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Abstract

B+uchi automata are used to recognize languages of in$nite strings. Such languages have been
introduced to describe the behavior of real-time systems or in$nite games. The question of
inferring them from in$nite examples has already been studied, but it may seem more reasonable
to believe that the data from which we want to learn is a set of $nite strings, namely the pre$xes
of accepted or rejected in$nite strings. We describe the problems of identi$cation in the limit
and polynomial identi$cation in the limit from given data associated to di2erent interpretations of
these pre$xes: a positive pre$x is universal (respectively existential) when all the in$nite strings
of which it is a pre$x are in the language (respectively when at least one is); the same applies
to the negative pre$xes. We prove that the classes of regular !-languages (those recognized
by B+uchi automata) and of deterministic !-languages (those recognized by deterministic B+uchi
automata) are not identi$able in the limit, whatever interpretation for the pre$xes is taken. We
give a polynomial algorithm that identi$es the class of safe languages from positive existential
pre$xes and negative universal pre$xes. We show that this class is maximal for polynomial
identi$cation in the limit from given data, in the sense that no superclass can even be identi$ed
in the limit.
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1. Introduction

Grammatical inference [5,8,14] deals with the general problem of automatic learn-
ing machines (grammars or automata) from structured data, and more usually strings.

∗ Corresponding author.
E-mail addresses: cdlh@univ-st-etienne.fr (C. de la Higuera), janodet@univ-st-etienne.fr (J.C. Janodet).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.11.009

mailto:cdlh@univ-st-etienne.fr
mailto:janodet@univ-st-etienne.fr


296 C. de la Higuera, J.C. Janodet / Theoretical Computer Science 313 (2004) 295–312

Fig. 1. A two-gate lock chamber (o= open; c= closed).

Between the di2erent syntactic objects from formal language theory, most attention has
been paid to the case of deterministic $nite automata (dfa), although if some results on
di2erent types of grammars are known. The question of learning automata on in$nite
strings has hardly been studied.

The study of these in$nite string automata was motivated by decision problems in
mathematical logic. They provide a normal form for certain monadic second-order the-
ories [4]. Later work concerned the relationship between these automata, the semantics
of modal and temporal logics, and their application to critical reactive systems [18].
By reactive is implied a software whose purpose is to interact with its environment,
and by critical one where mistakes or anomalies can have serious consequences, that
can cost much more than the actual bene$t made by the use of the software. This is
the case for instance of automatic pilots, operating systems or nuclear station automatic
supervisors.

The development of such software requires program proving capacities. In particular
a property known as safety, which expresses that something bad will never occur during
the execution of the system, must be veri$ed. Current examples of safety properties are
mutual exclusion or deadlock avoidance [10]. These properties are described formally
in temporal logics like Propositional Temporal Logic (PTL), whose models, Kripke
structures, can be described by B+uchi automata. Consequently, B+uchi automata make
it possible to model with the same formalism the critical systems and the logical
properties that they must satisfy. E2ective proof algorithms (model checking) can then
be developed [18].

Nevertheless, the formal speci$cations of the critical software, and even more, their
properties, are diGcult to write for a non-specialist of automata and temporal logics.
Let us take the example of a lock chamber with two gates giving access to a safe
deposit, represented by the automaton depicted in Fig. 1. One enters the lock chamber
by gate 1 and one leaves it by gate 2 (or vice versa), but gate 2 should be allowed to
open only if gate 1 is closed (and vice versa).

The safety property “gates 1 and 2 are never open at the same time” is written, in
PTL: (¬p1 ∨¬p2), where property pi is that gate i is open (the box should be
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interpreted as “always”). If a non-specialist is not able to describe a system and its
properties, he may be able on the other hand to give examples of good and bad behav-
iors of the system. These examples are sequences of events such as o1c1o2c2o2c2o1c1 : : :
and o2c2o1c1 : : :, which are good behaviors, or o1o2 : : : and o1c1o1 : : :, which are bad
behaviors. The same applies to the logical properties the system must satisfy. Our ob-
jective is thus to learn automatically the B+uchi automaton by collecting only positive
and negative examples.

The problem of learning automata on in$nite strings poses a $rst delicate problem:
whatever the way of recovering the data (batch of examples, on line learning, use
of an oracle or a teacher), is it reasonable to consider data which would be in$nite
strings? Let us recall that even with an alphabet of size 2 the set of in$nite strings is
uncountable. In previous research on learning this type of automaton, the choice was
to use data coming from the countable subset of the ultimately periodic strings (of
type uv!; u and v being $nite strings). Saoudi and Yokomori [15] de$ne a (restricted)
class of local languages, and prove the learnability of these languages from positive
examples; Maler and Pnueli [12] adapt Angluin’s L* algorithm [2] and make it possible
to learn a particular class of automata with the assistance of a polynomial number of
equivalence and membership queries.

Nevertheless, we wish the learning of an automaton to be done from experimental
data received from the potential users of a system. The data will therefore necessarily
be $nite strings. And the interpretation of these strings can vary. A $nite string u can
be a positive pre$x, in the sense that one will be able to say that all its (in$nite)
continuations are good, or that at least one of its continuations is. The same kind of
interpretations exists for the negative pre$xes.

