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Abstract. Modern and future vehicles are complex cyber-physical sys-
tems. The connection to their outside environment raises many security
problems that impact our safety directly. In this work, we propose a Deep
CAN intrusion detection system framework. We introduce a multivariate
time series representation for asynchronous CAN data which enhances
the temporal modelling of deep learning architectures for anomaly detec-
tion. We study different deep learning tasks (supervised/unsupervised)
and compare several architectures, in order to design an in-vehicle intru-
sion detection system that fits in-vehicle computational constraints. We
conduct experiments with many types of attacks on an in-vehicle CAN
using SynCAn Dataset.

Keywords: intrusion detection system, in-vehicle security, deep learn-
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1 Introduction

Future applications like autonomous transportation require various technologies
that allow the vehicles to interact with other vehicles (VANETs), pedestrians
and road infrastructure. These controllers make the vehicles more and more
connected with the external world, which allow new functionalities but also
dramatically increase the security risk.

In this work, we focus on the CAN bus, which is de facto standard for in-
vehicle communication. In-vehicle networks technologies must ensure a set of
requirements, some of which are time-critical and safety-related. CAN proto-
col uses broadcast communication techniques. Each node in the network can
send and receive a packet to/from the bus [1]. CAN bus contains several vul-
nerabilities. It does not include the different security criteria in its design. It
lacks security facilities like message authentication, that prevents an unautho-
rized node from joining the communication and broadcast malicious messages
to other nodes. It also lacks encryption because it would make overhead for
real-time communication. These weaknesses of the protocol are as many possi-
bilities left to hackers to attack, as shown in the cyber-security literature [14,
1]. Several attacks scenarios have been demonstrated on vehicles. E.g., [12] has
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performed four different tests on the control window lift, warning light, airbag
control system and central gateway.

We focus on anomaly detection based intrusion detection using the advances
in deep-learning architectures to handle the CAN data structure. To do so, we
define three levels for the in-vehicle IDS framework: 1) CAN data level, 2) se-
quence modelling level and 3) detection level.

This research aims to propose a general in-vehicle IDS using deep learning; we
propose a representation for CAN data, and experiments several deep learning
architectures for sequence modelling. We finally get an anomaly detection IDS
that meets both the needs and the constraints of in-vehicles systems.

2 Background and Related Works

CAN data. Any CAN message is composed of several fields: an ID and a 64-bit
payload. The ID is unique and defines the content (set of signals encoded in a
range of several bits) and the priority of the message [6]. A timestamp is added
whenever the message is captured. From those characteristics, many represen-
tation and feature can be derived as time interval, sequence, time-frequency.
Notice that the payload signals are encoded, so it is hard to obtain the signals
values without the constructor specifications. CAN Intrusion Detection Systems
generally intervene at two levels: either the flow level or the payload level. In
flow-based approaches, a flow is a group of packets sharing common properties
during a specific period. In payload-based approaches, the payload represents
the information carried by the packet. This information is exchanged between
the ECUs, and their interpretation reflects the behaviour of the vehicle.Notice
that some attacks may highly impact the communication flow, like flooding at-
tack, and will be more easily detected at the flow level. On the other hand, other
types of attacks are not visible in the communication flow and be detected only
at the payload level. To the best of our knowledge, the actual IDS are either flow
based or payload based, while our proposition is based on both.

CAN intrusion detection system. We here focus on anomaly-based ap-
proaches only. The method starts by defining a model (profile) that specifies the
actual normal behaviour of the system. Any behaviour that does not conform
to the normal profile is considered as an anomaly. The anomaly-based IDS have
many advantages: there is no need to maintain a database of signatures, and
they can detect unknown attacks since at least from a theoretical standpoint,
each attack compromises the normal behaviour of a system.

