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Abstract

Graphs are used as models in a variety of situations. In some cases, e.g. to model
images or maps, the graphs will be drawn in the plane, and this feature can be
used to obtain new algorithmic results. In this work, we introduce a special class
of graphs, called open plane graphs, which can be used to represent images or
maps for robots: they are planar graphs embedded in the plane, in which certain
faces can be removed, are absent or unreachable. We give a normal form for
such graphs and prove that one can check in polynomial time if two normalised
graphs are isomorphic, or if two open plane graphs are equivalent (their normal
forms are isomorphic). Then we consider a new kind of subgraphs, built from
subsets of faces and called patterns. We show that searching for a pattern in
an open plane graph is tractable if and only if the faces are contiguous, that is,
we prove that the problem is NP-complete otherwise.

Keywords: Open plane graphs, equivalence and isomorphism, subgraphs and
patterns, polynomial and NP-complete problems.

1. Introduction

Graphs are widely used to represent data and knowledge in a variety of
application domains, including electrical, logistical and civil engineering, com-
puter and social networks, linguistics, etc. The key point is that graphs are
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rich enough to describe the data in a relevant way (e.g. by including notions
such as adjacency or topology), while allowing —under some assumptions— an
efficient exploitation. Thereby, graphs databases dedicated to the development
of algorithms have been created, either in an artificial way [1], or from real data
such as handwritten characters, fingerprints or web pages [2].

The attention has also turned to modelling images by the mean of graphs
for pattern recognition tasks [3, 4]. In consequence, many graph similarity
measures have been investigated [5]. These measures often rely on (sub)graph
isomorphism —which checks for equivalence or inclusion— or graph edit dis-
tances and alignments —which evaluate the cost of transforming a graph into
another graph. If there exist rather efficient heuristics for solving the graph iso-
morphism problem1 [6, 7, 8], this is not the case for the other measures which
are often computationally intractable (NP-hard), and therefore practically un-
solvable for large scale graphs. In particular, the best performing approaches
for subgraph isomorphism are limited to graphs with up to a few thousands of
nodes [9, 7].

However, when measuring graph similarity, it is overwhelmingly forgotten
that graphs actually model images and, therefore, have special features that
could be exploited to obtain both more relevant measures and more efficient
algorithms. Indeed, these graphs are planar, i.e., they may be drawn in the
plane, but even more specifically just one of the possible planar embeddings is
relevant as it actually models the topology, that is, the order in which faces are
encountered when turning around a node.

In the case where just one planar embedding is considered, graphs are called
plane graphs [10]. It is known since the mid-70’s that the isomorphism problem
is solvable in polynomial time for plane graphs [11, 12]. However, it has also
been noted that the subisomorphism problem is still NP-complete, in particular
because the Hamiltonian cycle problem is NP-complete for planar graphs. This
result has been refined using parameterized complexity: it can be shown that
the subisomorphism problem is linear with respect to the mother graph [13,
14], the problem thus being tractable in practice for small subgraphs. Also
many subclasses of planar graphs have been considered with respect to the
subisomorphism problem, e.g., the trees, or the outerplanar graphs [15]. As far
as we know, the isomorphism problem is generally solvable in polynomial time
for all such graphs, but the subisomorphism is NP-complete.

In [16], we have adopted another strategy. In the framework of plane graphs,
we have considered a restricted class of subgraphs built from sets of contigu-
ous faces, and called compact plane submaps : such submaps were considered
more meaningful than general submaps. In this case, we have shown that the
isomorphism and subisomorphism problems were solvable in polynomial time.
Besides, we have shown in [17] that these results could be extended to higher-
dimension maps, yielding the possibility to work with shapes in 3D-spaces for

1The theoretical complexity of graph isomorphism is an open question: If it clearly belongs
to NP, it has not been proved to be NP-complete.
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instance. Note that similar approaches have been followed by Jiang and Bunke
in [18, 19]. These authors introduce so-called ordered graphs to deal with graphs
extracted from images: the edges are ordered at each vertex, and this construc-
tion allows to consider objects similar to plane maps. They have shown that
the subgraph isomorphism was also efficiently solvable for constrained types of
subgraphs (called marked subgraphs); nevertheless, these subgraphs have no
relationships with ours (since they are not based on the faces).

In this article, we extend the results presented in [16] in order to be able to
represent situations where part of what is being modelled is unknown, blurred
or unimportant. We introduce open plane graphs, which correspond to plane
graphs whose faces can be either visible or invisible. This, for instance, may
enable us to model and search for a mug with a handle, independently of the
background (see Figure 1). More precisely, the background of the mug, that is
visible through the handle, must not be integrated to the modelling graph, since
otherwise, the mug is dependent of the background and cannot be searched in
another scene. Using open plane graphs, we simply need to declare invisible
all the faces that correspond to the background, and the mug can be retrieved
efficiently in other images.

