Inference of w-Languages from Prefixes

Colin DE LA HIGUERA and Jean-Christophe JANODET

EURISE, Université de Saint-Etienne
France
cdlh@univ-st-etienne.fr, janodet@univ-st-etienne.fr

Abstract. Blichi automata are used to recognize languages of infinite words.
Such languages have been introduced to describe the behavior of real time
systems or infinite games. The question of inferring them from infinite
examples has already been studied, but it may seem more reasonable to believe
that the data from which we want to learn is a set of finite words, namely the
prefixes of accepted or rejected infinite words. We describe the problems of
identification in the limit and polynomial identification in the limit from given
data associated to different interpretations of these prefixes: a positive prefix is
universal (respectively existential) when all the infinite words of which it is a
prefix are in the language (respectively when at least one is) ; the same applies
to the negative prefixes. We prove that the classes of regular w-languages
(those recognized by Biichi automata) and of deterministic w-languages (those
recognized by deterministic Blichi automata) are not identifiable in the limit,
whichever interpretation for the prefixes is taken. We give a polynomial
algorithm that identifies the class of safe languages from positive existential
prefixes and negative universal prefixes. We show that this class is maximal for
polynomial identification in the limit from given data, in the sense that no
superclass can even be identified in the limit.

1 Introduction

Grammatical inference [5, 7, 11] deals with the general problem of automatic learning
machines (grammars or automata) from structured data, and more usually words.
Between the different syntactic objects from formal language theory, most attention
has been paid to the case of deterministic finite automata (dfa), even if some results
on different types of grammars are known. On the other hand the question of learning
automata on infinite words has hardly been studied.

The study of these automata was motivated by decision problems in mathematical
logic. They provide a normal form for certain monadic second-order theories [4].
Later work concerned the relationship between these automata and the semantics of
modal and temporal logics [14]. Today, these automata are used to model critical
reactive systems. By reactive is implied a software whose purpose is to interact with
its environment, and by critical one where mistakes or anomalies can have serious
consequences, that can cost much more than the actual benefit made by the software.

mailto:Cdlh@univ-st-etienne.fr
mailto:cdlh@univ-st-etienne.fr

This is the case for instance of automatic pilots, operating systems or nuclear station
automatic supervisors.

The development of such software requires automatic program proving capacities.
It is wished in particular that properties known as safety, which expresses that
something bad will never occur during the execution of the system, are verified.
Current examples of safety properties are mutual exclusion or deadlock avoidance [1].
These properties are described formally in temporal logics like PTL (Propositional
Temporal Logic), whose models, Kripke structures, can be modeled by Bichi
automata [14]. Consequently, Blchi automata make it possible to model with the
same formalism the critical systems and the logical properties that they must satisfy
and to develop effective proof algorithms (model checking).

Nevertheless, the formal specifications of the critical software, and more still, their
properties, are difficult to write for a non-specialist of automata and temporal logics.
Let us take the example of a lock chamber with two gates giving access to a safe
deposit. One enters the lock chamber by gate 1 and one leaves it by gate 2 (or vice
versa), but gate 2 should be allowed to open only if gate 1 is closed (and vice versa).
This system is represented by the automaton below:

Fig. 1. A two-gate lock chamber (o=open, c=closed)

The safety property "gates 1 and 2 are never open at the same time" is written, in
PTL: o(not p; v not p,), where property p; is that "gate i is open”. If a non-specialist is
not able to describe a system and its properties, he may be able on the other hand to
give examples of "good" and "bad" behaviors of the system. These examples are
sequences of events, 0; ¢; 0, C; 0, C; 01 C3... and 0, C; 07 Cy..., Which are "good"
behaviors, or 0; 0,... and 04 ¢; 0;..., which are "bad" behaviors. The same applies to
the logical properties the system must satisfy. Our objective is thus to learn
automatically the Biichi automaton by collecting only positive and negative examples.