With the advances of deep learning for time series, many deep learning ar-
chitectures have been used to solve sequential modelling problems, and anomaly
detection based CAN IDS is one of them. In [19], the authors propose a deep
convolutional network classifier IDS, a supervised approach designed to learn
about traffic patterns and detect different malicious behaviours. They reduce
the unnecessary complexity in the architecture of inception-resnet. They have
tested their model on different types of attacks using bit-level CAN dataset
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where each input consists in 29 sequential CAN IDS. In [8], the authors tackle
a large dataset with an extensive type of attacks (SynCAN dataset). They pro-
pose a deep learning architecture that handles the structure of CAN data; It
is composed of independent recurrent neural networks, one for each ID in the
input. The goal of those separated LSTM is to learn about the state of each ID.
The whole state of the network is represented by a joint vector of the outputs of
all separated LSTM. The second part of the architecture takes the joint latent
vector as an input for an autoencoder (fully connected network) that enables
unsupervised learning; The task of the autoencoder is to reconstruct the signals
for each possible input message based on the joint vector. The attack detection
occurs by observing the deviation between the signal value of a message at the
current time step with its reconstruction. [16] proposes an IDS by analyzing
bit-level CAN message, using LSTM to predict the next message based on the
history size of 10 messages; If the distance between the predicted message and
the actual message is bigger than a threshold, then the message is an anomaly.

We note that, in the literature, many dimensions can be considered to design
the CAN IDS. The used data highly impacts the type of detectable attacks, as
well as the design of the model that must learn about a broad range of situations
to ensure that the model encompasses the exhaustive space of normality, and
decreases the false positive rate. There is also another dimension, which is the
In-Vehicle context, where the memory and computation power is limited, so the
practical feasibility of any given CAN IDS needs to be evaluated in front of the
constraints of the in-vehicle context.

3 In-vehicle Intrusion Detection System

We propose a new IDS for vehicle described through 3 levels: 1) the CAN data
level resumed in a feature matrix, 2) the time sequence modelling level and 3)
the anomaly detection level. Notice that the training and update of the models
are performed offline and outside from the vehicle; Only the exploitation of the
models is embedded in the vehicle, which performs inference and detection.

3.1 Feature matrix construction

The first step is to transcript the flow of CAN messages, sent separately and
asynchronously at irregular moments, into a Multirate Multivariate times series
(MMTS) which contains both payload and flow information. The CAN data is
composed of different messages broadcasted from different ECUs. The stream S
of messages is represented by a sequence of N messages S = {V1, ..., VN}. We
denote Vi = {idi, Pi, ti} the i-th message captured by the IDS. idi ∈ {1, ...,m}
is the ID of the ECU that sent the message, m is the number of ECU, Pi is the
payload contained in the message and ti ∈ [0, tN ] is the time of reception. The
payload Pi contains a vector of size nid containing the signal sent from ECU id.
The number of variables nid extracted from each payload depends on the ECU.
Although deep learning models can be trained with this type of sequences, this
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representation is clearly not optimal for the learning of neural networks. The
two main problems of this representation is that the payload variables from the
same ECU are not split around the sequence and the time interval between two
messages is not constant.

We change the messages flow representation S into a multivariate time series
representation T . The time range of the messages flow is discretized into K
time stamps of constant time ∆ . The time series T = {t1, ..., tK} is a series
of time points, each time point represents the set of messages received during
the corresponding time stamp tk = {Vt|t ∈ [(k − 1)∆, k∆[}. This time series is
then represented by a matrix M∑m

id=1(nid+1)×K where each column represents
a time point and the rows represent the variables contained in the payloads of
all ECU. For each time point we could have received several messages from the
same ECU and have different values for the same variables; In these cases we
keep the last received values since we want to take our decision on the most
recent available information. We also add to this matrix a row for each ECU
indicating the number of messages received from this ECU. This representation
regroups both payload and flow features, which enables the model to detect both
attacks on payload and flow in the in-vehicle communication system.

3.2 CAN Sequence modelling

Many DNNs architectures are used for time series modelling tasks. In this work,
we review 4 types of sequence modelling architectures: FCN, CNN, LSTM and
TCN. We compare their ability to learn the hierarchical representation vector
of the CAN matrix to perform anomaly detection. This vector is either given by
the bottleneck of the autoencoders in the unsupervised task, or the final layer
of the architectures in the supervised task.