In this article we are thus interested in the inference of various types of machines on
in$nite strings, but from pre$xes. In Section 2 we shall give the de$nitions concerning
the !-languages, and in Section 3 those necessary to the comprehension of the learning
problems; this yields a family of identi$cation problems. In Section 4 we establish
several learnability results, by showing that for the majority of the de$ned problems,
identi$cation in the limit of the classes of !-regular languages and !-deterministic
languages is not possible. But in the special case of safe languages, a positive result
concerning polynomial identi$cation is given. The algorithm presented in Section 4 is
improved in Section 5.

2. De�nitions

2.1. Finite strings, languages and automata

An alphabet 
 is a $nite non-empty set of symbols called letters. 
∗ denotes the set
of all $nite strings over 
. A language L over 
 is a subset of 
∗. In the following,
letters are indicated by a; b; c; : : :, strings by u; v; : : : ; z, and the empty string by �. Let
N be the set of all non-negative integers.

A deterministic $nite automaton (dfa) is a quintuple A= 〈Q;
; �; F; q0〉, where 
 is
an alphabet, Q is a $nite set of states, q0 ∈Q is an initial state, � :Q×
→Q is a
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transition function, and F ⊆Q is a set of marked states, called (in this case) the $nal
states.

As usual, � can be recursively extended to 
∗ by de$ning �(q; �) = q and �(q; a:w) =
�(�(q; a); w) for all q∈Q; a∈
; w∈
∗. Let L(A) denote the language recognized
by automaton A:

L(A) = {w ∈ 
∗ | �(q0; w) ∈ F}:
It is well known that the languages recognized by dfa form the family of regular
languages. This class is considered as a borderline case for grammatical inference [5].

2.2. In5nite strings and !-languages

We mainly use the notations from [16].
An in$nite string u (or !-string) over 
 is a mapping N→
. Such a string is

written a0a1 : : : an : : :, with ai ∈
. Let 
! denote the set of all !-strings over 
. An
!-language over 
 is a set of in$nite strings, thus a subset of 
!.

Let L and K be two languages over 
. We de$ne

L! = {u ∈ 
! | u = u0:u1: : : : :un: : : : and ui ∈ L for all i ∈ N};
K:L! = {u ∈ 
! | u = u1:u2 and u1 ∈ K and u2 ∈ L!}:

An !-language L is !-regular i6 there exist n∈N and two $nite sequences of regular
languages (Ai)i∈1::n and (Bi)i∈1::n such that

L =
n⋃
i=1
Ai:B!i

Let Pref (u) be the set of all $nite pre$xes of an in$nite string u. Finally, given an
!-language L, let

Pref (L) =
⋃
u∈L

Pref (u):

2.3. Automata on in5nite strings

B+uchi automata [4] recognize languages of in$nite strings. These languages are ac-
tually used to model reactive systems [18] and in$nite games [16].

A B+uchi automaton is a quintuple A= 〈Q;
; �; F; q0〉, where 
 is an alphabet, Q is
a $nite set of states, q0 ∈Q is an initial state, � :Q×
→ 2Q is a transition function
and F ⊆Q is a set of marked states. These states are distinguished from the others but
not “$nal”, as the strings are in$nite.

A run of A on an !-string u is a mapping Cu :N→Q such that:
(1) Cu(0) = q0 and
(2) Cu(i + 1)∈ �(Cu(i); ui), for all i∈N .
Note that Cu is unde$ned if at some point, Cu(i) is unde$ned.
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Fig. 2. B+uchi automata 2a and 2b recognize (b∗a)! and (a + b)∗b!, respectively. Their marked states are
in gray.

An !-string u is accepted by A i6 there exists a state of F which appears in$nitely
often in a run of A on u. Let L(A) be the set of all accepted !-strings by A. We can
show [16] that an !-language L is !-regular i6 L=L(A) for some B+uchi automaton A.

An automaton is deterministic i6 |�(q; a) |61 for all states q and letters a.
Let Reg!(
) be the class of all !-regular languages and Det!(
) the class of all

!-languages which are recognized by a deterministic B+uchi automaton. Unlike what
happens in the case of $nite automata, Det!(
)⊂Reg!(
) but Det!(
) =Reg!(
).
Indeed, consider the language (b∗a)! of strings with an in$nite number of a. This lan-
guage is accepted by the deterministic automaton 2a but its complementary (a+ b)∗b!

is not deterministic, although it is recognized by the non-deterministic automaton 2b
(Fig. 2).

2.4. !-Safe languages and DB-machines

Since Lamport’s seminal paper [10], it is usual to distinguish two classes of
!-languages, namely those that have a safety property and those that have a live-
ness property. In the domain of critical systems, a liveness property expresses the fact
that “something good is necessarily going to happen in the system”, e.g. its termination,
the absence of starvation or the guaranty of some service. On the other hand, a safety
property expresses that “something bad will never happen in the system”; examples of
such properties are mutual exclusion or the absence of deadlock. It was proved, using
topological arguments [3], that for every !-language, there exists one safety property
and one liveness property such that the language is the set of strings that satisfy either
the safety property or the liveness one.