The problem of learning automata on infinite words poses a first delicate problem:
whatever the way of recovering the data (batch of examples, on line learning, use of
an oracle or a teacher), is it reasonable to consider data which would be infinite
words? Let us recall that with an alphabet of size 2 the set of infinite words is already
uncountable. In previous research, the choice was to use data coming from the
countable subset of the ultimately periodic words (of type uv®, u and v being finite
words). Saoudi and Yokomori [12] define a (restricted) class of local languages, and
prove the learnability of these languages from positive examples; Maler and Pnueli
[9] adapt Angluin's L* algorithm [2] and make it possible to learn a particular class of

automata with the assistance of a polynomial number of equivalence and membership
queries.

Nevertheless, we wish the learning of an automaton to be done from experimental
data received from the potential users of a system. The data will therefore necessarily
be finite words. And the interpretation of these words can vary. A finite word u can be
a positive prefix, in the sense that one will be able to say that all its (infinite)
continuations are good, or that one of its continuations at least is. The same kind of
interpretations exists for the negative prefixes.

In this article we are thus interested in the inference of various types of machines
on infinite words, from prefixes. In section 2 we will give the definitions concerning
the w-languages, and in section 3 those necessary to the comprehension of the
learning problems. In section 4 we establish several learnability results, by showing
that for the majority of the alternatives, identification in the limit of the classes of o-
regular languages and w-deterministic languages is not possible. A positive result
concerning the polynomial identification of safe languages is given.

2 Definitions

2.1 Finite Words, Languages and Automata

An alphabet X is a finite nonempty set of symbols called letters. £* denotes the set of
all finite words over X. A language L over X is a subset of =*. In the following, letters
are indicated by a, b, c..., words by u, v,.., z, and the empty word by A. Let N be the
set of all non negative integers.

A deterministic finite automaton (dfa) is a quintuple A=<Q, X, 8, F, o> where X is
an alphabet, Q is a finite set of states, goeQ is an initial state, 8: QxZ— Q is a
transition function, and F < Q is a set of marked states, called the final states.

We define recursively:

» (g, 4) =q;
- 5(q|) a'W) = 5(6(q| ’ a)l W)
L(A), the language recognized by automaton A is {weX*: 5(qo, W)eF}.

It is well known that the languages recognized by dfas form the family of regular
languages. This class is considered as a borderline case for grammatical inference [7].

2.2 Infinite Words and w-Languages

We mainly use the notations from [13].

An infinite word u (or o-word) over X is a mapping N—ZX. Such a word is written
u(O)u(l)...u(n)..., with u(i)eX. =® denotes the set of all o-words over £. An o-
language over X is a set of infinite words, thus a subset of °.

Let L and K be two languages over X. We define:
L°={ueZ®/ u=ugu;...: VieN u;eL} and
KL ={ueXZ”/ u=uyu,: u; eKand u,eL”}
An w-language L is w-regular iff there exists two finite sequences of regular

i=n
languages <A> .y and <B;> [y such that L= J A;B;* .
i=1
Let Pref(u) denote the set of all finite prefixes of an infinite word u.
Given an o-language L, Pref(L)= (J Pref(u).
uelL

2.3 Automata on Infinite Words

Bichi automata [4] are used to recognize languages of infinite words. These
languages are actually used to model reactive systems [14] and infinite games [13].

A Blchi automaton is a quintuple A=<Q, Z, 8, F, go> where X is an alphabet, Q is
a finite set of states, goeQ is an initial state, 8: QxZ—2° is a transition function, and
F < Q is a set of marked states.

A run of A on an o-word u is a mapping C,: N—Q such that:

(i) Cu(0)= go
(ii) Vie N, Cy(i+1)ed(C(i), u(i))

Note that C, is undefined if at some point Cy(i) is undefined.

An o-word u is accepted by A iff there exists a state of F which appears infinitely
often in a run of A on u. Let L(A) be the set of all accepted w-words by A. We can
show [13] that an w-language L is w-regular iff L=L(A) for some Biichi automaton A.

An automaton is deterministic iff | 8(q, a) | <1 for all states q and letters a.