Fully-connected network (FCN): FCN is a standard architecture for deep
learning models [2]. FCN is a generic architecture usable for any type of data.
All the neurons in layer li receive the signal from every neuron in the layer
li−1 and send their output to every neurons of the layer li+1 with i ∈ [1, L]
(L number of layers in the architecture). The elements of the time series are
treated independently from each other, thus the temporal dimension of the data
is ignored with this architecture.

Recurrent neural network (LSTM): Recurrent neural networks are explic-
itly devoted to sequence modelling [9]. They avoid the long-term dependency
vanishing problem using cells state that is used as an internal memory. At each
time, the network learn which information to add, to forget and to update into
the cells state. Based on the cells state, inputs, previous hidden state, the LSTM
learn a vector representation (hidden state) of the time series a the current time.

1D Convolutional neural network (CNN): In the context of time series,
convolution is a sliding filter over the time series. The time series exhibits only
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one dimension. Thus this convolution will result in a moving average with a
sliding window. Therefore, applying several filters results in learning several dis-
criminative features which are useful for sequence modelling. Besides, the same
convolution is used to find the result for all timestamps t ∈ [1, T ] (weight shar-
ing). This is a valuable property, as it enables the model to learn filters that
are invariant across the time dimension. 1D CNN for time series is characterized
with a causal convolution; It means that the output at time t is convolved only
with elements from time t or earlier in the previous layers. This characteris-
tics ensures that the sequence input must have a one-to-one causal relationship
in chronological order. The result of convolution can be considered as a time
series whose dimension is equal to the number of these filters used. 1D CNN
has another layer with pooling operation, which achieves dimension reduction of
feature maps while preserving most information.

Temporal convolution network (TCN): TCN with dilated convolution is
designed to combine simplicity and very long term memory [3]. There are many
differences with 1D CNN described above. In addition to the causal convolution,
the architecture can take a sequence of any length and map it to an output
sequence with the same length. To achieve this, zero padding of length (kernel
size - 1) is added. Moreover, the TCN architecture can look very far into the
past using a combination of residual layers and dilated convolution. The dilated
convolution [15] enables an exponentially sizeable receptive field using dilation
factor d and the filter size k. When using dilated convolutions, we increase d
exponentially with the depth of the network, allowing a very large history using
deep networks.

3.3 Anomaly detection

Unsupervised IDS. In this work, the autoencoder aims to reconstruct the
input sequence (a multivariate time series). Formally, given a sequence T =
(t1, ..., tK) where Ti ∈ Rn and n is the number of variables, the autoencoder
aims at predicting T̂ = (t̂1, ..., t̂K) at each time (sequence-to-sequence problem).
The autoencoder that performs a nonlinear mapping from the current state
to its identity, is decomposed into two parts: the encoder and the decoder. The
encoder projects the temporal pattern dependencies and trends of the time series
in latent space h. The latent vector is given by hi = f(T.W i + bi), where W i

and bi respectively denote the weight matrix and bias up to the bottleneck i-
th layer. The decoder, considered as the transposed network of the encoder,
uses the information of latent space h to reconstruct the input sequence: T̂ =
f(hi.W i

d + bd). The mean square loss error (MSE) is used to perform an end-

to-end learning objective: L(T, T̂ ) = 1
KΣ

n
i (ti − t̂i)2. At the inference phase, the

MSE is used as an anomaly score. The idea is that the autoencoder learnt to
reconstruct only the normal data and will obtain a high MSE on the anomaly.
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Supervised IDS. Supervised IDS use a FCN to make anomaly prediction
from the vector representation of the time series learnt from sequence modeling
level. In this case, we suppose that the training dataset contains labelled attack
examples and these attacks form an homogeneous class. These requirements
generally hold when we construct a model that aims to detect well-known types
of attack. Formally, we assume that there are 2 classes: Normal (0) and Anomaly
(1). The learning set is a collection of pairs {(T1, Y1), ..., (TK , YK)} where Ti is a
multivariate sequence and Yi ∈ {0, 1} is the corresponding label. The classifier
training is performed by minimization of the cross entropy between the true class
and predicted class. Notice that the classes are highly unbalanced, the anomaly
is much smaller than the normal class, the classes are therefore weighted in the
cross entropy in function on their prior. At the inference phase, the MLP returns
the probability of anomaly.