In substance, a language is safe when the limits of all its pre$xes are themselves in
the language.

De�nition 1. An !-language L is safe [1] i2

∀w ∈ 
!; (∀u ∈ Pref (!);∃v ∈ 
! such that u:v ∈ L) ⇒ w ∈ L:

It can be easily shown that this de$nition is equivalent to

∀w ∈ 
!;Pref (!) ⊆ Pref (L) ⇒ w ∈ L
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or even by taking the negation of the last line to:

∀w ∈ 
!; w =∈ L ⇒ (∃u ∈ Pref (!) such that ∀v ∈ 
!; u:v =∈ L):

Let Safe!(
) denote the class of all safe !-regular languages.
b∗a! is not a safe language. Indeed, every pre$x bk of b! (which is not in the

language) is a pre$x of bka! (which is in the language). On the other hand, b∗a!+b!

is safe. It follows that Safe!(
) =Det!(
) and we are going to show (Theorem 2)
that Safe!(
)⊂Det!(
).

A DB-machine is a deterministic B+uchi automaton where F =Q. As the automaton
need not be complete, the strings that are not accepted are those that simply cannot be
parsed through the automaton.

Theorem 2. L is a safe !-regular language i6 L is recognized by a DB-machine.

We introduce the following de$nitions in order to prove the theorem:

De�nition 3. A language P⊆
∗ is a regular pre$x language if and only if:
(1) P is regular,
(2) every pre$x of a string of P is a string of P:

∀u ∈ 
∗;∀a ∈ 
; u:a ∈ P ⇒ u ∈ P

and
(3) every string of P is a proper pre$x of another string of P:

∀u ∈ P;∃a ∈ 
 such that u:a ∈ P

A dfa A= 〈Q;
; �; F; q0〉 is a pre$x automaton (or pre$x dfa) if and only if:
(1) every state is $nal and
(2) every state is alive: ∀q∈Q;∃a∈
 such that �(q; a)∈Q.

Proposition 4. (1) If L is an !-regular language, then Pref(L) is a regular pre5x
language.

(2) If P is a regular pre5x language, then there exists a pre5x automaton which
recognizes P.

(3) If A= 〈Q;
; �; F; q0〉 is a pre5x automaton, then the language L(M) recog-
nized by the DB-machine M = 〈Q;
; �; F; q0〉 is !-regular and satis5es L(A) =Pref
(L(M)).

Proof. Notice that several di2erent !-languages can have the same pre$x language.
L is !-regular, so there exist two sequences of regular languages (Ai)i∈1::n and

(Bi)i∈1::n such that L=
⋃n
i=1 Ai:B

!
i . Notice also that the following holds:

Pref
(
n⋃
i=1
Ai:B!i

)
=

n⋃
i=1

Pref (Ai) ∪ Ai:B∗i :Pref (Bi):
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So Pref (L) is a regular language which is closed by pre$xes. Moreover, let u∈
Pref (L). There exists v∈
! such that u:v∈L. Let a be the $rst letter of v. Then
u:a is a pre$x of u:v, so u:a∈Pref (L), hence Pref (L) is a regular pre$x language.

Let P be a regular pre$x language. P is recognized by a dfa A which is minimal
and has no dead state. As P is pre$x, every state of this automaton is $nal. Moreover
let q be a state of A and u a string such that �(q0; u) = q. By the de$nition of a pre$x
language, there exists a∈
 such that u:a∈P. So �(q; a) is necessarily de$ned, i.e. q
is alive.

Let A= 〈Q;
; �; F; q0〉 be a pre$x automaton. Consider the corresponding DB-mach-
ine M = 〈Q;
; �; F; q0〉. Let us prove that Pref (L(M)) =L(A). Let u∈Pref (L(M)).
There exists w∈
! such that u:w∈L(M). It is clear that �(q0; u)∈Q, so u∈L(A).
Conversely, let u∈L(A) and q= �(q0; u). As q is alive, we can build two strings v
and w such that �(q; v) = q′ and �(q′; w) = q′. Clearly, the run Cu:v:w! goes in$nitely
often through state q′. So u:v:w! ∈L(M), thus u∈Pref (L(M)).

Proof of Theorem 2. Let L be a language recognized by a DB-machine M = 〈Q;
; �; Q;
q0〉 and w∈
!. Assume that every pre$x w(1::n) of w can be continued into a
string un of L recognized by M . The mapping C :N→Q such that C(0) = q0 and
C(i + 1) = �(C(i); ui(i)) = �(C(i); wi) is a run of M on w. Since all the states of M
are marked, this run is successful, so w∈L. Hence, L is a safe !-regular language.

