves represent respectively the distribution of pz,
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Figure 3: A sketch of the projection from the data space to the decision space that is
performed by a well-trained Encoder.

E(xn) and E(xa). The distribution of the E(xn) fits pz and the overlap between the dis-
tribution of the E(xa) and pz tends to 0. This clearly yields an efficient space in which the
anomaly score can be computed.

Figure 4: The inference (test) phase: only the Encoder is requested.

Once the model is trained, the prediction of the anomalies requires only the use of the
encoder (Fig 4). The anomaly score for an example x is the distance between its projection
in the decision space E(x) and the distribution of the projection of the normal examples.
This distribution is supposed to tend to pz = N (0, I) during the learning of the model. We
could therefore use the E(x) standard deviation as an anomaly score. However, because of
the finite size of the training set, our experiments showed that the projection distribution
of normal examples could diverge slightly from pz. Therefore, at the end of the learning,
we represent this distribution by a Gaussian distribution N (µ,Σ) whose parameters are
assessed with a validation base. The anomaly score is finally the Mahalanobis distance
between E(x) and µ:

a(x) =
√

(E(x)− µ)TΣ−1(E(x)− µ) (3)
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3.2. Theoretical analysis

In this section, we develop the loss functions LD and LE (see Eq. (1) and (2)) in order
to identify the optimal discriminator and encoder. We begin with the discriminator. The
formulas of LD can be rewritten by introducing the integrals instead of the expectations:

LD =

∫
z
−pz(z) logD(z)dz −

∫
x
pxn(z) log(1−D(E(x)))dx−

∫
x
pxa(x) log(1−D(E(x)))dx

=

∫
z
−pz(z) logD(z)− pzn(z) log(1−D(z))− pza(z) log(1−D(z))dz

where pzn (resp. pza) is the distribution of the projection of normal (resp. anomalous)
examples into the decision space. We can express the optimal discriminator D given the
encoder E. Let f(D(z)) be the function in the integral above such that LD =

∫
z f(D(z))dz.

To find the discriminator that minimized LD , we set the derivative of f(D(z)) to 0 :

∂f(D(z))

∂D(z)
= −pz(z)

D(z)
+

pn(z)

1−D(z)
+

pa(z)

1−D(z)
= 0

⇒ D(z) =
pz(z)

pz(z) + pzn(z) + pza(z)

(4)

if pz(z) + pzn(z) + pza(z) 6= 0, we can compute the second derivative to check that this
extremum is a minimum :

∂f(D(z))

∂D(z)
=

pz(z)

D(z)2
+

pn(z)

(1−D(z))2
+

pa(z)

(1−D(z))2
> 0 (5)

Hence the optimal discriminator is D∗(z) = pz(z)
pz(z)+pzn (z)+pza (z)

. It corresponds to the Bayes
classifier predicting if z comes from the distribution pz or from the encoder.

Let us see what the encoder does when the optimal discriminator is plugged into loss
function LE . We have:

LE =

∫
z
pzn(z) log(1−D∗(z)) + pza(z) log(D∗(z))dz

=

∫
z
pzn(z) log

(
pzn(z) + pza(z)

pz(z) + pzn(z) + pza(z)

)
+ pza(z) log

(
pz(z)

pz(z) + pzn(z) + pza(z)

)
dz

=

∫
z
pzn(z) log

(
pzn(z) + pza(z)

pzn(z)

pzn(z)

pz(z) + pzn(z) + pza(z)

)
+ pza(z) log

(
pz(z)

pza(z)

pza(z)

pz(z) + pzn(z) + pza(z)

)
dz

=−
∫
z
pzn(z) log

(
pzn(z)

pzn (z)+pza (z)
2

)
dz − log 2 +

∫
z
pzn(z) log

(
pzn(z)

pz(z)+pzn (z)+pza (z)
3

)
dz − log 3

−
∫
z
pza(z) log

(
pza(z)

pz(z)

)
dz +

∫
z
pza(z) log

(
pza(z)

pz(z)+pza (z)+pza (z)
3

)
dz − log 3

=−KL
(
pzn

∣∣∣∣∣∣∣∣pzn + pza
2

)
+KL

(
pzn

∣∣∣∣∣∣∣∣pz + pzn + pza
3

)
−KL (pza ||pz) +KL

(
pza

∣∣∣∣∣∣∣∣pz + pzn + pza
3

)
− 2 log 3− log 2

(6)
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Clearly, the optimal encoder minimizes an expression composed by 4 Kullback-Leibler diver-

gences. The minimization of the both termsKL
(
pzn

∣∣∣∣∣∣pz+pzn+pza3

)
andKL

(
pza

∣∣∣∣∣∣pz+pzn+pza3

)
implies that the encoder tends to the solution where the three distribution are equal
pz = pzn = pza . By maximizing KL (pza ||pz), the encoder maximizes the divergence between

pza and pz i.e. it tries to project the anomalies outside pz. To maximize KL
(
pzn

∣∣∣∣∣∣pzn+pza2

)
,

the encoder has to maximize the divergence between pzn and pza , thus it aims at separating
the projection of the normal examples from the projection of the anomalies. By optimizing
all of these four divergences together the encoder tries to project the normal examples into
pz and to project the anomalies outside pz and pxn .