Let Reg,(X) be the class of all w-regular languages and Det(X) the class of all o-
languages which are recognized by a deterministic Bilichi automaton. Unlike what
happens in the case of finite automata, Det,(X) = Reg,(X) but Dety(X) = Regy(Z).
Indeed, consider the language (b*a)® of words with an infinite number of a. This
language is accepted by the deterministic automaton 2a below but its complementary
(a+b)*b® is not deterministic, although it is recognized by the non deterministic
automaton 2b.

b

a
a

Fig. 2. Biichi automata 2a and 2b recognize (b*a)” and (a+b)*h®. Their marked states are in
gray.

b

2.4 ®-Safe Languages and DB-Machines

An o-language L is safe [1] iff

vweX® (VuePref(w), 3veX®: uvel) = wel

ie

vweX® Pref(w) < Pref(L) = wel

that is to say,

vweZ® wgl = (JuePref(w): VveX® uvgl)

Let Safe,(X) denote the class of all safe w-regular languages.

b*a® is not a safe language. Indeed, every prefix b" of b® (which is not in the
language) is a prefix of b"a® (which is in the language). On the other hand, b*a® + b®
is safe. It follows that Safe,(X) = Det,(X) and we are going to show (Theorem 1) that
Safe,(X) < Dety(2).

A DB-machine is a deterministic Biichi automaton where F=Q.

Theorem 1. L is a safe w-regular language iff L is recognized by a DB-machine.
We introduce the following definitions in order to prove the previous theorem:

Definition 1. P<2* is a regular prefix language if and only if:

1. Pisregular;

2. every prefix of a word of P is a word of P: YueX* vael: uaeP=ueP;

3. every word of P is a proper prefix of another word of P: VueP Fae2: uaeP.

Definition 2. A dfa A is a prefix automaton (or prefix dfa) if and only if
1. every state is final;
2. every state is alive: ¥ eQ, Fae2: &q, a) Q.

Proposition 1.

1. If L is an w-regular language, then Pref(L) is a regular prefix language;

2. if P is a regular prefix language, then there exists a prefix automaton which
recognizes P;

3. if A=<Q, 2, 6, Q, o> is a prefix automaton, then the language L(M) recognized by
the DB-machine M=<Q, %, ¢, Q, qo> is w-regular and satisfies L(A)=Pref(L(M)).

Proof. Notice that several different m-languages can have the same prefix language.
1) Let P=Pref(L). L is w-regular, so there are sequences of regular languages <Ai> .

I=n 1=n 1=n
and <B;> ie[n] such that L= U Ai Bi(0 . PFEf(U Ai Bi(0): U Pref(Ai)uAiBi*Pref(Bi) is
i=1 i=1 i=1
a regular language which is closed by prefixes. Let ueP. As P=Pref(L), there exists
veX®such that uvel. Let a be the first letter of v. Then ua is a prefix of uv, so uaeP.

2) Let P be a regular prefix language. P is recognized by a dfa A which is minimal but
not necessarily complete (ie, we remove its dead-state if necessary). As P is prefix,
every state of this automaton is final. Finally, let g be a state of A and u a word such
that 8(qo, U)=q. By the definition of a prefix language, there exists acX such that
uaeP. So 8(q, a)€Q, thus q is alive.

3) Let A=<Q, X, 5, Q, go> be a prefix automaton. Consider the corresponding DB-
machine M=<Q, X, 3, Q, qo>. Let us prove that Pref(L(M))=L(A). Let uePref(L(M)).
Then there exists weX® such that uweL(M). It is clear that (qg, u)eQ, so ueL(A).
Conversely, let ueL(A) and g=5(qo, u). As q is alive, we can build two words v and w
such that 8(q, v)=q' and &(q', w)=q'. Clearly, the run Cywe goes infinitely often
through state g'. So uvw”eL(M) and uePref(L(M)).

Proof of Theorem 1. Let L be a language recognized by a DB-machine
M=<Q, X, 5, Q, go> and weX”. Assume that every prefix u, of w can be continued
into a word of L recognized by M. The mapping C,: N—Q such that C,(0)=q, and
VieN, Cy(i+1)= 8(Cy(i), ui(i))= 3(Cy(i), w(i)) is a run of M on w. Since all the states
of M are marked, this run is successful, so wel. Hence, L is a safe w-regular
language. Conversely, let L be a safe w-regular language. By Proposition 1, Pref(L) is
a regular prefix language which is recognized by some prefix automaton
A=<Q, %,3,Q,00>. We claim that L is recognized by the DB-machine
M=<Q, %, 5, Q, qo>. Indeed, by Proposition 1, the language L(M) satisfies
Pref(L(M))= L(A). Moreover, by the first part of this proof, L(M) is a safe language
(since M is a DB-machine). So L and L(M) are both safe languages such that
Pref(L)=Pref(L(M))=L(A). Assume that there exists a word w in L and not in L(M) (or
vice-versa). As Pref(L)=Pref(L(M)), every prefix of w is in Pref(L(M)). Since L(M) is
a safe language, w itself is in L(M), which is impossible. So L=L(M).