Figure 1: Modelling an image by an open plane graph (on the right). Interest points have
been extracted, and the graph is the result of the Delaunay triangulation. The visible faces
are in grey, whereas the invisible ones are in white.

Another situation for which open plane graphs are adapted is the model of an
environment in which a robot would evolve. E.g., think to famous “intelligent”
vacuum-cleaner of Russell and Norvig’s book [20]. The robot needs to have
in mind a representation of its world, which contains informations such as the
rooms shapes and their topology, as well as the opportunity to go directly from
one room to an adjacent one or not, using doors, and avoiding forbidden rooms.
If intelligent enough, the robot may have to learn this model by itself. In this
case, the faces of the plane graph represent the rooms, the vertices being the
corners. Two rooms are connected by a door if they share a common edge in
the graph, and the forbidden rooms are tagged invisible (see Figure 2).

Hence, in this paper, we introduce open plane graphs and study the iso-
mophism and subisomorphism problems for this class of graphs. In particular,
we prove that depending on the assumptions, some subgraphs called patterns

can be efficiently searched, whereas others, called piecewise patterns, cannot.
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Figure 2: Modelling the environment for a robot. The rooms are on the left (a special symbol
indicates which rooms are forbidden), and the corresponding open plane graph is on the right.
The visible faces are in grey, whereas the invisible ones are in white.

As the latters are obtained by slightly relaxing the definition of the formers,
our result are optimal, that is, inextendable to significantly larger classes of
subgraphs built from the faces.

Outline of the Paper. The formal definition of open plane graphs is given in
Section 2. After a short presentation of plane graphs, mainly based on the
Eric Fusy’s thesis [10], we propose a formal system to describe any plane graph
through its faces, some of them being visible, and the other invisible. Note
that we could have used another formal system, called partial maps [17, 21].
Nevertheless, the corner stone of maps is the so-called darts, which correspond
to directed edges, whereas the corner stone of open plane graphs is the faces
directly. So, since our results mainly concern patterns, which are subgraphs
induced sets of faces, the latter was more appropriate than the former in this
paper, for clarity reasons.

In Section 3, we discuss possible definitions of open plane graph isomorphism:
one of them, called equivalence, corresponds to isomorphism over the visible
faces only. We show that every open plane graph can be reduced to a unique
normal form, in a way such that two open plane graphs are equivalent if and
only if their normal forms are isomorphic. This reduction is crucial to define
our main class of subgraphs, the patterns.

The definition of such patterns is given in Section 4, where we also state
the problem of searching for patterns in open plane graph. We show that this
problem is solvable in polynomial time. As a side effect, we also establish the
tractability of equivalence and isomorphism of open plane graphs.

In Section 5, we aim at relaxing the conditions on the patterns that can
efficiently be retrieved in an open plane graph. We consider the case of piecewise
patterns, that is patterns whose faces are not contiguous. We show that in this
case, searching for patterns is NP-complete.

We conclude and give further research directions in Section 6.
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2. Open Plane Graphs

In this section, we recall standard notions about plane graphs, that is, planar
graphs embedded in the plane. In order to have operational definitions, i.e.

that can be algorithmically manipulated and allow to study data structures and
computational issues, we introduce a new formalism, called plane graph systems,
which enables us to fully describe any connected plane graph through its faces.
An open plane graph will then be defined as a plane graph system in which only
some faces are visible.

2.1. Plane Graphs

A detailed introduction to plane graphs can be found in Eric Fusy’s Thesis
[10]. We mainly use his notations below. Note that planar graph drawing is a
research topic per se (see e.g. [22]).

Let G = 〈X,E〉 be a simple graph, with X the set of vertices and E ⊆ {e =
{x, y} : x, y ∈ X} the set of undirected edges. An embedding (or drawing) η of
graph G in the plane is defined by

1. an injective mapping ηX from the vertices of G to points in the plane, and

2. a mapping ηE from the edges of G to smooth curves in the plane such
that the extremities of any edge e are mapped by ηX to the extremities of
curve ηE(e).

An embedding is planar if for all distinct edges e, e′ ∈ E, curves ηE(e) and
ηE(e′) do not meet except at common extremities. A graph that admits a
planar embedding is called a planar graph.

In fact, a planar graph admits infinitely many planar embeddings: one only
has to slightly move a vertex to get a new planar embedding. However, a graph
has only finitely many planar embeddings if the embeddings are considered up
to isotopy, that is, two planar embeddings η1 and η2 are isotopic if η2 can be
obtained from η1 by moving the vertices in such a way that no edge is crossed.
This property is illustrated in Figures 3 and 4.

Figure 3: Two isotopic planar embeddings of a planar graph.
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Figure 4: A planar graph with 3 non-isotopic planar embeddings.