Conversely, let L be a safe !-regular language. By Proposition 4, Pref (L) is a reg-
ular pre$x language which is recognized by some pre$x automaton A= 〈Q;
; �; Q; q0〉.
We claim that L is recognized by the DB-machine M = 〈Q;
; �; Q; q0〉. Indeed, by
Proposition 4, L(M) satis$es Pref (L(M)) =L(A). Moreover, by the $rst part of
this proof, L(M) is a safe language (since M is a DB-machine). So L and L(M)
are both safe languages such that Pref (L) =Pref (L(M)) =L(A). Assume that there
exists a string w∈L and not in L(M) (or vice versa). As Pref (L) =Pref (L(M)),
every pre$x of w is in Pref (L(M)). Since L(M) is a safe language, w itself is in
L(M) which is inconsistent with the hypothesis. So L=L(M).

Corollary 5. Let L and L′ be two safe !-regular languages.

Pref(L) = Pref(L′) iff L = L′:

Proof. ⇐ is straightforward.
⇒ is an immediate consequence of the previous proof.

3. Identifying from pre�xes

We have to deal with the two following issues:
• one consists in explaining the meaning of the statements “u is a positive pre$x of

the !-language L” and “u is a negative pre$x of the !-language L”. The meaning
of pre$xes and the interesting cases to be studied depend on the context of our
problem;
• the other is to decide in what way do we want convergence to be de$ned.
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3.1. On positive and negative pre5xes

A $nite string can be a positive pre$x of some !-language either because all its
(in$nite) continuations are in the !-language, or because at least one is. On the other
hand, a $nite string can be a negative pre$x of some !-language either because none
of its (in$nite) continuations are in the !-language, or because at least one is not.

We formalize these notions as follows:

De�nition 6. Let u∈
∗.
(1) u is an ∃-positive pre$x of L i2 ∃v∈
! such that u:v∈L.
(2) u is an ∀-positive pre$x of L i2 ∀v∈
!: u:v∈L.
(3) u is an ∃-negative pre$x of L i2 ∃v∈
! such that u:v =∈L.
(4) u is an ∀-negative pre$x of L i2 ∀v∈
!: u:v =∈L.

Given an !-language L, let P∀(L) denote the set of all ∀-positive pre$xes of L,
P∃(L) the set of all ∃-positive pre$xes of L; N∀(L) the set of all ∀-negative pre$xes
of L and N∃(L) the set of all ∃-negative pre$xes of L.

Two $nite sets S+ and S− of $nite strings form together a sample S = 〈S+; S−〉
of (p; n)-examples for an !-language L if and only if S+⊆Pp(L) and S−⊆Nn(L).
We shall manipulate samples as sets, and write 〈S+; S−〉⊆ 〈S ′+; S ′−〉 when S+⊆ S ′+ and
S−⊆ S ′−.

For instance, on automaton 2a, L= (b∗a)!, P∀(L) =N∀(L) = ∅ and P∃(L) =
N∃(L) =
∗.

Relationships between P∃(L);P∀(L);N∀(L);N∃(L) and Pref (L) depend essentially
on the properties of the quanti$ers:

Proposition 7. For all !-languages L,

P∃(L) = Pref(L);

P∃(L) ∩N∀(L) = P∀(L) ∩N∃(L) = ∅;
P∃(L) ∪N∀(L) = P∀(L) ∪N∃(L) = 
∗;

P∀(L) = N∀(
!\L) and P∃(L) = N∃(
!\L):

Proof. Straightforward.

3.2. Identi5cation in the limit from pre5xes

We discuss here the fact that identi$cation in the limit [7] can lead, in the case of
in$nite pre$xes, to two alternative but equivalent de$nitions. The second one is based
on the existence of characteristic samples, and allows better proofs.

De�nition 8. Given a language L and p; n∈{∀;∃}, a complete (p; n)-pre$x presen-
tation of L is an in$nite sequence of pairs 〈ui; label(ui)〉 satisfying the following
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conditions:
(1) if label(ui) = + then ui ∈Pp(L);
(2) if label(ui) =− then ui ∈Nn(L);
(3) for all w∈Pp(L), there exists i∈N such that w= ui and label(ui) = +;
(4) for all w∈Nn(L), there exists i∈N such that w= ui and label(ui) =−.
Given a complete (p; n)-pre$x presentation of some !-language L, and k a positive
integer, denote Sk = {〈ui; label(ui)〉 | i6k}.

It will be necessary to systematically consider a class L of languages and an as-
sociated class R of representations. The latter one will have to be strong enough to
represent the whole class of languages, i.e.

∀L ∈ L;∃R ∈ R such that L(R) = L:

De�nition 9. Let L be a class of languages represented by some class of representations
R . An (L;R)-learning algorithm is a program that takes as input a sample of labeled
strings and outputs a grammar from R .

We can now simply adjust Gold’s de$nition of identi$cation in the limit [7]:

De�nition 10 (Gold identi$cation). A class L of languages is identi$able in the limit
from complete (p; n)-pre$x presentations for a class R of representations if and only
if there exists an (L;R)-learning algorithm A such that given any language L in L and
any complete (p; n)-pre$x presentation of L; ∃k ∈N such that ∀j¿k; L(A(Sj)) =L.

