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DAD: A Distributed Anomaly Detection framework
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1st Elies Gherbi
Irt-SystemX

Palaiseau, France
elies.gherbi@irt-systemx.fr

2nd Blaise Hanczar
Univ Evry, IBISC

Evry, France
blaise.hanczar@univ-evry.fr

3rd Jean-Christophe Janodet
Univ Evry, IBISC

Evry, France
jeanchristophe.janodet@univ-evry.fr

4rd Witold Klaudel
Irt-SystemX

Palaiseau, France
witold.klaudel@ext.irt-systemx.fr

Abstract—Future in-vehicle (autonomous vehicles) network
architectures will consider many aspects of modern network
security by design. The general system contains many sub-
systems related to different tasks with specific functional priori-
ties and dedicated security mechanisms. In this work, we propose
a Distributed Anomaly Detection (DAD) Intrusion Detection
System (IDS) using a deep learning model that fits the in-
vehicle network architecture. DAD aims to model the complex
correlations among different views (sub-systems) by harnessing
the joint distribution of the different sources of CAN (Controller
Area Network) data. To this end, we propose DAD by jointly
learning an anomaly detection model for critical applications such
as security and maintenance while adopting the same isolation
constraint on the sub-systems. On top of that, we introduce a new
optimisation scheme that lowers both the computational inference
time and the IDS’s communication overhead.

Index Terms—deep learning, intrusion detection system, in-
vehicle communication, distributed network, anomaly detection.

I. INTRODUCTION

The complexity of the multi-layered embedded infrastruc-
tures such as autonomous vehicle is constantly increasing.
With the critical security concerns and for the safety of the
passengers, future In-vehicle network architecture is composed
of different subsystems embedded on electronic control units
(ECUs). Each subsystem is responsible for specific services
that ensure the autonomous functioning of the vehicle. For
functional and security reasons, separate subsystems are iso-
lated, forming a hierarchical architecture of the whole system.
In that context, data is represented with different views (lo-
cal data monitored on each ECU) and can include multiple
modalities or various features. These views may be obtained
from multiple sources or different feature subsets.

Building an in-vehicle Intrusion Detection System (IDS)
needs to meet the hierarchical structure of the system. We set
the in-vehicle architecture scheme as follows; each subsystem
contains a probe (S) that monitors its local CAN network
(Controller Area Network) environment and communicates
only with the central probe that we call bastion (B) (see
“Fig. 1”).In that context, we define two strategies to build
a Deep Anomaly Detection model for an in-vehicle IDS with
its inner architectural characteristics (See “Fig. 2”).

Fig. 1. Schema representing the different probes that monitor various
subsystems of an autonomous vehicle architecture network.

1) Centralized anomaly detection modelling: In this case,
the computational resources are located only on the
bastion (See “Fig. 2(b)”), and the model is embedded
on the bastion. Each probe sends its data information to
the bastion. So, the bastion aggregates this information
and predicts the system’s state based on one model.

2) Distributed Anomaly Detection Modelling: (As de-
scribed in “Fig. 2(a)”), a common strategy is to learn
a joint representation coupled between multiple views
at a higher level after learning several layers of view-
specific features related to the specific probe. Each
probe’s particular view is represented with a lower
dimension vector (feature vector). Those feature vec-
tors jointly leverage the abundant and complementary
information from multiple views. From a neural net-
work modelling perspective, multi-view representation
learning first learns the respective mid-level features
for each view (probe) using a sub-neural network. The
bastion then integrates the complementary knowledge of
different views to comprehensively represent the initial
data into a single and compact representation.