3.3. Learning algorithm

Algorithm 1 AnoEAN. Adam hyper-parameters (α = 0.0002, β = 0.5), Learning rate 10−3

Require: batch size m, discriminator step nD, m = ma +mn

Initialize the discriminator parameters wD, the generator parameters θG.
for number of training iteration do

sample batches of {x(i)n }mn ∼ Pxn , {x(i)a }ma ∼ Pxa , {z(i)}m ∼ N (µ, σ2)).
for k = 0, ..., nD do

δw ← ∇w[− 1
m

∑m
i=1 logDw(z(i))− 1

mn

∑mn
i=1 log(1−Dw(Eθ(x

(i)
n )))− 1

ma

∑ma
i=1 log(1−

Dw(Eθ(x
(i)
a )))]

wD ← Adam(δw, α, β)
end for
δθ ← ∇θ[− 1

mn

∑mn
i=1 logDw(Eθ(x

(i)
n ))− 1

ma

∑ma
i=1 log(1−Dw(Eθ(x

(i)
a )))]

θG ← Adam(δθ, α, β)
end for

In Algo. 1, we show the training procedure of our model. We take random examples
xn and anomalies xa from the training set and project them into the decision space with
the encoder (i.e., we calculate each E(xa) and E(xn)). We add random vectors from
the pz distribution to these projected examples, and get the batch that is presented at
the input of the discriminator. The discriminator is modified by a gradient descent to
minimize LD(Eq 1); the encoder is frozen during this step. Then, it is the encoder’s turn
to be modified in order to minimize LE(Eq 2), the discriminator being frozen during this
step. This procedure is iterated until convergence. Notice that to seed up the gradient
descent, we modify the loss function of the encoder : LE = −Exn∼pxn [log(D(E(xn)))] −
Exa∼pxa [log(1 − D(E(xa)))]. The minimization of this function is theoretically equivalent
of the previous one, but it has larger gradient for bad encoders.

4. Experimentations

In this section, we describe our experimental protocol, the algorithms used to compare
our model, the datasets and the implementation details of our technique. Our results
demonstrate the efficiency of our model compared to the state of the art.
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4.1. Experimental setup

In our experiments we used three datasets: MNIST, KDD99 and NSL-KDD.
MNIST (LeCun, 1998) is a database of handwritten digits that is commonly used for

image classification problems. Despite that MNIST does not initially contain normal classes
and anomalies, it is often used in anomaly detection to analyze the behavior of algorithms
and visualize their predictions. In our experiments, we used this dataset in two ways:
1) 1 against all: we consider that a certain number represents the normal class and the
remaining 9 numbers represent the anomaly class. For the OCSVM, AnoGAN, ALAD,
EGBAD methods, the training set consists of 5000 normal data; the test set includes 1700
examples of which 80% of normal data and 20% of anomalies randomly selected among
the other 9 classes. For AnoEAN and SVM, we additionally inject 10% anomalies into the
learning set; these are chosen among 4 classes out of 9, so that certain figures (anomalies)
do not appear during the learning.
2) n against m: it is based on the same principle as the ”1 against all”, the only difference
being that the normal class is composed of several digits. We group n classes of digits into
one normal class and treat the remaining m digits as abnormal examples. We use the same
sample apportionment in the learning and test sets as in ”1 against all”. The objective is to
analyze the behavior of the algorithms in the case where the normal class is heterogeneous
and can be separated into several subclasses.

The other datasets KDD99 (Lichman., 2013) and NSL-KDD (Dhanabal and Shanthara-
jah, 2015) are commonly used to evaluate the performance of anomaly detection algorithms,
the objective being to detect intrusions into monitored networks. We use the same sample
apportionment in the learning and test sets as before.

We compare our method with two kernel methods and three GAN-based methods.
OCSVM. The One-Class Support Vector Machine (OCSVM) is a classical kernel-based

technique for novelty detection. It is usually used with the RBF or linear kernel function
(Schölkopf et al., 2000). In our experiments, the RBF kernel gives the best results. The
OCSVM learns a decision boundary around normal examples, containing most of the learn-
ing samples. Samples residing outside the borders are considered as abnormal. We imple-
mented two tests, one where we feed OCSVM with normal data (fixing ν = 0.0001), the
other where we inject 10% anomalous example in train data and a soft margin of 10% (that
is, ν = 0.1). The latter did not bring any improvement to the results.