Thus, in the following, a plane graph will stand for an isotopy class of planar
embeddings for a given planar graph. In other words, a plane graph is a planar
graph that is embedded in the plane without edge-crossing and up to continuous
deformations. A theorem by Fáry states that given any planar embedding of a
planar graph, it is always possible to move the vertices, within the same isotopy
class, so that the edges are drawn with straight-line segments [23]. We shall use
such straight-line drawings in the following.

Any plane graph has faces, each face corresponding to a piece of the plane
split by the embedding. We denote by F the set of faces. One face, denoted
by o ∈ F , is unbounded and called the outer or external face. The number of
faces of a plane graph is an invariant of the underlying planar graph. Indeed,
whichever the embedding chosen for planar graph G, one has:

|X | − |E|+ |F | = 1 + c

by Euler’s formula, where c denotes the number of connected components.
What is not invariant, however, is the co-degree of each face in two non-

isotopic planar embeddings (see Figure 5). By the co-degree of some face, we
mean the number of edges one meets when walking along the border of the face,
keeping the border on the right-hand side. Pendant edges are met twice, thus
count twice.

Figure 5: Two non-isotopic embeddings of the same planar graph with 4 faces. On the left,
faces have co-degrees 5, 5, 5 and 3 respectively. On the right, faces have co-degrees 9, 3, 3
and 3 respectively.
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2.2. Connectivity Issues

In the following, we shall only consider connected plane graphs.

Definition 1 (Connected graph). Any graph G = 〈X,E〉 is connected if for
all vertices x, x′ ∈ X , there is a sequence x = x0, x1, . . . xn = x′ such that for
all i ∈ {0, 1, . . . n− 1}, {xi, xi+1} ∈ E.

A stronger notion of connectivity will also be needed, based on the faces.
Indeed, consider again the example of the robot that visits the rooms of a flat,
some of them being closed or forbidden. If we wish the robot to map legal rooms,
moving from faces to faces and traversing the edges (seen as doors), then the
legal faces must also be “connected” through the edges of the graph:

Definition 2 (Set of contiguous faces). Consider a plane graph G =
〈X,E〉 having F as set of faces.

• Two faces f, f ′ ∈ F are adjacent is they share a common edge e ∈ E.

• We say that the faces of a subset K ⊆ F are contiguous if for all faces
f, f ′ ∈ K, there is a sequence f = f0, f1, . . . fn = f ′ of faces in K such
that for all i ∈ {0, 1, . . . n− 1}, fi and fi+1 are adjacent.

For instance, consider the plane graph of Figure 6; K = {f1, f4, f5} is a set
of contiguous faces, whereas K ′ = {f1, f2, f6} is not (since face f6 is adjacent
neither to f1 nor to f2.

f1 f2 f3

f4 f5 f6

Figure 6: K = {f1, f4, f5} is a set of contiguous faces, whereas K ′ = {f1, f2, f6} is not.

2.3. Plane Graph Systems

We have defined the plane graphs using the notion of embeddings, i.e., func-
tions that map vertices to points, and edges to curves. However, this mathemat-
ical approach is quite unsuitable for designing algorithms. The set of faces being
the corner stone for describing plane graphs, we introduce plane graph systems,
allowing us to syntactically define a whole isotopy class of planar embeddings.

We first need some notations. Let X be a finite nonempty set of symbols.
A string over X is a concatenation of symbols. The set of all strings is denoted
by X∗ and the empty string is denoted by ǫ. A circular string is intuitively a
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string in which the last symbol is followed by the first; that is, there is no first
symbol but just a function associating to each symbol the next one. We denote
a circular string by [u], with the convention that if u and v are two strings, then
[uv] = [vu]. The set of all circular strings over X is denoted by X⊤. For sake of
clarity, we shall use a, b, . . . as names for symbols in X , and u, v, w, . . . as names
for strings in X∗, and Greek letters α, β, . . . as names for circular strings in X⊤.

Now consider the plane graph of Figure 7. The outer face is f1 and bounded
(internal) faces are f2 and f3. Each face has only one boundary since the graph
is connected. Such a boundary can be described by a circular string of vertices
in which two consecutive vertices, and the last and the first are linked by an
edge. Conventionally, we follow a boundary by leaving it to the right. In other
words, the bounded face is on the left of the walk. Therefore, the boundary of
face f3 is [ecfcd ], or equivalently [fcdec], by circular permutation.

a

b

c

d

eff1 f2 f3

Figure 7: A plane graph with 3 faces.

Definition 3 (Plane Graph System). A plane graph system is a tuple S =
〈X,E, F, o,D〉 such that:

• 〈X,E〉 is a planar graph,

• F is a finite nonempty set of symbols called faces,

• o ∈ F is a distinguished symbol called the outer face and

• D : F → X⊤ is a function, called the boundary descriptor, that maps any
face to its boundary.