This work focuses on distributed anomaly detection using
deep learning, represented in “Fig. 2(a)”. We propose a
Distributed Anomaly Detection framework (DAD) intrusion
detection system using a multi-view deep learning architecture.
The proposed deep learning architecture respects the in-vehicle
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(a) Distributed Anomaly Detection
Modelling

(b) Centralized anomaly detection
modelling

Fig. 2. (a) Represents the Distributed Anomaly Detection Modelling. (b)
Represents the centralized model based on a single view.

network topology and constraints (probes communicate only
with the bastion). It aims to classify the network’s current state
by learning about local patterns related to each view. Thus,
the subspace learning-based approaches (multi-view represen-
tation learning) aim to obtain a joint feature vector subspace
shared by multiple views (ECUs) representing the input data
information. The received feature vector’s dimensionality is
lower than the input view, so subspace learning effectively
reduces the ”curse of dimensionality”. Given this subspace,
it is straightforward to conduct subsequent tasks, such as
classification for anomaly detection. Furthermore, DAD re-
duces the communication overhead induced by integrating an
intrusion detection system on top of the existing in-vehicle
network functionalities. Indeed, in-vehicle systems generally
have low computational power, and any additional computa-
tional resources (processing and communication overhead) can
be translated into a high cost for automotive manufacturers.
We conduct detailed experiments to assess the relationship
between different sub-networks predictions and their relation
in representation learning and accuracy of classification on
different attack types using SynCAN dataset ( [13]).Also,
We added a communication overhead optimisation scheme
in the inference phase. DAD IDS is the first practical in-
vehicle intrusion detection that fits the distributed network
architecture while introducing the notion of communication
overhead optimisation to the best of our knowledge.

II. RELATED WORKS

Multi-view and multi-modal Deep learning architectures
have been considered for many anomaly detection problems,
especially in network environments forming many swarms like
VANet’s (Vehicular Ad-Hoc Network), cloud computing, and
edge computing areas [1]. In those cases, most data is collected
from different sources, or different features extractors [2]–[5],
[8]. In other words, data instances are usually depicted by
heterogeneous feature spaces in the form of multiple views.
Several multi-view learning approaches can be considered
to develop an anomaly detection model-based IDS. Multi-

view representation learning is used for multi-source data to
facilitate the extraction of readily useful information when
developing prediction models since it provides a holistic
description of the system.

Data from different views usually contains complementary
information, and multi-view representation learning exploits
this point to learn more comprehensive representations than
single-view learning methods [7], [8]. There has been in-
creasing research applied to multi-view learning using Deep
Learning, deep architecture-based methods, including multi-
modal deep Boltzmann machines, [9], multi-modal deep au-
toencoders [10], [11], and multi-modal recurrent neural net-
works [12]. In the existing In-vehicle IDS literature, most
studies neglect the inherent multi-view property of data due
to the lack of IDS problem modelisation concerning future in-
vehicle architectures. Furthermore, the lack of related datasets
is mainly the reason. Thus, building an in-vehicle IDS for
the autonomous car is challenging for the scientific com-
munity. Few works tackle building an in-vehicle IDS that
monitors the CAN bus network by proposing a distributed
anomaly detection system structure. In [6], the author proposes
a distributed IDS based on hierarchical temporal memory
(HTM). The input at each detector in the sequence is the
bits from the packet’s data field related to each ID. Then
the model using the HTM algorithm learns to predict the
following data field of each ID. An overall score within a
time window for the entire input sequence groups the different
IDs scores. In [13] the authors also tackled the problem in
the same manner in terms of distributed modelling, where
the data input modalities are sequences related to a specific
ID. The authors proposed multi-view architecture based on
independent recurrent neural networks (LSTM for each ID
that gets a sequence associated with this ID as inputs). The
joint latent vector is fed into a subnetwork of consecutive
linear layers in an autoencoder setting. At each time step, this
subnetwork’s task is to reconstruct the signal values of each
possible input message solely based on the current joint latent
vector. The drawback in the IDs-based distribution is that both
propose several independent sub-network equal to the number
of IDs. In other words, those architectures and algorithms do
not consider the restrained resources in the in-vehicle systems;
modern vehicles are composed of 70 to 100 ECU connecting
to the in-vehicle network. The communication overhead is
augmented with a number of signals and processing equal to
the number of IDs available on CAN data.