SVM. Althought the SVMs often produce efficient solutions for balanced data sets,
they are sensitive to unbalanced data sets (Veropoulos et al., 1999; Wu and Chang, 2003;
Akbani et al., 2004). The main reason is that the objective function assigns the same cost C
for positive and negative classification errors in terms of penalty (Veropoulos et al., 1999).
We used a cost-sensitive learning solution by adding a weight for each class that penalizes
errors (giving a higher weight to the least frequent class corresponding to the class of the
anomalies).

AnoGAN was the first published anomaly detection method based on GAN (Schlegl
et al., 2017). The model learns a generator able to project random points from a low-
dimensional multivariate Gaussian distribution (latent space) to the distribution of the
training data set. The model adversarially learns a discriminator that must separate the
generated data from the real data. After the training stage, for each element of the test set,
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we sample a latent space variable using a generator, followed by gradient descent on this
latent variable, to estimate the inverse projection. The anomaly criterion is a combination
of the reconstruction loss and the feature match loss (distance computd with the last hidden
layer of the discriminator). For each test element, if the optimization cannot find a latent
variable that minimizes the criterion, we obtain a high score.

EGBAD takes advantage of the BiGAN/ALI network structure. EGBAD has an en-
coder that projects the data into in the latent space (Donahue et al., 2016; Dumoulin et al.,
2016). The adversarial training process is driven through a discriminator that takes as an
input the pair (data, latent variable) and must determine which pair constitutes a real pair
consisting of a sample of real data and its coding (x,E(x)), or a false data sample and
the corresponding latent space input of the generator (G(z), z). For a given test input x,
EGBAD (Zenati et al., 2018a) uses the encoder to infer the latent variable z = E(x) that
will be used as input for the generator to reconstruct the test input G(E(x)). The anomaly
criterion is the same as that of Schlegl et al. (2017).

ALAD is a bidirectional GAN, based on the ALICE architecture (Li et al., 2017).
It directly infer the reconstruction of a data in the test phase using an encoder and the
generator G(E(x)). In ALAD (Zenati et al., 2018b), the authors regularize the conditional
distribution by adding another discriminant Dxx(x,G(z)) to approximate a conditional
entropy constraint. The aim is to enhance EGBAD by explicitly forcing the encoder and
generator during the training so that both are the inverse of each other. The authors
also apply the spectral normalization (Miyato et al., 2018) to regularize the training. The
anomaly score is the L1 reconstruction error in the discriminant space Gxx between the
actual data and the sample generated using the discriminant hidden layer before the logit
layer.

OCSVM, ALAD, AnoGAN and EGBAD are one-class methods: Only normal data is
used in the learning phase. In AnoEAN and SVM, we use few additional anomalies, leading
to unbalanced classes.

The performances of the algorithms are assessed with the area under the precision-
recall curves (AUC). We also calculate the optimal F1measure, as well as the receiver
operating characteristic(ROC curve) and associated accuracy. For each model, we select
the learning parameters that maximize the AUC calculated from the anomaly score a(x)
Eq. (3) established with a validation set.

AnoEAN has two neural networks, the encoder and the discriminator. In the case of
MNIST, the encoder is a convolutional network (4 ∗ 2 ∗ 32, 4 ∗ 2 ∗ 64, 4 ∗ 2 ∗ 128, d)(d is the
dimension of latent space) and the discriminator is a multi-layer network (32, 16, 1). For the
NSL-KDD and KDD99 bases, the encoder and the discriminator are multi-layer networks
(128, 64, 32, d) and (32, 16, 1) respectively. The size of the batch is 200. The number of epochs
is fixed by early stopping and the gradient descent is performed with Adam (lr = 10−3).

4.2. Results

In Fig. 5a, we show the curves of the loss function LD. The green and blue curves show that
the discriminator is confused through the learning steps: it cannot differentiate between the
distributions over z and E(xn). Therefore, the encoder is getting better with respect to the
approximation of Pz. At the same time, we see that the orange loss curve keeps decreasing,
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(a) (b)

Figure 5: (a) shows the loss curves on the discriminator. (b) shows the overall loss functions
of the encoder and the discriminator.

which means that the distribution of anomalous examples E(xa) diverges from Pz. In
Fig. 5b, we can see that both the loss functions LE and LD are decreasing with the iterations
until convergence.

Figure 6: Model performance according to the AUC metric on each digit in the case of the
MNIST problem (1 against all)

In Fig. 6, we present our results on MNIST (1 against all): each digit is successively
considered as the normal class, the others being seen as anomalies. AnoEAN outperforms all
other methods in 5 out of 10 cases; its performances are comparable to the best methods on
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the remaining 5 digits. Notice that all the methods have poor performances on Classes 2, 3, 4
and 5 because these classes have similar visual characteristics as those of the anomalies. We
also observe that reconstruction-based approaches (ALAD and EGBAD) are competitive:
They successfully rebuild the numbers, which allows them to have an important anomaly
score on items that are not visually similar to the normal class.