For the sake of simplicity, we shall denote by f the value of D(f). With such
a convention, we shall keep implicit the boundary descriptor D, thus denote by
〈X,E, F, o〉 the plane graph system S.

For instance, consider the plane graph of Figure 7 again. The corre-
sponding plane graph system is S = 〈X,E, F, o〉 with X = {a, b, c, d, e, f},
E = {{a, b}, {a, c}, {b, d}, {c, d}, {c, e}, {c, f}, {d, e}}, F = {f1, f2, f3}, o = f1
and f1 = [acedb], f2 = [abdc], f3 = [cdecf ].

Note that there exist few redundancies in the definition of a plane graph
system: both the vertices and the edges could be recovered from the boundaries
of the faces. Nevertheless, our choices will ease several proofs and algorithms.
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2.4. Open Plane Graphs

If we consider plane graphs extracted from images or modelling maps, specific
parts of the image may be hidden or part of the background, and specific rooms
may be closed or forbidden. In order to take into account these notions we
introduce plane graphs in which some faces may be visible and others not.

Definition 4 (Open Plane Graph). An open plane graph is a tuple G =
〈X,E, F, V, o〉 such that:

1. 〈X,E, F, o〉 is a plane graph system (see Definition 3), and

2. V ⊆ F is a set of contiguous faces, called the visible faces.

Every face in (F \ V ) will be said invisible. These are also called the holes.

An open plane graph may have several “holes”, and the outer face can be
visible or not. See Figure 8 for an example. Note that the invisible faces will
generally not be contiguous.

Figure 8: An open plane graph with 12 faces, 6 of them being visible (in grey). The outer
face is invisible.

2.5. Further Notations

Let G = 〈X,E, F, V, o〉 be an open plane graph. Given a vertex x ∈ X , we
define the neighbourhood Γ(x) as the circular string of vertices adjacent to x
as read in a counter clockwise order. Length |Γ(x)| is known as the degree of
x and denoted by deg(x). For instance, in Figure 7, we have Γ(d) = [cbe] and
deg(d) = 3.

Now with respect to the edges, we denote by faces(e) the set of faces incident
to edge e. Set faces(e) can contain either 1 or 2 faces. In order to distinguish
them, we shall use xy

−→
to denote the face f that stands on the left of edge {x, y}

when “walking” from vertex x to vertex y. From a mathematical standpoint, f
is the face such that f = [xyu] for some string u ∈ X∗. In consequence, we have
that faces({x, y}) = {xy

−→
, yx
−→
}. For instance, in Figure 7, we have dc−→ = f2 and

cd−→ = f3, thus faces({c, d}) = {f2, f3}. We also have faces({c, f}) = {f3}.
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3. Open Plane Graphs Isomorphisms and Equivalence

In pattern recognition tasks where graphs are extracted from images, the
goal is often to compare the extracted graphs in order to develop similarity
measures between the images [5]. In this paper, we aim at comparing the
planar embeddings of the graphs, noticing that two isotopic planar embeddings
are more likely to represent similar images than non-isotopic embeddings.

It is important to make a distinction between isomorphisms, which con-
cern graphs as mathematical objects, and isotopies, which concern embeddings
(drawings) of these graphs. For instance, the notion of isotopy makes sense
as soon as the supporting surface for the drawings of the graphs is fixed; this
surface is not necessarily a plane, but could be a sphere or a torus. Conversely,
comparing embeddings situated on different surfaces is meaningless. Now con-
cerning the notion of isomorphism, it does not take the embeddings into account.
Thus, two graphs may be isomorphic while their embeddings are non-isotopic
or simply not drawn on the same sort of surface, thus incomparable in terms of
embeddings.

3.1. Which Notion of Isomorphism?

Two graphs G1 = 〈X1, E1〉 and G2 = 〈X2, E2〉 are usually said to be iso-

morphic if there exists a one-to-one mapping φ : X1 → X2 that preserves the
edges: {x, y} ∈ E1 ⇔ {φ(x), φ(y)} ∈ E2. However, this traditional notion of iso-
morphism does not fit our picture, as the only thing that is checked is whether
the edges are preserved. Indeed, consider both graphs of Figure 9 for instance.
They are isomorphic (as shown by the labels of the vertices), but the faces are
different (since one of them is bounded by 4 edges in the right-hand graph, while
no such face exists in the left-hand graph).

1

2 3

4 5

6

1

3

5

2

4

6

Figure 9: Two standard-isomorphic graphs.