In this work, we formulate the problem related to this
new type of in-vehicle architecture and propose a general
framework that can be extended to fit autonomous vehicle
network systems.

III. PROBLEM MODELLING

A. Problem Statement Centralized model

We consider a distributed architecture for network intrusion
detection system. Firstly, we assume that we have p probes
(S1, S2, ..., Sp) that monitors the vehicle’s different subnet-
works (CAN bus communication between different ECUs).



The bastion B hosts a local anomaly detector DB . The input

of detector DB is a joint vector X =
p⋃

i=1

Ti where Ti is

the multivariate time series sent by Si. The aim of DB is to
distinguish between the normal pattern and the attack pattern
based on the join vector X obtained from the different probes
Si. Formally DB(X) ≈ P(y = 1|X) where y ∈ [0, 1] (with 1
for normal example and 0 for anomalous examples).

1) Communication cost: To define the communication cost
of the centralized model, we start by giving its functional
process. The model DB is embedded in the bastion, and it
receives its input from the different probes Si. The Input

example X =
p⋃

i=1

Ti ∈ RW∗M , where W is the length of

the sequence, and M the number of variable.
Since t0 (initialisation of the detection model), each probes

buffers the different information messages till it construct the
first sequence T t0

i with W as the length of the sequence. After
sending their first sequence T t0

i , The different probes keeps
buffering the information messages till the sequence reaches
a length step, where step is the decay of the window. The
W − step represent the number of multivariate series from
ti−1. So, T tl

i = Uibuff ∪Uihist, where Ubuff ∈ Rstep∗M and
Uhist ∈ R(W−step)∗M , tl is the timing of detection after the
initialisation with l ∈ [1,∞].

we give below the formula of the communication cost of a
probe in a centralized model for a given test set containing N
sequence examples.

ζcentr(test) = k|T t0
i |+H + (N − 1)(k|Uibuff |+H) (1)

where H is the incompressible cost of initiating a message
sending and k is a parameter that allows adjusting the impor-
tance of both criteria.

B. Problem Statement Distributed

In the distributed setting, each probe Si hosts a local
anomaly detector Di. The input of detector Di is a multivariate
time series Ti. The aim of Di is to distinguish between the
normal pattern and the attack pattern based on the features
extracted from Ti only. Formally Di(Ti) ≈ P(yi = 1|Ti)
where yi ∈ [0, 1] (with 1 for normal example and 0 for
anomalous examples).

The probes are not allowed to exchange information be-
tween them. They exchange information only with the bastion
B. We want to limit this exchange of information as much as
possible to reduce the communication overhead. To achieve
this goal, we use two levers. On one hand, the detectors do
not send information at each step of time: it assesses the
probability of an attack Di(Ti) and raises an intrusion alarm
ei ∈ {0, 1} if this value is larger than a given threshold τi.
Formally,

ei =

{
0, if Di(xi) ≥ τi

1
(2)

If no probe raises the alarm, then no information is sent
to the bastion by any probe. On the other hand, if only
one of the probes raises the alarm, the bastion asks all
the probes to transmit information about their status and
local data. This is the second lever where we act: as shown
below, the detectors are based on deep learning and designed
to provide a condensed (summarized) representation of the
data using a function Gi (the layer befor the logit of Di).
Therefore, the detector Di does not transmit raw input data
Ti but a condensed representation denoted vi = Gi(Ti). The
bastion hosts an anomaly detector DB that groups the different
representation vi to decide on the global system behaviour
DB(V ) ≈ P(yB = 1|V ).

This allows reducing the communication overhead. To quan-
tify this, let us introduce the following,

communication cost function ζ: Given any vector W , let
|W | denote the size of the vector; then

ζ(W ) = k|W |+H (3)

where H is the incompressible cost of initiating a message
sending and k is a parameter that allows adjusting the impor-
tance of both criteria.