Corollary 1. Let L and L' be two safe w-regular languages. Pref(L)=Pref(L")«<L=L".

Proof. < is straightforward. = is an immediate consequence of the previous proof.

3 Learning o-Regular Languages from their Prefixes

One of the main difficulties consists in explaining the meaning of "p is a positive
prefix of the w-language L" and "n is a negative prefix of the w-language L". The
meaning of prefixes and the interesting cases to be studied depend on the context of
our problem.

Definition 3.

1. p is an Fpositive prefix of L iff Fue2”, puel
2. pisa vtpositive prefix of L iff vue2” puel

3. nis an F-negative prefix of L iff Fue2”, nuglL
4. nis a v-negative prefix of L iff vue2® nuel

Given an o-language L, let Py (L) denote the set of all V-positive prefixes of L,
P5(L) the set of all 3-positive prefixes of L, Ny(L) the set of all V-negative prefixes of
L, and N5(L) the set of all 3-negative prefixes of L.

Two finite sets S+ and S- of finite words form together a set of (p, n)-examples for
an o-language L if and only if S+cP(L) and S-cN,(L).

For instance, on the automaton 2a, L=((a+bh)*a)®, Py(L)=Ny(L)=& and
P5(L)=N5(L)=z*.

We can also remark that for all w-languages L, P5(L)=Pref(L) and
Ps(L)NNy(L)=Pw(L)NNs(L)=2 P3(L)UNy(L)=Py(L)UN5(L)=2*
Py(L)=Ny(Z*\L) P5(L)=Ns(Z“\L)

3.1 On Convergence Criteria

In this section, we adapt the definitions of Gold [5] and de la Higuera [7]. Other
paradigms than identification in the limit are known, but they are often either similar
to these or harder to establish. A comparison between different models can be found
in [11].

It will be useful to systematically consider a class L of languages and an associated
class R of representations. The latter one will have to be strong enough to represent
the whole class of languages, i.e. VLeL, IreR: L(r)=L.

The size of a representation (denoted |r|) is polynomially related to the size of its
encoding. In the case of a deterministic automaton, the number of states is a relevant
measure, since the alphabet has a constant size.

All the classes we consider are recursively enumerable. Moreover, for Biichi
automata and finite words, given xe{3, vV}, the problems "weP,(L(A))?" and
"weN,(L(A))?" are decidable, so the definition of identification in the limit from
prefixes can be presented as follows:

Definition 4. A class L of w-languages is (p, n)-identifiable in the limit for a class R

of representations if and only if there exists an algorithm A such that:

1. given a finite set <S+, S-> of prefixes, with S+cPp(L) and S-cNq(L), A returns h in
R consistent with <S+, S->;

2. for all representations r of a language L in L, there exists a finite characteristic set
<CS+, CS->, such that, on <S+, S-> with CS+cS+cPy(L) and CS-S-cN,(L), A
returns a hypothesis h equivalent to r.

We now adapt the definition of polynomial identification in the limit from fixed
data [5, 7] to the case of learning from prefixes. This definition takes better care of
practical considerations: for instance with this definition, deterministic finite automata
are learnable whereas context-free grammars or non-deterministic automata are not.

Definition 5. A class L of w-languages is (p, n)-polynomially identifiable in the limit

from fixed finite prefixes for a class R of representations if and only if there exists an

algorithm A and two polynomials «() and A() such that:

1. given a set <S+, S-> of prefixes of size m?, with S+cPy(L) and S-cNy(L), A
returns h in R in O(a(m)) time and h is consistent with <S+, S->;

2. for all representations r of size n of a language L in L, there exists a characteristic
set <CS+, CS-> of size at most A(n), such that, on <S+, S-> with CS+cS+cP,(L)
and CS-cS-cN, (L), A returns a hypothesis h equivalent to r.