4 Experiments and results

4.1 SynCAN Dataset

SynCAN is a synthetic dataset proposed in [8]. The data consists of 10 different
message IDs. We evaluate our model on the following types of attack: Plateau
(a signal is overwritten to a constant value), Continuous (a signal is overwritten
so that it slowly drifts away), Playback (a signal value is overwritten over a
period of time with a recorded time series), Suppress (the attacker prevents an
ECU from sending messages), and Flooding (the attacker sends messages of a
particular ID with high frequency to the CAN bus).

We set five seconds as an estimated time-frame for the intrusion detection
system to monitor the vehicle. Thus, the sampling window is fixed to ∆ = 50ms,
and each sequence is composed of K = 100 consecutive elements. From a general
standpoint, K and ∆ are hyperparameters which depend on the domain expert
requirement (the maximum memory size, forensic analysis and safety protocol
to enable the prevention actions). The feature matrix size is (100*30) where 30
is the sum of 20 signal features and 10 occurrence features. We scale the data
between [0, 1] using min-max normalization.

A sequence is labelled normal if all elements in the sequence are normal.
If a sequence contains at least one anomaly, the sequence is considered as an
anomaly. SynCAN database is a collection of ∼ 2′000′000 normal sequences. 70%
of them are used for training and 10% for validation. The last 20% are mixed
with anomalous sequences to build the test data. We have 5 test databases, one
per attack, made of 70% normal examples and 30% anomalous examples.

4.2 Results

We use 4 different architectures (FCN, CNN, TCN, LSTM) with 2 experiment
settings: unsupervised anomaly detection and supervised anomaly detection. We
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have trained the models on 500 epochs, with a batch size 100. We used Adam
as the optimizer for the gradient descent with learning rate decay. 3

In Table 1, we show the metrics on the unsupervised task using autoencoders
with different architectures. All architectures show excellent performances for all
types of attack. TCN is slightly better on most attack cases and comparable with
LSTM on Plateau attack. Notice that on the Suppress attack, the models perform
worse than on the other attacks, while the CNN collapses with a lot of false pos-
itive. It shows that Suppress attack is unobtrusive. Moreover, in representation
matrix M , there is no explicit mention to the missing values. Nevertheless, TCN
and LSTM still have good results, thus can implicitely retrieve the information
in the learning stage from the representation matrix.

TCN LSTM CNN FCN
Precis. Recall F1 Precis. Recall F1 Precis. Recall F1 Precis. Recall F1

Continues 0.997 0.991 0.994 0.991 0.988 0.990 0.996 0.988 0.992 0.993 0.978 0.985

Plateau 0.995 0.984 0.990 0.996 0.985 0.991 0.993 0.979 0.986 0.990 0.981 0.987

Suppress 0.986 0.957 0.971 0.984 0.954 0.969 0.951 0.554 0.700 0.951 0.862 0.904

Flooding 0.995 0.986 0.991 0.996 0.988 0.991 0.996 0.989 0.992 0.996 0.988 0.991

Playback 0.996 0.989 0.992 0.996 0.986 0.991 0.994 0.989 0.991 0.995 0.988 0.991
Table 1. Autoencoder-based architectures results

In Table 2, we show the experiments on the supervised task (Binary classi-
fier). TCN is still slightly better than the others, and close to the CNN. Notice
that for LSTM architecture, the results are not as good as in unsupervised set-
ting. Indeed, we have reduced the rate of normal data in the training set in order
to rebalance the data and help the model not to learn from the normal features
only. LSTMs are more data-hungry than CNN and TCN. It shows that TCN
needs less data than LSTM for CAN data modelling.