Now, with respect to an input series of raw data Ti, let
N be the number of data points in a given dataset; N is the
number of messages that would transit through the network to
the bastion B in the absence of local detector Di (Centralized
model see “Fig. 2(b)”). In the presence of detector Di, the
number of such messages is reduced, so let Ne be the number
of messages sent from Di to the bastion B. Moreover, the
transmitted information is vi, which is much lighter than Ti,
so the communication gain of our techniques is the following:

gain =

N∑
1

ζ(Ti)−
Ne∑
1

ζ(vi) (4)

IV. PROPOSED MODEL

The overall goal is to build a model (DAD) that detects
attacks in a car when they happen. The model must respect
and fit the in-vehicle network’s distributed architecture and,
more precisely, reduce the communication overhead brought
by the detection process. We propose a hierarchical Distributed
intrusion detection system based on multi-view deep learning
architecture (See “Fig. 3”) to respond to the abovementioned
problem (Distributed Anomaly Detection Modelling)). The
model has multiple input sequences Ti related to each probe Si

that will be fed to a Temporal Convolutional Network (TCN)
[14], [16]. The model returns multiple outputs {ŷi}Pi=1 and ŷB .
ŷi = Di(Ti) represents the local normality probability for each
probe, and ŷB = DB(V ) represents the bastion probability
of the normality of the whole system. We denote yd the
final decision based on the combination of ({ŷi}Pi=1, ŷB , ei)
(ei ∈ [0, 1] represent if the local probe sends or not the vector).
We want to optimise the overhead communication induced by
embedding our IDS in the in-vehicle network system. Thus,
using a distributed network reduces the size of the information



Fig. 3. The framework of the proposed model. We consider two-model classification, but the proposed framework is not limited to two-model. The raw
feature consists of the matrix occurrence of the encoded multivariate binary sequence. Both of them are fed to the models D1f and D2 for sequence feature
extraction and local anomaly prediction. The DB model receive both v1 and v2 for a global anomaly detection prediction yd .

sent from the probes to the bastion by sending the feature
vector vi representation alternatively of data input sequence
Ti. The second point is to reduce the communication rate
between the probes and bastion. The idea is to prevent sending
the features vector representation when the probes are certain
of their local pattern’s normality. To this end, we introduce
a new target ei for each probe to decide whether to send the
feature vector vi to the bastion based on threshold optimisation
that we will explain below.

The DAD framework has two stages: Model learning and
threshold optimisation.

A. Model learning
Since dependencies among local labels and models play

an important role in extracting hierarchical dependencies,
we privilege the local classification and global classification,
meaning that each sub-network model Di learns a local feature
representation relative to each probe. Those representations
will then be jointly fed to the upper sub-network classifier
DB to learn about a global pattern based on the join feature
representation vector. Hence, giving a second assessment of
the network’s general state with the overall network informa-
tion’s abstraction. we define the objective function as follow:

LDAD =

p∑
i

LSi
+ LSB (5)

The first terms is the loss functions of model Di. The next
term is the global classifier’s DB loss function, which analyses
dependencies among the feature vectors vi to learn the network
system’s global pattern. Both terms represented with the binary
cross entropy loss function “(6)” “(7)”. We note that Y
represent the true label for a given training sample (T, Y ).

LSi(Ti, Y ) = −Y log(Di(Ti)))− (1− Y )log(1−Di(Ti)))
(6)

LSB
(V, Y ) = −Y log(DB(V )))− (1− Y )log(1−DB(V )))

(7)

The proposed framework leverages local label dependen-
cies and models relations through feature representation to
facilitate learning. It constructs a deep network representation
and classifier for each view and can make a single view
prediction for a specific local view. We propose combining
the sub-networks Di and the global classifiers DB for the
model learning. The backpropagation is used to train the sub-
networks and classifiers jointly.

B. Threshold optimisation

After the learning phase, the proposed approach has multiple
output prediction values. For a given test samples the following
probabilities are yield preds = ({ŷi}Pi=1, ŷB). The intrusion
detection final decision based on the DAD model is not
directly based on the values returned in preds. Indeed, we add
another step that we call the optimization step. As explained
above, we aim to make DAD predictions more economical in
terms of communication overhead. To this end, we deduce ei
from ŷi according to two strategies: Naive test thresholding
and Learned models.