In the case of plane graphs, preserving the faces is much more important,
and this is the reason why we add the new constraints hereafter:

Definition 5 (Sphere-Isomorphism). Let G1 = 〈X1, E1, F1, V1, o1〉 and
G2 = 〈X2, E2, F2, V2, o2〉 be two open plane graphs. We say that G1 and G2 are
sphere-isomorphic, denoted G1 ≡s G2, if
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1. there exists a one-to-one mapping χ : X1 → X2 over the vertices;

2. there exists a one-to-one mapping ξ : F1 → F2 over the faces whose
boundaries are preserved: ∀f1 ∈ F1, ∀f2 ∈ F2,

if ξ(f1) = f2 and f1 = [x1x2 . . . xp], then f2 = [χ(x1)χ(x2) . . . χ(xp)];

3. the visible faces are mapped together:

ξ(V1) = V2 (and thus ξ(F1 \ V1) = F2 \ V2).

Figure 10 shows three open plane graphs that are pairwise sphere-isomorphic
(as shown by the labels of the vertices; the visible faces are in grey). As we did
not specify any constraints concerning the preservation of the outer faces, the
outer face of a plane graph can be mapped to an internal face of another graph.
In other words, all the faces play the same role, as if we had drawn them on
a sphere rather than on the plane. This is what was done in Figure 11; one
just has to roll the sphere and then project the drawing on the plane to get one
of the plane graphs of Figure 10. This phenomenon justifies why these plane
graphs are said sphere-isomorphic.

1

2 3

4 5

6

1

3 2

5 4

6

3

5 4

2

1

6

Figure 10: Three sphere-isomorphic open plane graphs.

Although sphere-isomorphism is not exactly the notion which we would like
to test over the open plane graphs, we will need this notion to establish theo-
retical results. Moreover, it is interesting to note that the isomorphism notion
proposed by Cori in [11, 12] and Lienhardt in [24] for combinatorial maps actu-
ally corresponds to sphere-isomorphism for open plane graphs.

Finally, the most relevant notion of isomorphism that we aim at testing is
the one that preserves all the faces and also the outer face:

Definition 6 (Plane-Isomorphism). Let G1 = 〈X1, E1, F1, V1, o1〉 and G2 =
〈X2, E2, F2, V2, o2〉 be two open plane graphs. We say that G1 and G2 are plane-

isomorphic, denoted G1 ≡p G2, if

1. G1 and G2 are sphere-isomorphic with respect to mappings χ : X1 → X2

and ξ : F1 → F2;

2. the outer faces are mapped together: ξ(o1) = o2.
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Figure 11: A “sphere-graph” with three faces. Declaring any face as an outer face yields one
plane graph among those of Figure 10.

An example is given in Figure 12. Clearly, plane-isomorphism preserves
the vertices, the edges, the faces, the visible faces and the outer faces of open
plane graphs. The job seems done . . . however, plane-isomorphism is still not
satisfying, as we are going to explain in next paragraph.

1

2 3

4 5

6

1

3
2

5 4

6

Figure 12: Two plane-isomorphic open plane graphs.

3.2. An Equivalence rather than an Isomorphism?

In a pattern recognition task, the visible faces of an open plane graph will
correspond to a pattern that was searched and found. In consequence, the visible
faces and their relative positions must be taken into account, but the invisible
faces must not play any role. In other words, we actually need to compare the
open plane graphs over their visible faces only.

To clarify this point, consider the case of a robot that would explore an open
plane graph, going from visible faces to visible faces. Two adjacent visible faces
would be materialised by a line on the floor, whereas if either of the faces is
invisible, a wall would separate them. Posts (or poles) would be placed to join
the walls where the vertices are. Then the robot would be able to map out the
visible faces, while it would have no idea about the invisible area. Thus a robot
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that would visit the visible faces of two open plane graphs could decide that
these graphs are equivalent up to visible faces.

We formalise open plane graph equivalence as follows:

Definition 7 (Open Plane Graph Equivalence). Two open plane graphs
G1 = 〈X1, E1, F1, V1, o1〉 and G2 = 〈X2, E2, F2, V2, o2〉 are equivalent, denoted
G1
∼= G2, if there exists a pair 〈φ, (ψf )f∈V1

〉 such that:

1. φ : V1 → V2 is a one-to-one mapping over the visible faces;

2. (ψf )f∈V1
is an indexed family of mappings such that if φ(f1) = f2 for

some f1 ∈ V1, f2 ∈ V2, then:

(a) ψf1 : vertices(f1) → vertices(f2) is a one-to-one mapping from the
vertices of f1 to the vertices of f2, and

(b) if f1 = [x1x2 . . . xp] then f2 = [ψf1(x1)ψf1(x2) . . . ψf1(xp)].

3. If two visible faces of G1 share a common edge their images also share a
corresponding common edge in G2. That is, if {x, y} ∈ E1 is an edge and
faces({x, y}) = {f1, f2}, with f1 ∈ V1, then

• either f2 ∈ V1 and ψf1(x) = ψf2(x) and ψf1(y) = ψf2(y), thus
faces({ψf1(x), ψf1 (y)}) = faces({ψf2(x), ψf2 (y)}) = {φ(f1), φ(f2)},

• or f2 6∈ V1 and faces({ψf1(x), ψf1 (y)}) = {φ(f1), g} with g /∈ V2.