In Table 3, we conduct the same experiment but we eliminate the occurrence
features from representation matrix M . We notice for the Flooding attack, the
performances of all the models decreases dramatically. Indeed this attack im-
pacts the flow of the CAN data, and this information is encoded through the
occurrences in the matrix. We also observe that the performances are slightly
worse on the Playback and Plateau attacks. Therefore, payload-based attacks
are also easier to detect when the occurrence features are present in the matrix.
Hence full matrix, with both signal features and occurrence features, contributes
to detect both payload and flow-based attacks.

Finally, in Table 4, we have compared the models in terms of training time
and size of parameters. The latter reflects the memory needed by the IDS to
work. Remind that the IDS are embedded in vehicle where memory resources is
strongly limited. TCN is good both in terms of training time and model size.
TCN benefits from filters shared weight, so it dramatically reduces the number

3 See https://github.com/anonymeEG/Deep-Learning-4-IDS for implementation.
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TCN CNN LSTM FCN
Precis. Recall F1 Precis. Recall F1 Precis. Recall F1 Precis. Recall F1

Continues 0.996 0.986 0.990 0.995 0.991 0.995 0.959 0.933 0.948 0.89 1.00 0.94

Plateau 0.997 0.998 0.997 0.991 0.953 0.971 0.984 0.953 0.968 0.87 1.00 0.93

Suppress 0.999 0.999 0.999 0.998 0.998 0.999 0.992 0.999 0.995 0.86 1.00 0.92

Flooding 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.87 1.00 0.93

Playback 0.997 0.988 0.992 0.997 0.995 0.995 0.994 0.989 0.991 0.89 1.00 0.94

Table 2. Classification using the occurrence matrix representation

TCN CNN LSTM
Precision Recall F1 Precision Recall F1 Precision Recall F1

Continues 0.995 0.994 0.994 0.983 0.990 0.986 0.945 0.957 0.950

Plateau 0.973 0.978 0.975 0.995 0.998 0.996 0.959 0.984 0.971

Suppress 0.986 0.996 0.990 0.990 0.971 0.980 0.939 0.969 0.953

Flooding 0.985 0.978 0.981 0.971 0.915 0.928 0.927 0.972 0.913

Playback 0.992 0.998 0.994 0.992 0.772 0.868 0.935 0.924 0.929

Table 3. Classification using the standard sampling without occurrence features

of parameters. When the size of the input data is increasing, the number of
parameters does not explode exponentially. Unlike LSTM, TCN convolutions
can be done in parallel since the same filter is used in the layer. Therefore,
in both training and inference phase, even though the series is long, it can be
processed as a whole, whereas with LSTM, they must be processed sequentially.

5 Conclusion

In this paper, we introduce a novel in-vehicle intrusion detection system based
on a large series of experiments which validate the different levels of the system:
1) At the data level, we use a representation matrix to structure the CAN data
information that groups both flow and payload information. 2) At the sequence
modelling level, we use a TCN architecture, since we have shown that it per-
forms well with respect to the detection metrics and computational resources
consumption. 3) At the detection level, we jointly use a classifier and an autoen-
coder, so the IDS can deal with both known and unknown attacks. Notice that
our results were established by using the SynCAN Dataset, which is the only
available public dataset as far as we know.

The in-vehicle system has many components, and we have implicitly assumed
that the monitoring of the data was centralized. Nonetheless, in new secured in-
vehicle architectures, the parts of the system are isolated, so the CAN data
topology changes, and we need to think about a distributed framework for IDS.
Another important issue concerns the compression of deep learning models to
better fit the embedded capacity of the in-vehicle system.
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Models Training time Number of parameters Model size (32-bits floats)

FCN 8022s 75238 0,3 MB
CNN 10011s 9518 0.03 MB
TCN 7969s 3822 0.01 MB
LSTM 92714s 2920 0.01 MB

Table 4. Models characteristics vs. computational resources
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