1) Naive test thresholding: In this strategy, we deduce ei
using a test set to assess the probability of the lower bound
of {ŷi} in this given test set.



2) Communication label creation: The goal of this ap-
proach is to propose a communication label creation process
based on the rendering of the learned DAD model. In other
words, we want to learn Yci, the labels that will tells if for a
given examples, we can trust the probes (local detectors Di)
to assess the state of the network, if so, no communication
is needed with the bastion, thus reducing the communication
rate between the probes and the bastion. On the other hand,
if the labels tells that we need to send a message because we
can not trust the rendering of the local detector, the feature
vector vi are sent to the bastion for a prediction using Db(V ).
Based on Yci, we will learn models and embed them on each
probe beside Di.
Yc expresses for a given example if it’s sufficient for local

probes to assess the state of the network, or the detection need
an upper level that had access to more information through the
joint vector V .

We define the probability error Pei for the probes and Peb

for the bastion. Pe is obtained as follow:

Pe =


ŷ, if y = 0

1− ŷ, if y = 1 (8)

Our aim using Pe is to assess how often the local detection
is worth trust compared to the model DB . To this end, we
present the difference Pei−Peb as a confidence threshold that
need to be established to decide for a given example if the
local decision is sufficient or not.

The finale decision ŷd, ŷd : ({ŷci}Pi=1, yB) is given below
“(10)”, yc labeling construction using the equation “(9)” con-
siders only normal examples to assess the difference Pei−Peb,
so when we say that the local decision is sufficient it means
that we trust the decision of the normality yield simultaneously
at all probes. For anomalous examples, yc = 1. In that case,
we aim to reduce the communication rate between probes and
bastion for normal examples.

yci =

{
0, if Pei − Peb < λ and y = 1

1, if Pei − Peb ⩾ λ or y = 0
(9)

yd =

{
1, if yci = 0, ∀yci ∈ Yc

ŷb, if yci = 1, ∃yci ∈ Yc

(10)

V. EXPERIMENTS AND RESULTS

This section describes the experimental design we used to
build the DAD framework. We provide a detailed analysis of
the experiments; we start with adapting the SynCAN data for a
multi-view input. The second part is to train the sub-networks
jointly. The third part is calibrating the different thresholds
to obtain good accuracy detection while reducing the com-
munication overhead. Finally, we discuss the communication
cost reduction and compare the naive and the learned-based
strategy and further contribution of this work.

A. Dataset

SynCAN dataset is synthetic data proposed in [13]; the data
set consists of 10 different message IDs, each with varying
amounts of signals per ID and different noisy time frequencies.
The total number of signals is 20. The data is created in such
a way that it is similar to real CAN traffic. It contains physical
values (signals), timestamps and IDs. We use a training data
set of about 16.5 hours and a test data set of about 7.5 hours
of CAN traffic. We evaluate our model on the following attack
type : Plateau attack, Continuous change attack, Playback
attack, Suppress attack, Flooding attack. Most attack in the
test data last 4s.

As the SynCAN dataset’s capture was mainly done by
indexing only the different messages’ IDs, we do not have the
information of the ECUs related to each ID. Thus we cannot
split into different views according to a semantic locality
pattern as shown in the architecture presented in “Fig. 3”.
We split the IDs according to each ID’s frequency, obtaining
a balanced rate number of messages at each probe. We obtain
two views referring to two probes S1 and S2, and each probe
monitors five IDs. The following step is to create the sequence
matrix for T1 and T2. We obtain two datasets with an input size
is (100*12), (100*8), where 100 is the length of the obtained
sequence and 8 and 12 are the numbers of signals monitored
at each probe S1 and S2 respectively.