1 The size of a set S of finite words is the sum of the length of all the words in S.

3.2 The Problem of Learning o-Languages from their Prefixes

We have now defined the different parameters of the problem. The main question is:
can the class L of w-regular languages represented by R be learned following the
criterion C from a set of (p, n)-examples?

The classes L we are interested in are those defined in section 2. The representation
classes are B-Aut (Bichi automata) for Reg,(X), DB-Aut (deterministic Bichi
automata) for Det,(X) and DB-Mach (DB-machines) for Safe,(X). The criteria will be
identification in the limit and polynomial identification in the limit from fixed
prefixes. The examples of positive and negative prefixes will be defined according to
the different combinations of the quantifiers 3 and V.

Hence a learning problem will be completely specified when given:
1. the class of languages and its representation class;
2. the convergence criterion;
3. the interpretation one gives to positive and negative prefixes.

A problem will thus be a triple <Lg, criterion, interpretation> where criterion will
be idlim (identification in limit) or polyid (polynomial identification in the limit from
fixed prefixes) and interpretation will be a pair (p, n) such that p and n €{3, Vv}.

Example. The problem <Safey(X)ps-mach, idlim, (3, ¥)> is the one of identification in
the limit of the class Safe,(X) where the languages are represented by DB-machines
and a presentation made of existential positive prefixes and universal negative
prefixes (see definition 3) is given. Such a problem will have a "positive status" if this
class is actually learnable with the chosen criterion, a "negative status" if it is not and
an "unknown status" if the problem is unsolved.

4 Results

We give two types of results. The first concerns classes Regq(X) and Dety(X), for
which identification in the limit from prefixes is impossible. The second concerns the
class of safe languages, for which polynomial identification in the limit by fixed
prefixes is proved.

4.1 General Properties

We first give a straightforward reduction property; we establish that polynomial
identification only holds when identification in the limit also holds: if
<Lg, idlim, sign> has a negative status, so does <Lg, polyid, sign>.

A necessary condition for the identification of a class of languages is that any pair
of languages from the class can be effectively separated by some prefix:

Lemma 1. Let L be a class of w-languages and R a class of representations for L.
If there exist L, and L, in L such that Ly=L,, Py(L1)=Py(L;) and Nn(L;)=N(L.), then
the problem <Lg, idlim, (p, n)> has a negative status.

Proof. Suppose that an algorithm A identifies class L; then L; and L, have respective

characteristic sets CS; and CS,. But L; and L, are consistent with CS;\CS,. Hence
either L, or L, is not identified.

Theorem 2. For any class of representations R, ¥, ne{7F, v}, <Reg,(2)r, idlim,
(p, n)> and <Det,(2)g, idlim, (p, n)> have negative status.

Proof. We will use the same counter-example, shown in Figure 3, to prove that
neither the class of all w-regular languages, nor that of all ®-deterministic ones are
identifiable in the limit (and furthermore polynomially identifiable from given
prefixes). The languages accepted by automata 3a and 3b are respectively
L,=a"+a*ba*b(a+h)” and L,=a*ba*b(a+b)”. Whatever the choice of quantifiers p and
n, languages P, and N, are identical in both cases.

a a ab a a ab

Fig. 3. Automata 3a and 3b accept respectively languages a®+a*ba*b(a+b)*”and a*ba*b(a+b)®.

Formally:
PH(L1)=P3(L2)=E* N3(L1)=N3(L2)=a*+a*ba*
PV(L1)=PV(L2)=a*ba*b(a+b)* Nv(Ll)sz(Lz):®

4.2 On the Identification of Safe Languages

The previous result is very negative, but hardly surprising. It implies that learning
requires either to consider a subclass of languages, and/or to change the convergence
criterion. It is surely not reasonable to choose a less demanding criterion than
identification in the limit; we will thus concentrate on a subclass of @-deterministic
languages in the sequel: the safe o-languages. We first prove that the associated class
of prefix languages is polynomially identifiable in the limit from given data:

Proposition 2. The class of regular prefix languages, represented by prefix dfas, is
polynomially identifiable in the limit from given prefixes.