An alternative de$nition is that there exists a $nite set of pre$xes with which iden-
ti$cation is ensured:

De�nition 11 (Identi$cation by characteristic sets). A class L of languages is identi$-
able in the limit by characteristic sets of (p; n)-pre$xes for a class R of representations
if and only if there exists an (L;R)-learning algorithm A such that:
(1) given a sample 〈S+; S−〉 of pre$xes, with S+⊆Pp(L) and S−⊆Nn(L), A returns

H in R consistent with 〈S+; S−〉, i.e. such that S+⊆Pp(L(H)) and S−⊆Nn

(L(H));
(2) for each representation R∈R of a language L in L, there exists a $nite char-

acteristic sample 〈CS+; CS−〉, such that, on 〈S+; S−〉 with CS+⊆ S+⊆Pp(L) and
CS−⊆ S−⊆Nn(L), A returns a hypothesis H equivalent to R.

Theorem 12. Let L be a class of languages, and R a class of representations for L.
The two following propositions are equivalent:
• L is identi5able in the limit from complete (p; n)-pre5x presentations for a class
R of representations;
• L is identi5able in the limit by characteristic sets of (p; n)-pre5xes for a class R
of representations.
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Proof. (i)⇒ (ii): Let L be any language in L, represented by some R in R . Take
any complete (p; n)-pre$x presentation of L, and let k be the position where A from
De$nition 10 converges. Then (step 1), either Sk is a characteristic sample (for Def-
inition 11) and we are done, or there exists a super-sample of Sk , say Sk′ , such that
A(Sk′) is equivalent to R. In that case A, over the new complete presentation Sk′
converges at a later rank. Such a rank exists as L is identi$able in the limit from
complete (p; n)-pre$x presentations. Denote this rank k (again) and return to step 1.
We argue that this process can only happen $nitely many times, thus leading to the
construction of a characteristic sample. Indeed, if the process can take place an in-
$nite number of time, this implies an in$nite (p; n)-pre$x presentation, from which
convergence of algorithm A does not take place. If such a sequence exists it cannot be
complete.

(ii)⇒ (i): If L is identi$able in the limit by characteristic sets of (p; n)-pre$xes,
then algorithm A from De$nition 11 can be used to identify any language in L from a
complete (p; n)-pre$x presentation: as soon as the strings in the characteristic sample
have appeared, identi$cation is ensured.

3.3. Identi5cation in the limit from polynomial pre5xes and time

In this section, we adapt the de$nitions of Gold [8] and de la Higuera [5]. Other
paradigms than identi$cation in the limit are known, but they are often either similar
to these or harder to establish. A comparison between di2erent models can be found
in [14].

The size of a representation R, denoted ‖R‖, is polynomially related to the size of its
encoding. In the case of a deterministic automaton, the number of states is a relevant
measure, since the alphabet has constant size. The size of a sample S of $nite strings
is the sum of the length of all strings in S.

We now adapt the de$nition of identi$cation in the limit from polynomial time
and data [5,8] to the case of learning from pre$xes. This de$nition takes better care
of practical considerations: for instance with this de$nition, deterministic $nite au-
tomata are learnable whereas context-free grammars or non-deterministic automata
are not.

De�nition 13 (Polynomial identi$cation). A class L of !-languages is (p; n)-identi$-
able in the limit from polynomial time and $nite pre$xes for a class R of represen-
tations if and only if there exists an algorithm A and two polynomials &( ) and '( )
such that:
(1) given a $nite sample 〈S+; S−〉 of pre$xes of size m, with S+⊆Pp(L) and S−⊆

Nn(L), A returns a hypothesis H ∈R in O(&(m)) time and H is consistent with
〈S+; S−〉;

(2) for all representations R of size k of a language L in L, there exists a $nite char-
acteristic sample 〈CS+; CS−〉 of size at most O('(k)) such that, on 〈S+; S−〉 with
CS+⊆ S+⊆Pp(L) and CS−⊆ S−⊆Nn(L), A returns a hypothesis H ∈R which is
equivalent to R.
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3.4. The problem of learning !-languages from their pre5xes

We have now de$ned the di2erent parameters of the problem. The main question
is: “can the class L of !-regular languages represented by R be learned following the
criterion c from a sample of (p; n)-examples?”

The classes L we are interested in are those de$ned in Section 2. The representation
classes are BA (B+uchi automata) for Reg!(
), DBA (deterministic B+uchi automata) for
Det!(
) and DBM (DB-machines) for Safe!(
). The criteria c will be identi$cation
in the limit, idlim, and identi$cation in the limit from polynomial time and pre$xes,
polyid. The examples of positive and negative pre$xes will be de$ned according to
the di2erent combinations of the quanti$ers ∃ and ∀.

Hence a learning problem will be completely speci$ed when given:
(1) the class of languages and its representation class;
(2) the convergence criterion;
(3) the interpretation one gives to positive and negative pre$xes.
A problem will thus be a triple 〈LR ; c; i〉 where the criterion c will be idlim (identi$ca-
tion in limit) or polyid (identi$cation in the limit from polynomial time and pre$xes)
and the interpretation i will be a pair (p; n) in {∃;∀}×{∃;∀}.
Example 14. The problem 〈Safe!(
)DBM; idlim; (∃;∀)〉 is the one of identi$cation in
the limit of the class Safe!(
) where the languages are represented by DB-machines
and a presentation made of existential positive pre$xes and universal negative pre$xes
(see De$nition 6) is given.