For the anomalous examples labelling we choose to set y1 =
y2 = yb = 0 if y1 = 0 or y2 = 0. This labelling aims to
encourage the sub-network to learn more about the certainty
of sending the message by backpropagating the error relative
to the all system state while having only the information on
the local sequence. We split the dataset into 80% training set
and 20% for testing.

B. Training settings

We train our DAD model for 100 epochs and set the batch
size to 100. We used the ADAM optimizer for the gradient
descent, and we put the learning rate to 0.0001 (decayed by a
factor of 0.1 after 50 epochs). As for the TCN parameters on
each probe S1, S2, we use one dilated factor d=2 in the TCN.
We use Keras and TensorFlow for the training under Nvidia
Tesla M40 GPU. We set the size of the joint layer V to 100 as
it shows the best trade-off between the number of parameters
and the model’s performance in the F1 measure.

C. Results

We start by showing and assessing the results concerning
the accuracy of detecting anomalies at each probe. We evaluate
DAD model performance on the different probes using F1-
measure, Precision and Recall metrics.

From Table I we observe a clear gap between the results on
the global classifier DB than D1 and D2. First, the observation
of the results on yB concludes that hierarchical learning from
the feature vector representation v1, v2 obtained from D1 and
Dd is effective. The sub-network sequence modelling task is
well learned, and it preserves the information in the feature
vector V with a reduced dimension where |V | < |T1|+ |T2|,



TABLE I
F1 PERFORMANCE ON DAD MODEL HIGHLIGHTS THE DIFFERENCE

BETWEEN THE PREDICTION ON THE LOCAL PROBES (S1, S2) AND THE
GLOBAL PROBE BASTION (Sb)

attack probe precision recall F1
continues B 0.995 0.998 0.997
continues S1 0.974 0.894 0.932
continues S2 0.953 0.825 0.884

so DB Discriminator can differentiate between normal traffic
and attacks. On the other hand, we can explain the under-
performance of the sub-network results D1 and D2 compared
to DB with the lack of a general view of the system and
more correlation dependencies are needed. Thus, local pattern
modelling is not sufficient to get good results in detecting
specific attacks.

TABLE II
COMMUNICATION GAIN RESULTS

Naive threshold selection Learned communication
F1 Ne gain F1 Ne gain

Continues 0.997 0.898 0.102 0.997 0.668 0.332
Plateau 0.990 0.915 0.09 0.990 0.793 0.207
Suppress 0.998 0.972 0.028 0.998 0.752 0.248
Flooding 0.995 0.966 0.034 0.995 0.592 0.408
Playback 0.996 0.928 0.072 0.996 0.480 0.520

In table II, we observe more gain using the learned com-
munication strategy compared to naive threshold selection.
We keep the same performance as before introducing the
optimisation flag ei. The grid-search on threshold space aims
to find the tuple (t1, t2) that satisfies the strict condition of
error = 0 (error related to the optimisation process False-
negative that could be detected if the vi are sent to Db). Indeed,
the rate of communication optimisation (gain) can be more
important if we neglect the error side effect, which directly
impacts the DAD model’s overall performance. In our case,
the tradeoff between optimisation and the model’s performance
in detecting an attack remains clear. We cannot tolerate a re-
duction in the model performance for a computational reason.

VI. CONCLUSION

In-vehicle systems are getting more and more evolvement.
This opens a new kind of architecture into in-vehicle systems.
Building an intrusion detection system must adapt to those
architectures and constraints. In this work, we formulated
the integration of an IDS into future in-vehicle distributed
architectures. We propose a framework DAD that fits the in-
vehicle distributed architecture. DAD can capture local view
patterns using the Temporal Convolutional Network (TCN
)and send a reduced size feature vector to the system upper
layer (bastion). Our framework also reduces the communica-
tion overhead brought by the intrusion detection system. Also,
in this work, we set the ei by manually searching threshold
analysis through the ti space. We introduced multiple-stage
learning, where the communication overhead optimisation will
be the second learning stage of the model. Nonetheless, future

work will integrate recent works on the estimation of predic-
tion uncertainty [15] to design robust and trustworthy machine
learning models with epistemic and aleatoric uncertainties.