4. The outer faces are preserved:

• if o1 ∈ V1, then o2 ∈ V2 and φ(o1) = o2;

• if o1 6∈ V1, then o2 6∈ V2.

By Definition 7, two open plane graphs G and G′ are equivalent if a robot
that would visit the visible faces of both graphs would not be able to distinguish
one from the other. Each ψf gives the vision the robot would have when looking
from face f . See Figures 13 and 15 for two equivalent open plane graphs and
Figure 14 for two non equivalent open plane graphs.

Figure 13: Two equivalent open plane graphs.

We finally have the following property:

Theorem 1. Relation ∼= is an equivalence relation over the open plane graphs.

13



Figure 14: Two non equivalent open plane graphs.

Figure 15: Two equivalent open plane graphs.

Proof. Reflexivity and transitivity are straightforward. Concerning symme-
try, assume that graph G = 〈X,E, F, V, o〉 is mapped to graph G′ =
〈X ′, E′, F ′, V ′, o′〉 using pair 〈φ, (ψf )f∈V 〉. We define a pair 〈φ′, (ψg)g∈V ′〉 in
order to prove that G′ ∼= G. As φ : V → V ′ is a one-to-one mapping over
the visible faces, we fix φ′ = φ−1. We now consider any face g ∈ V ′ and de-
fine ψg. Face g has a unique predecessor f by φ, and since ψf is a one-to-one
mapping from the vertices of f to the vertices of g, we fix ψ′

g = ψ−1
f . Clearly,

ψ′
g is a one-to-one mapping from the vertices of g to the vertices of f that pre-

serves the boundaries of g. Now consider an edge e′ = {x, y} ∈ E′ and let
{g, g′} = faces(e′) with g ∈ V ′. Then {ψ′

g(x), ψ
′
g(y)} denotes some edge e ∈ E

(since g is a visible face whose boundary is preserved by ψ′
g). Moreover, we have

faces(e) = {φ′(g), f ′}, and g′ ∈ V ′ if and only if f ′ ∈ V . Finally, if f ′ ∈ V then
ψf (ψ

′
g(x)) = ψf ′(ψ′

g(x)), that is, x = ψf ′(ψ′
g(x)), thus ψ′

g′(x) = ψ′
g(x). And for

the same reason, ψ′
g′(y) = ψ′

g(y).

3.3. On Bridges, Branches, Hinges. . .

In the paragraphs above, we have introduced several definitions of isomor-
phisms and a further notion of equivalence, which is a form of isomorphism over
the visible faces only. In fact, we are going to show that these notions coincide
for plane graphs whose invisible area are “empty”, that is, do not contain any
edge nor vertex. The elimination of such objects will be achieved thanks to a
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procedure that we call an open plane graph normalisation. In this section, we
identify all the situations the normalisation procedure will be faced with.

On the one hand, the invisible area of an open plane graph may contain edges
that should disappear. This elimination nevertheless depends on the nature of
these edges. An example is given in Figure 16. Some of the edges may be
pendant :

Definition 8 (Pendant Edge). An edge e ∈ E is pendant in an open plane
graph G = 〈X,E, F, V, o〉 if some of its endpoint has degree one.

The second type of edges to be considered are those that separates two
invisible faces. We call them bridges and define them as follows:

Definition 9 (Bridge). A bridge in an open plane graph G = 〈X,E, F, V, o〉
is an edge e such that (1) |faces(e)| = 2 and (2) faces(e) ∩ V = ∅.

The third and last type of edges are those that are adjacent to only one
invisible face but are not pendant. We call them the branches :

Definition 10 (Branch). A branch in an open plane graphG = 〈X,E, F, V, o〉
is an edge e = {x, y} such that (1) |faces(e)| = 1 and (2) faces(e) ∩ V = ∅ and
(3) deg(x) > 1 and (4) deg(y) > 1.

a b

c d

ef

g

hi

jk

l m

n of1 f2

Figure 16: An open plane graph with 2 pendant edges {e, f} and {n, o}, 2 bridges {b, n} and
{n, i} and 1 branch {d, e}.

On the other hand, the invisible area may also contain vertices that require
specific treatment. Indeed, let us consider the case of vertex x in Figure 17 and
suppose that a robot is exploring the graph, going from visible faces to visible
faces. The robot will meet vertex x at least 3 times when visiting the visible
faces. However, it will be impossible for him to detect that all these occurrences
correspond to the same vertex, since in order to decide this, he would need to
turn around x and thus traverse forbidden invisible faces. Such a vertex is called
a hinge.