Figure 7: Visualization of the performances on different methods with several degrees of
complexity in the normal class (varying the heterogeneity of the normal class with several
numbers).

In Fig. 7, we show the results on MNIST (n against m). We are interested in the problem
of identifying anomalies in a dataset where the normal class is heterogeneous (composed of
several digits). In this configuration, AnoEAN dramatically outperforms the state of the art,
even if its performance deteriorates with the increasing heterogeneity of the normal class.
Notice that the performances of reconstruction-based approaches (ALAD and EGBAD)
collapse. Indeed, for them to work, the generator and the encoder must necessarily be
inverse from one another, what is particularly difficult to guaranty when the normal class
is heterogeneous. On the other hand, AnoEAN succeeds in encoding complex distributions
because it does not need to calculate the inverse of the encoder.

AUC F1 ROC accuracy Model

81.3± 0.92 80.1±1.4 83.9±0.89 86.2±0.78 AnoGAN
95.1± 0.74 89.6±1.5 97.9±0.31 95.9±0.51 EGBAD
95.2± 0.77 90.2±0.81 98.0±0.39 96.1±0.28 ALAD
81.1± 4.52 78.5±4.98 91.1±2.24 88.3±7.48 OCSVM
97.9±0.26 95.2±0.63 98.8±0.28 98.3±0.25 AnoEAN
94.8± 0.5 93.9±0.8 95.6±1.49 97.4±0.24 SVM

Table 1: NSL-KDD

12



AnoEAN

AUC F1 ROC accuracy Model

82.7±2.72 85.9±1.97 85.8±0.79 88.1±1.71 AnoGAN
95.1±3.67 96.4±3.02 98.9±0.88 98.5±1.39 EGBAD
95.6±1.51 96.8±0.72 99.1±0.37 98.7±0.28 ALAD
86.6±3.86 84.4±5.36 95±2.02 92.5±3.21 OCSVM
99.2±0.08 97.3±0.32 99.7±0.09 98.8±0.14 AnoEAN

98.7±0 98.5±0 98.6±0 99.3±0 SVM

Table 2: KDD99

The results on NSL-KDD and KDD99 datasets are presented in Tables 1 and 2. We
obtain these results by running train and test with multiple seeds (10 different seeds) for the
initialisation of the weights and shuffling before splitting data into train and test. These
tables show several measures of performances: the area under the precision-recall curve
(AUC), the F1-measure (F1), the the ROC curve and the accuracy. Since the number of
anomalies is much lower than the normal examples, AUC represent our main measure of
interest. Notice that ANOEAN has a better AUC than the state of the art and also a better
score on the other metrics on NSL-KDD. On the KDD dataset, ANOEAN is competitive
with SVM method on F1 score and accuracy. Notice that KDD dataset contains more than
400 000 single connection vectors and even with 10% of anomalies, it is still remain a large
amount of data; This is why the SVM has good results in that case. In Fig. 8a, we reduce
the amount of anomalies in the training set, and we verify that ANOEAN keeps on average
the same performances whereas those of the SVM decreases when the rate of anomalies is
very low.

At last, in the Fig. 8b, we check the impact of the latent space Z dimension on the AUC.
Clearly, AnoEAN performs better than the other GANs based approach (EGBAD/ALAD)
whichever the dimension of Z.

(a) (b)

Figure 8: (a) shows the impact of reducing the percentage of anomalies in AnoEAN and
SVM on NSL-KDD. (b) shows the impact of the latent space vector dimension Z on the AUC
metric, concerning the Adversarial Network Based models (BIGAN/ALICE/AnoEAN).
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5. Conclusion and Perspectives

We presented a new anomaly detection method that uses a projection in a latent space
of small dimension in which normal examples and anomalies are separated. For this, we
train an encoder by adversarial learning. The cost function is adapted so that the learned
encoder projects the normal data into a Gaussian distribution, and the anomalies in the
tail of this distribution. For the prediction, our method only needs the encoder, whose
size is small. This is crucial for applications in embedded systems where the memory is
very expensive. We have shown that our model could discover anomalies that were not
encountered during the learning stage. In addition, our technique performs better than the
state of the art when faced with a heterogeneous normal class. Finally, compared to state of
the art, our technique triggers few false alarms. In future works, we will adapt our method
to the case where no anomalies are available in the training set. To achieve this goal, an
idea is to complete the architecture with a new generator of artificial anomalies, that should
be trained against the encoder and the discriminator in an adversarial way.
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