REFERENCES

[1] Karopoulos, G., Kampourakis, G., Chatzoglou, E., Ramos, H. & V
Kouliaridis Demystifying in-vehicle Intrusion Detection Systems: A
survey of surveys and a meta-taxonomy. ELECTRONICS. 11, 1072
(2022)

[2] Peng, Z., Luo, M., Li, J., Liu, H. & Zheng, Q. ANOMALOUS: A Joint
Modeling Approach for Anomaly Detection on Attributed Networks.
Proceedings Of The Twenty-Seventh International Joint Conference On
Artificial Intelligence, IJCAI-18. pp. 3513-3519 (2018,7)

[3] Ding, K., Li, J., Bhanushali, R. & Liu, H. Deep Anomaly Detection
on Attributed Networks. Proceedings Of The 2019 SIAM International
Conference On Data Mining (SDM). pp. 594-602 (2019)

[4] Marcos Alvarez, A., Yamada, M., Kimura, A. & Iwata, T. Clustering
Based Anomaly Detection in Multi-View Data. Proceedings Of The
22nd ACM International Conference On Information & Knowledge
Management. pp. 1545-1548 (2013)

[5] Ji, Y., Huang, L., He, H., Wang, C., Xie, G., Shi, W. & Lin, K. Multi-
view Outlier Detection in Deep Intact Space. 2019 IEEE International
Conference On Data Mining (ICDM). pp. 1132-1137 (2019)

[6] Wang, C., Zhao, Z., Gong, L., Zhu, L., Liu, Z. & Cheng, X. A
Distributed Anomaly Detection System for In-Vehicle Network using
HTM. IEEE Access.PP pp. 1-1 (2018,1)

[7] Li, Y., Yang, M. & Zhang, Z. A Survey of Multi-View Representation
Learning. IEEE Transactions On Knowledge And Data Engineering. 31,
1863-1883 (2019)

[8] Xu, C., Tao, D. & Xu, C. A Survey on Multi-view Learning. ArXiv.
abs/1304.5634 (2013)

[9] Srivastava, N. & Salakhutdinov, R. Multimodal Learning with Deep
Boltzmann Machines. J. Mach. Learn. Res.. 15, 2949-2980 (2014,1)

[10] Feng, F., Wang, X. & Li, R. Cross-Modal Retrieval with Correspondence
Autoencoder. (Association for Computing Machinery,2014)

[11] Wang, W., Arora, R., Livescu, K. & Bilmes, J. On Deep Multi-
View Representation Learning. Proceedings Of The 32nd International
Conference On International Conference On Machine Learning - Volume
37. pp. 1083-1092 (2015)

[12] Donahue, J., Hendricks, L., Rohrbach, M., Venugopalan, S., Guadar-
rama, S., Saenko, K. & Darrell, T. Long-Term Recurrent Convolutional
Networks for Visual Recognition and Description. IEEE Transactions
On Pattern Analysis And Machine Intelligence. 39, 677-691 (2017)

[13] Hanselmann, M., Strauss, T., Dormann, K. & Ulmer, H. CANet: An
Unsupervised Intrusion Detection System for High Dimensional CAN
Bus Data. IEEE Access. 8 pp. 58194-58205 (2020)

[14] Bai, S., Kolter, J. & Koltun, V. An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling. CoRR.
abs/1803.01271 (2018)

[15] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L.,
Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U.,
Makarenkov, V. & Nahavandi, S. A Review of Uncertainty Quantifi-
cation in Deep Learning: Techniques, Applications and Challenges. Inf.
Fusion. 76, 243-297 (2021,12)

[16] Gherbi, E., Hanczar, B., Janodet, J. & Klaudel, W. Deep Learning for
In-Vehicle Intrusion Detection System. Neural Information Processing
- 27th International Conference, ICONIP 2020, Bangkok, Thailand,
November 18-22, 2020, Proceedings, Part IV. 1332 pp. 50-58 (2020)