Definition 11 (Hinge). A vertex x in an open plane graphG = 〈X,E, F, V, o〉
is a hinge if Γ(x) = [y1y2...yn], and there exist 1 ≤ i < j < k < l ≤ n such that
xyi
−→
∈ V , xyj

−→
6∈ V , xyk

−→
∈ V , xyl

−→
6∈ V .
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x

y9

y8

y6

y11

y10

y1
y2 y3

y4

y5

y7

Figure 17: Vertex x is a hinge.

Remember that Γ(x) denotes the neighbourhood of vertex x, that is, the
circular string of vertices adjacent to x as read in a counter clockwise order.
Moreover, xy

−→
denotes the face f such that f = [xyu] for some string u ∈ X∗.

Thus, in Figure 17, we have Γ(x) = [y1y2 . . . y11], xy1
−→
∈ V , xy2

−→
6∈ V , xy4

−→
∈ V

and xy7
−→
6∈ V , that is, vertex x is a hinge.

Hence, the normalisation procedure that we describe in next paragraph will
have to eliminate pendant edges, bridges, branches and hinges. We shall prove
(in Theorem 3) that two open plane graphs are equivalent if their normal forms
are isomorphic.

3.4. Normalising an Open Plane Graph

First of all, we define:

Definition 12 (Irreducible graph). An open plane graph G is irreducible if
G has neither hinge, nor bridge, nor branch, nor pendant edge in any invisible
face.

The aim of this section is to develop the algorithm which, given any open
plane graph G, returns a unique equivalent irreducible open plane graph de-
noted Ĝ. The normalisation procedure is described in Algorithm 18 and consists
in successively eliminating the hinges, then the bridges, then the pendant edges.
The branches do not need any specific treatment. Let us explicit all subroutines
before proving the properties of the entire normalisation process.

3.4.1. Eliminating the Hinges

Procedure eliminateHinge is given in Algorithm 19. The key idea of this al-
gorithm is to replace the hinge by a new invisible face. This operation introduces
many new bridges but no new hinge. New vertices are also created. An example
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Input: An open plane graph G = 〈X,E, F, V, o〉

Output: Irreducible open plane graph Ĝ
while there is some hinge in G do1

let x be such an hinge;2

eliminateHinge(G, x)3

while there is some bridge in G do4

let e = {x, y} be such a bridge;5

eliminateBridge(G, e)6

while there is some pendant edge in an invisible face of G do7

let e = {x, y} be such a pendant edge;8

eliminatePendantEdge(G, e)9

return modified open plane graph G10

Figure 18: normaliseGraph(G)

is given in Figure 20: this is the open plane graph obtained by the elimination of
hinge x in Figure 17. Various situations are depicted in this example, including
adjacent visible faces, adjacent invisible faces, bridges and pendant edges. Note
that Γ(x) = [y1y2 . . . y11] and xy1

−→
∈ V and xy11

−−→
∈ (F \ V ). The substring of

Γ(x) that is extracted by Algorithm 19 at lines 2-5 is [y1y2y4y7y8y9]. The hinge
is replaced by a new invisible face h = [y1x1y2x2y4x4y7x7y8x8y9x9].

Lemma 1. Let G = 〈X,E, F, V, o〉 be an open plane graph having a hinge x.
Then graph G′ obtained by eliminating x using Algorithm 19 is equivalent to G.

Proof. Each visible face f = xyj
−→

for some j ∈ {1, 2 . . . n} is transformed into

some face f ′ where f ′ is deduced from f by replacing every occurrence of x by
vertex xp for some p. So for such faces, we fix φ(f) = f ′ and ψf (x) = xp and
ψf (y) = y for all y 6= x. Concerning all other visible faces, we fix φ(f) = f
and ψf (y) = y for all vertex y in f . Clearly, Condition 1 of Definition 7 holds
because Algorithm 19 does not modify the visibility or invisibility of existing
faces. Condition 2 holds because all the xp are fresh vertices, thus all ψf are
one-to-one mappings that preserve the boundaries.

Finally, consider an edge e and let {f, g} = faces(e). Condition 3 basically
holds, except if f = xyj

−→
and g = xyj+1

−−−→
and e = {x, yj+1} for some j. Let us

assume w.l.o.g. that f is visible, and suppose that vertex x in f is replaced by
some xp to get f ′. In this situation, edge {x, yj+1} is transformed into edge
{xp, yj+1}. There are two cases. If g is also visible, then p is the largest index in
{i1, i2, . . . ik} such that p ≤ j+1, so x will also be replaced by xp in g. Thus we
have ψf (x) = xp = ψg(x) and ψf (yj+1) = yj+1 = ψg(yj+1). On the other hand,
if g is not visible, then {xp, yj+1} is an edge of the new invisible face h that is
added to the graph. So faces({xp, yj+1}) = {φ(f), h} and h is invisible.
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Input: An open plane graph G = 〈X,E, F, V, o〉, a hinge x
Output: Graph G modified
let [y1y2 . . . yn] = Γ(x) such that xy1