Proof. To prove the above proposition we use algorithm RPNI-prefixesl. An
alternative and more efficient algorithm, that can return a compatible non trivial
prefix automaton, even when the characteristic set is not included in the data is
proposed in the appendix. As for RPNI-prefixesl, it makes use, as a sub-routine, of
RPNI [10] which can identify a dfa from positive and negative data (typically two
finite sets of finite words S+ and S-).

The first object RPNI builds is the prefix tree acceptor (pta): this is the largest dfa
with no useless? states recognizing exactly S+.

Algorithm RPNI-prefixesl
Input: S=<S+,S-> (a set of positive words S+, and
of negative words S-)
Output: a prefix automaton (<Q, X, &, F, q,>)
Begin
A<«RPNI (S+, S-);
If A is a prefix dfa
then return A
else max_neg<max{length(u): ues-};
For all w in S+ s.t. wePref (S-) and
wg (Pref (S+) \{w}) do
Compute v of length max neg s.t.
Pref (v)NS-=J and wePref (v) ;
S+«S+U{v};
A<PTA(S+) ;

Q«0ou{q,}; F<Q;
For all a in X do 8(q,, a)« q,;
For all g in Q such that g is a leaf do
For all a in X do 8(q, a)<« q,;
Return A
end.

If <S+, S-> contains a characteristic set of the target language L, RPNI returns a
prefix automaton A that accepts language L [10]. If <S+, S-> does not contain a
characteristic set, RPNI returns an automaton which is consistent with <S+, S->, but
may be neither prefix nor even transformable into a prefix automaton. In that case
RPNI-prefixesl transforms the pta into a consistent prefix automaton.

Indeed function PTA(S+) constructs the pta corresponding to S+ in which are
added extra words whose positive labeling does not introduce inconsistency; testing
(wePref(S-) and wgPref(S+)\{w}) allows to know which states of the pta
have no successors; these states must then lead to a new universal® state q¢ whenever
the new transition is not used by some negative word: such a transition always exists
since the data is supposed to be consistent. Building a polynomial implementation is
straightforward.

Theorem 3. <Safe,(2)ps-mach, POlyid, (7, ¥)> a has positive status.

Proof. We show that the conditions of definition 5 are met:
i. Let L be a safe language. On any pair of sets <S+, S-> of (3, V)-prefixes for L, by
proposition 2 a prefix dfa accepting S+ and rejecting S- can be returned in polynomial

2 A state is useless if it does not lead to an accepting state, or is not accessible from the initial
state.
3 A state is universal if by any letter there is a transition to the same state.

time. In constant time this automaton is transformed into a DB-machine M by
changing the acceptance criterion. Furthermore S+cPref(L(M)) and S-
NPref(L(M))=.

ii. Let L be a safe language, and M a DB-machine accepting L. Let A be the prefix
automaton associated with M. Let <CS+, CS-> be a characteristic set for A and RPNI.
Let now <S+, S-> be such that CS+cS+, CS-cS-, S+cL(A) and S-nL(A)=J. Notice
that the size of <CS+, CS-> is polynomial in that of A which in turn is the same as the
size of M. On input <S+, S-> RPNI returns an automaton A' equivalent to A. By
construction, the DB-machine M' associated to A" is such that
Pref(L(M")=L(A")=L(A)=Pref(L(M)). By corollary 1 L(M)=L(M") holds.

Theorem 4. If L strictly contains Safe,(2) and R is a class of machines for L,
<Lg, idlim, (7, ¥)> has a negative status.

Proof. Let L be a class containing strictly Safe,(X) and L a language in L but not in
Safe,(X). P5(L) is a prefix language. But in that case there exists a language L' in
Safe,(X) such that P5(L)=P5(L") and Ny(L)=Ny(L"). By lemma 1, it follows that L is
not identifiable.

Theorems 3 and 4 allow us to deduct a final result concerning learning from (v, 3)-
prefixes. An w-language L is co-safe iff its complementary ®\ L is a safe language.
We denote Co-Safe,(Z) the family of co-safe w-regular languages. Co-safe languages
are accepted by co-DB-machines, i.e. complete Biichi automata with a unique marked
state which is a universal state.