Such a problem will have a positive status if this class is actually learnable with the
chosen criterion, a negative status if it is not and an unknown status if the problem
is unsolved.

4. Results

We give two types of results. The $rst concerns classes Reg!(
) and Det!(
) for
which identi$cation in the limit from pre$xes is impossible. The second concerns the
class of safe languages, for which identi$cation in the limit from polynomial time and
pre$xes is proved.

4.1. General properties

We $rst notice (by a straightforward reduction) that polynomial identi$cation only
holds when identi$cation in the limit also holds: if 〈LR ; idlim; sign〉 has a negative
status, then so does 〈LR ; polyid; sign〉.

A necessary condition for the identi$cation of a class of languages is that any pair
of languages from the class can be e2ectively separated by some pre$x:

Lemma 15. Let L be a class of !-languages and R a class of representations for L. If
there exist L1 and L2 in L such that L1 =L2, Pp(L1) =Pp(L2) and Nn(L1) =Nn(L2),
then the problem 〈LR ; idlim; (p; n)〉 has a negative status.
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Fig. 3. Automata 3a and 3b accepting respectively languages a∗ba∗b(a + b)! and a! + a∗ba∗b(a + b)!.

Proof. Suppose that an algorithm A identi$es the class L; then L1 and L2 have respec-
tive characteristic samples CS1 and CS2. But L1 and L2 are consistent with CS1 ∪CS2.
Hence either L1 or L2 is not identi$ed.

As an immediate consequence of Lemma 15, we prove:

Theorem 16. For any class of representations R and for all (p; n)∈{∃;∀}×{∃;∀},
problems 〈Reg!(
)R ; idlim; (p; n)〉 and 〈Det!(
)R ; idlim; (p; n)〉 have negative status.

Proof. We use the same counter-example, shown in Fig. 3, to prove that neither the
class of all !-regular languages, nor that of all !-deterministic ones are identi$able
in the limit (and furthermore polynomially identi$able from pre$xes). The languages
accepted by automata 3a and 3b are, respectively, L1 = a∗ba∗b(a+ b)! and L2 = a! +
a∗ba∗b(a+b)!. Whatever the choice of quanti$ers p and n, languages Pp and Nn are
identical in both cases.

Formally:

P∃(L1) = P∃(L2) = 
∗;

P∀(L1) = P∀(L2) = a∗ba∗b(a+ b)∗;

N∃(L1) = N∃(L2) = a∗ + a∗ba∗;

N∀(L1) = N∀(L2) = ∅:

4.2. On the identi5cation of safe languages

The previous result is very negative, but hardly surprising. It implies that learning
requires either to consider a subclass of languages, and=or to change the convergence
criterion. It is surely not reasonable to choose a less demanding criterion than identi$-
cation in the limit; we shall thus concentrate on a subclass of !-deterministic languages
in the sequel: the safe !-languages. We $rst prove that the class of pre$x languages
is polynomially identi$able in the limit from given data. This result is closely related
to that of identifying safe !-languages from given pre$xes as in fact we can match
both problems.

Proposition 17. The class of regular pre5x languages, represented by pre5x dfa, is
polynomially identi5able in the limit from given data.
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Algorithm 1. RPNIprefixes1
Input: a sample of positive and negative strings S = 〈S+; S−〉
Output: a pre$x automaton A= 〈Q;
; �; F; q0〉
A← RPNI(S+; S−)
if A is not a pre$x dfa then
max neg← max{length(u) | u∈ S−}
for all w∈ S+ such that
w∈Pref (S−) and
w =∈Pref (S+\{w})

do
Compute v of length max neg such that
Pref (v)∩ S− = ∅ and w∈Pref (v)

S+← S+ ∪{v}
end for
A← PTA(S+)
Q←Q∪{qf}; F←Q
for all a∈
 do �(qf; a)← qf
for all q∈Q such that q is a leaf do ∀a∈
; �(q; a)← qf

end if
return A

Proof. To prove the above proposition we use algorithm RPNIprefixes1 (see algo-
rithm 1) which identi$es in the limit pre$x dfa from a sample of positive and negative
strings, if there exists a pre$x dfa consistent with this sample; this condition is granted
as we are in an identi$cation setting.
RPNIprefixes1 makes use, as a subroutine, of RPNI [13] which can identify a dfa

from positive and negative data. The main features of RPNI are:
• RPNI takes as input two $nite sets of $nite strings S+ and S−;
• RPNI constructs a dfa consistent with S+ and S− in time polynomial in ‖S+ ∪ S−‖;
• RPNI identi$es dfa in polynomial time from given data;
• the $rst object RPNI builds is the pre$x tree acceptor (PTA): this is the largest dfa

with no useless 1 state recognizing exactly S+.
If 〈S+; S−〉 contains a characteristic sample of the target language L, then RPNI returns
a pre$x automaton A that accepts language L [13]. If 〈S+; S−〉 does not contain any
characteristic sample, RPNI returns an automaton which is consistent with 〈S+; S−〉,
but may be neither pre$x nor even transformable into a pre$x automaton. In that case
RPNIprefixes1 transforms the PTA into a consistent pre$x automaton.