Theorem 5. <Co-Safey(2)co-08-mach, POlYId, (V;)> has a positive status.
Furthermore for any class L strictly containing Co-Safe,(2), and R a class of
machines for L, <Lg, idlim, (¥, 3> has negative status.

Proof. Any complete prefix presentation by (V,3) of a co-safe language L is a
complete prefix presentation by (3,V) of the safe language X“\L, since
P5(Z“\L)=N5(L) and Ny(Z“\L)=Py(L). Moreover the construction of a co-DB-machine
from a DB-machine can be done in linear time by completing it with a universal state
which becomes the marked state. From theorem 3, the problem <Safe,(X)ps-
mach» POlyid, (3, V)> has a positive status, and so has <Co-Safe,(Z)co-pe-
Mach, Polyid, (¥, 3)>.

5 Conclusion

This work is a first approach to the problem of learning or identifying automata on
infinite words from finite prefixes. A certain number of open questions and new
research directions can be proposed. Among those we mention:

The problem <?,, criterion, (3, 3)>. It is rather easy to show that for all the classes
of languages studied in this paper, the status will be negative. It seems relevant to find

a class of languages (undoubtedly rather restricted) for which the status would be
positive.

Learning from prefix queries (membership queries on the prefixes) and
equivalence queries.

Improvement of the inference algorithm (RPNI-prefixes) for the learning of the
prefix languages. The algorithm proposed is polynomial. It is however neither easy to
implement, nor (probably) does it perform well in practice.

Lastly, the validation of this algorithm on real data (produced by a system),
remains to be done. The type of automata corresponding to real world tasks has the
characteristic to have an important alphabet, but few outgoing transitions per state. In
this context simplification by typing of the alphabet [3] is undoubtedly a track to be
retained.

6 Acknowledgement

The authors would like to thank Maurice Nivat who suggested the problem.

References

1. B. Alpern, AJ. Demers and F.B. Schneider. Defining Liveness. Information Processing
Letters 21, 181-185, 1985.

2. D. Angluin. On the Complexity of Minimum Inference of Regular Sets. Information and
Control 39, 337-350, 1978.

3. M. Bernard and C. de la Higuera. Apprentissage de Programmes Logiques par Inférence
Grammaticale, Revue d'Intelligence Artificielle, 14/3-4, 375-396, 2001.

4. J.R. Buchi. On a decision method in restricted second order arithmetic. Proc. Cong. Logic
Method and Philos. Of Sci., Stanford Univ. Press, California, 1960.

5. M.E. Gold. Complexity of Automaton Identification from Given Data, Information and
Control, 37, 302-320, 1978.

6. C. de la Higuera, J. Oncina and E. Vidal. Identification of dfa's:data dependant vs data-
independant algorithms,.in Proceedings of ICGI '96, LNAI 1147, Springer-Verlag, 1996.

7. C. de la Higuera. Characteristic Sets for Polynomial Grammatical Inference, Machine
Learning 27, 125-138, 1997.

8. K. Lang, B.A. Pearlmutter and R.A. Price. Results of the Abbadingo One DFA Learning
Competition and a New Evidence-Driven State Merging Algorithm, in Grammatical
Inference, Proceedings of ICGI '98, LNAI 1433, Springer Verlag, 1-12, 1998.

9. 0. Maler and A. Pnueli. On the Learnability of Infinitary Regular Sets, Proc. 4™ COLT,
128-136, Morgan Kauffman, San Mateo, 1991.

10. J. Oncina and P. Garcia. Identifying Regular Languages in Polynomial Time, in Advances
in Structural and Syntactic Pattern Recognition, H. Bunke ed., Series in Machine
Perception and Artificial Intelligence 5, 99-108, 1992.

11. R.J. Parekh and V. Honavar. On the relationship between Models for Learning in Helpful
Environments, in Proceedings of ICGI 2000, LNAI 1891, Springer Verlag, 207-220, 2000.

12. A. Saoudi and T. Yokomori. Learning Local and Recognizable o-languages and Monadic
Logic Programs, in Proceedings of EUROCOLT, LNCS, Springer Verlag, 1993.