Indeed the function PTA(S+) builds the PTA corresponding to S+ in which extra
strings are added whose positive labeling does not introduce inconsistency; testing
(w∈Pref (S−) and w =∈Pref (S+\{w})) allows to know which states of the PTA have
no successors; these states must then lead to a new universal 2 state qf whenever the
new transition is not used by some negative string: such a transition always exists

1 A state is useless if it does not lead to an accepting state, or is not accessible from the initial state.
2 A state is universal if by any letter there is a transition to the same state.
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since the data is supposed to be consistent. Building a polynomial implementation is
straightforward.

An alternative and more eGcient algorithm is proposed in the next section;
RPNIprefixes2 returns a compatible non-trivial pre$x automaton, even when the char-
acteristic sample is not included in the data. We now turn to the case of the safe
languages:

Theorem 18. 〈Safe!(
)DBM ; polyid; (∃;∀)〉 has a positive status.

Proof. We show that the conditions of De$nition 13 are met:
(1) Let L be a safe language. On any sample 〈S+; S−〉 of (∃;∀)-pre$xes for L, by

Proposition 17 a pre$x dfa accepting S+ and rejecting S− can be returned in
polynomial time. In constant time this automaton is transformed into a DB-machine
M by changing the acceptance criterion. Furthermore S+⊆Pref (L(M)) and S− ∩
Pref (L(M)) = ∅.

(2) Let L be a safe language and M a DB-machine accepting L. Let A be the pre$x
automaton associated with M . Let 〈CS+; CS−〉 be a characteristic sample for A
and RPNI. Let now 〈S+; S−〉 be a sample of examples such that CS+⊆ S+⊆Pp(L)
and CS−⊆ S−⊆Pn(L) and S+⊆L(A) and S− ∩L(A) = ∅. Notice that the size of
〈CS+; CS−〉 is polynomial in that of A which in turn is the same as the size of M .
On input 〈S+; S−〉, RPNI returns an automaton A′ equivalent to A. By construction,
the DB-machine M ′ associated to A′ is such that Pref (L(M ′)) =L(A′) =L(A)
=Pref (L(M)). So by Corollary 5, L(M) =L(M ′) holds.

Theorem 19. If a class L of !-regular languages strictly contains Safe!(
) and R
is a class of machines for L, then 〈LR ; idlim; (∃;∀)〉 has a negative status.

Proof. It is suGcient to $nd two !-regular languages that share the same sets of
positive and negative pre$xes: let L be a class strictly containing Safe!(
) and L a
language in L but not in Safe!(
). As L is !-regular, P∃(L) is a pre$x language.
But in that case there exists a language L′ in Safe!(
) such that P∃(L) =P∃(L′) and
N∀(L) =N∀(L′). So by Lemma 15, it follows that L is not identi$able.

Theorems 18 and 19 allow us to deduce a $nal result concerning learning from (∀;∃)-
pre$xes. An !-language L is co-safe i6 its complementary 
!\L is a safe language.
We denote Co-safe!(
) the family of co-safe !-regular languages. Co-safe languages
are accepted by co-DB-machines, i.e., complete B+uchi automata with a unique marked
state which is a universal state.

Theorem 20. 〈Co-safe!(
)CDBM ; polyid; (∀;∃)〉 has a positive status. Furthermore, for
any class L of !-regular languages strictly containing Co-safe!(
) and R a class of
machines for L; 〈LR ; idlim; (∀;∃)〉 has a negative status.

Proof. Any complete pre$x presentation by (∀;∃) of a co-safe language L is a com-
plete pre$x presentation by (∃;∀) of the safe language 
!\L since N∀(
!\L) =P∀(L)
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and N∃(
!\L) =P∃(L). Moreover, the construction of a co-DB-machine from a DB-
machine can be done in linear time by completing it with a universal state which
becomes the marked state. From Theorem 18, the problem 〈Safe!(
)DBM ; polyid; (∃;∀)〉
has a positive status, and so has 〈Co-safe!(
)CDBM; polyid; (∀;∃)〉.

5. A constructive pre�x DFA inference algorithm

The algorithm proposed in Section 4 identi$es polynomially and in the limit from
given data any pre$x automaton. It is nevertheless practically a useless algorithm: one
is never sure to have a characteristic sample inside his learning data, and returning
the PTA with some added edges is not convincing. We give here a speci$c pre$x
automaton learning algorithm. It is based on RPNI [13], and uses notations from [6]
(see algorithm 2).

Algorithm RPNIprefixes2 adds to S+ all pre$xes of S+ and goes through a typical
state merging routine. The only problem is to make sure that every merge leads to an
automaton that can be completed in some way into a pre$x automaton. To do this,
each positive state has to stay alive: there must be at least one in$nite string leading
from this state that avoids every negative state.

The function Choose transition returns a triple 〈q; a; q′〉 corresponding to the
transition �(q; a) = q′ where �(q; a) is unde$ned and q′ =∈ Tested(q; a). This function
is usually implemented by ordering the states of the Pre$x Tree Acceptor using a
length-lexicographic order, and returning the triple 〈q; a; q′〉 such that q′6q where the
merge of q and q′ has not been tested before. For this to work, renumbering of states,
after merging, is always done by taking the smallest number.

Other functions have been tested, EDSM (Evidence Driven State Merging) type func-
tions have been shown preferable [11] in practice; these would allow di2erent merges,
associate a score to each merge; this score takes into account the amount of states that
will be recursively merged, and an EDSM Choose transition chooses the merge with
highest score.

The function Possible(�(q; a) = q′) returns True if adding to � rule �(q; a) = q′

does not lead to an inconsistency, False otherwise. Inconsistency appears when after
merging the automaton either accepts some negative example, or rejects a positive one.

Inconsistency is tested on the current automaton on which rule �(q; a) = q′ is added.
It can have two causes:
(1) There exists two strings u:a:w and v:w such that �(q0; u) = q and �(q0; v) = q′ and

either u:a:w∈ S+; v:w∈ S− or u:a:w∈ S−; v:w∈ S+.
(2) A state is no more alive; a state q is alive if it can still lead to an accepting

state: ∃w∈
! such that ({u | �(q0; u) = q}:Pref (!))∩ S− = ∅. This ensures that
the current automaton (and thus by induction the last one) can be transformed into
a pre$x dfa.

The main elements of the proof of RPNIprefixes2 are:
• The algorithm returns a pre$x automaton (by construction).
• The Possible test ensures that all states are alive and that at any moment the

automaton can be transformed into a consistent pre$x automaton.
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• In the case where a characteristic sample (for RPNI) is included, no transformation
will take place.

Algorithm 2. RPNIprefixes2
Input: a sample of positive and negative strings S = 〈S+; S−〉
Output: a pre$x automaton A de$ned by �; F+; F−
S+← S+ ∪Pref (S+)
n← 0
for all a∈
 do Tested(q0; a)←∅
F+←{q0}; F−←∅
while there are some unmarked strings in S+ ∪ S− do
〈q; a; q′〉← Choose transition()
if Possible(�(q; a) = q′) then
�(q; a)← q′
for all unmarked strings in S+ ∪ S− do

if �(q0; w) = q then mark(w)
if w∈ S+ then F+←F+ ∪{q}
if w∈ S− then F−←F− ∪{q}

end for
else
Tested(q; a)← Tested(q; a)∪{q′}

end if
if ‖Tested(q; a)‖= n+ 1 {impossible merging} then
n← n+ 1 {creation of a new state}
Q←Q∪{qn}
�(q; a)← qn
for all unmarked strings in S+ ∪ S− do

if �(q0; w) = q then mark(w)
if w∈ S+ then F+←F+ ∪{q}
if w∈ S− then F−←F− ∪{q}

end for
for all a∈
 do Tested(qn; a)←∅

end if
end while
Q←F+ {conversion into a consistent pre$x dfa}
for all q∈F+ such that ∀a∈
; �(q; a) =∈Q do

choose w of minimal length such that
({u∈
∗ | �(q0; u) = q}:Pref (!))∩ S− = ∅

Q←Q∪{qwi | 0¡i¡‖w‖}
F+←F+ ∪{qwi | 0¡i¡‖w‖}
for i= 0 to ‖w‖ do �(qwi−1; wi)← qwi
for all a∈
 do �(qw‖w‖; a)← qw‖w‖

end for

• Finally, the algorithm works in polynomial time.
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We refer the interested reader to [6] for a complete proof, given in the case of
dfainfer, but basically translatable to RPNIprefixes2.

6. Conclusion

This work is a $rst approach to the problem of learning or identifying automata
on in$nite strings from $nite pre$xes. A certain number of open questions and new
research directions can be proposed. Among those we mention:
• We give no results concerning the case where all pre$xes are existential, i.e., for

the problem 〈XY ; criterion; (∃;∃)〉. It is rather easy to show that for all the classes
of languages studied in this paper, the status will be negative. It nevertheless seems
relevant to $nd a class of languages (undoubtedly rather restricted) for which the
status would be positive.
• Following the tracks of [15] or [12], !-languages learning from queries still leads

to interesting questions (see also [17] for recent work). Pre$x queries (membership
queries on the pre$xes), equivalence queries, or in$nite pattern queries (does this
string appear an in$nite number of times in one=all string(s)?) are candidate queries.
• On real data (produced by a system), typical behaviors may be that the type of

automata corresponding to real world tasks has the characteristic to have a large
alphabet, but few outgoing transitions per state. In this context simpli$cation by
typing of the alphabet [9] is undoubtedly a track to be retained, in order to speed-up
the inference process.
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