13. W. Thomas. Automata on infinite objects, Handbook of Theoretical Computer Science
(Van Leewen ed.), 133-191, North-Holland, Amsterdam, 1990.

14. M.Y. Vardi and P. Wolper. Automata-Theoretic Techniques in Modal Logics of Programs,
Journal of Computer and Systems Science 32, 183-221, 1986.

Appendix: a constructive prefix dfa inference algorithm

The algorithm proposed in section 4 identifies polynomially and in the limit from
given data any prefix automaton. It is nevertheless practically a useless algorithm: one
is never sure to have a characteristic set inside his learning data, and returning the pta
with some added edges is not convincing. We give here a specific prefix automaton
learning algorithm. It is based on RPNI [10], and uses notations from [6].

Algorithm RPNI-prefixes2 adds to S+ all prefixes of S+, and goes through a typical
state merging routine. The only problem is to make sure that every merge leads to an
automaton that will be completable into a prefix automaton. To do this each positive
state has to stay alive: there must be at least one infinite word leading from this state
that avoids every negative state.

Algorithm RPNI-prefixes2
Input: S=<S+, S->
Output: a prefix automaton (defined by 6, F+, F-)
Begin
(*Initializations*)
S+<-S+UPref (S+); n<«o0;
VaeX, Tested(q,, a)«J; F+«{q,}; F-«J;
While there are some unmarked words in S+US- do
<g, a, q's><«chose transition();
If Possible(d(g, a)=q'")
then 6(qg, a)<«qg';
For all unmarked w in S+ do
If 8(g,, w)=g" then mark (w);
F+<F+U{q"};
For all unmarked w in S- do
If 8(g,, w)=q" then mark (w);
F-«<F-U{q"};
else Tested(qg, a)<«Tested(qg, a) U{qg'};
If |Tested(q, a)|=n+1 (*impossible to merge *)
then (*creation of a new state*)
nen+l; Q«Qu{qg}; d(g, a)«< q;
For all unmarked w in S+ do
If 8(g,, w)=g" then mark(w);
F+«F+U{q"};
For all unmarked w in S- do
If 8(g,, w)=g" then mark(w);

F-«F-uU{gq"};
VaeX, Tested(q, a)<d;
End_while;

(* conversion into a consistent prefix dfax)
Q«F+;
For all geF+ such that VaeX d(g, a)e¢Q
chose w minimal such that
({u: 8(g,, u)=q}.Pref(w))NsS- = J;

Q<—QU{C]%V: O<ic< |w| };

w
i

F+<F+U{(Q o<i<|wl};

S(q, w(0))«aq;
For all i from 0 to |w| do
s(q¥_q, wi))«ql;
ForallainZdoS(W,a)eW;
al Rl

End.
Function Chose transition: returns a triplet <q, a, 9> corresponding to the
transition 8(q, a)=q" where 3(q, a) is undefined and q'¢Tested(q, a). Different
functions can work. Typically EDSM type functions have been shown preferable [8].
Function Possible(8(q, a)=g™): returns True if adding to & rule (g, a, q')
does not lead to an inconsistency, False otherwise.
Inconsistency is tested on the current automaton on which rule 5(q, a)=q' is added.
It can have two causes:
= there exists two words uaw and vw such that &(go, u)=q and 5(do, v)=q' and
uaweS+, vwegS-, and uawgS-, vwe S+.

= 3 state is no more alive; a state g is alive if it can still lead to an accepting state:
IweX®/ ({u: 8(qo, u)=q}.Pref(w))nS-=. This insures that the current automaton
(and thus by induction the last one) can be transformed into a prefix dfa.

The main elements of the proof of RPNI-prefixes2 are:
= The algorithm returns a prefix automaton (by construction).
= The possible test insures that all states are alive and that at any moment the
automaton can be transformed into a consistent prefix automaton.
= |n the case where a characteristic set (for RPNI) is included, no transformation will
take place.
= Finally, the algorithm works in polynomial time.
We refer the reader to [6] for a complete proof (in the case of dfas, but the proof
can easily be adapted to the case of prefix automata).