−→
∈ V and xyn

−−→
∈ (F \ V );

1

select largest substring [yi1yi2 . . . yik ] of Γ(x) such that2

1 = i1 < i2 < i3 < . . . ik ≤ n and, ∀s ∈ {1, 2, . . . , k − 1}3

either (xyis−−→
∈ V and xyis+1

−−−−→
∈ (F \ V ))

4

or (xyis−−→
∈ (F \ V ) and xyis+1

−−−−→
∈ V );

5

// each edge {x, yis} separates a visible and an invisible face

X ← X \ {x} ∪ {xi1 , xi2 , . . . xik};6

foreach face f = xyj
−→

with j ∈ 1, 2 . . . n do
7

let p be the largest index in {i1, i2, . . . ik} such that p ≤ j;8

replace all occurrences of x by xp in f9

h← [yi1xi1yi2xi2 . . . yikxik ];10

F ← F ∪ {h}; // h is an invisible face11

update E;12

return modified open plane graph G13

Figure 19: eliminateHinge(G, x)

y9

y8

y6

y11

y10

y1
y2 y3

y4

y5

y7
x8

x9

x1 x2

x4

x7

Figure 20: Elimination of the hinge of Figure 17.
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3.4.2. Eliminating the Bridges

In Algorithm 21 each individual bridge is removed. In doing so, two invisible
faces will be merged into one, with a new boundary. This operation may create
branches and pendant edges but no new bridge, nor new hinge. An example is
given in Figure 22: the upper bridge in Figure 16 is eliminated, while the lower
bridge is transformed into a branch.

Input: An open plane graph G = 〈X,E, F, V, o〉, a bridge {x, y}
Output: Graph G modified
assume that faces({x, y}) = {f, f ′} and1

f = [xyu] and2

f ′ = [yxv] for some u, v ∈ X∗;3

f ← [xvyu];4

F ← F \ {f ′};5

if outer face o was face f ′ then o← f ;6

E ← E \ {{x, y}};7

return modified open plane graph G8

Figure 21: eliminateBridge(G, {x, y})

a b

c d

ef

g

hi

jk

l m

n of1

Figure 22: The open plane graph of Figure 16 where bridge {b, n} was eliminated.

Lemma 2. Let G = 〈X,E, F, V, o〉 be an open plane graph having some bridge

e = {x, y}. Then graph G′ obtained by eliminating e using Algorithm 21 is

equivalent to G.

Proof. Algorithm 21 does not modify the boundaries of visible faces. Indeed,
no vertex is eliminated. Moreover the bridge is the only edge that disappears,
and the bridge is adjacent to invisible faces only (by definition). Therefore, we
choose φ and all ψf to be Identity and get the equivalence of G and G′.

3.4.3. Eliminating Pendant Edges in Invisible Faces

The last procedure described in Algorithm 23 allows us to remove the pen-
dant edges. Basically, this operation does not reintroduce any new bridge nor
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hinge. Note nevertheless that it transforms branches into pendant edges. In
other words, the number of pendant edges does not necessarily decrease at each
call of this procedure, but the total number of edges (and vertices) does. This
will ensure the termination of the normalisation process.

Input: An open plane graph G = 〈X,E, F, V, o〉, a pendant edge {x, y}
in an invisible face f , with deg(x) = 1

Output: Graph G modified
assume that f = [uyxy] with u ∈ V ∗;1

f ← [uy];2

X ← X \ {x};3

E ← E \ {{x, y}};4

return modified open plane graph G5

Figure 23: eliminatePendantEdge(G, {x, y})

Lemma 3. Let G = 〈X,E, F, V, o〉 be an open plane graph and e a pendant edge

in an invisible face. Then graph G′ obtained by eliminating e using Algorithm 23

is equivalent to G.

Proof. Straightforward since the algorithm does not modify the visible faces.

3.5. Conclusion and Main Result

Concerning Algorithm 18, we finally get:

Theorem 2. Let G be an open plane graph. Procedure normaliseGraph(G)
converges in polynomial time towards an irreducible open plane graph that is

equivalent to G. This open plane graph is called the normal form of graph G,

and denoted by Ĝ.

Proof. Each step of the normalisation process preserves the equivalence. More-
over, the elimination of the hinges introduces many bridges but no hinge. Then
the elimination of the bridges may introduce branches and pendant edges but
no hinge nor bridge. Finally the elimination of the pendant edge eliminates the
branches, and decreases the number of edges, and does not re-introduce any
hinge nor bridge. So normaliseGraph(G) converges towards irreducible open

plane graph Ĝ in polynomial time.

Furthermore, we are now able to precisely describe the relationship between
equivalence relation and isomorphism relation:

Theorem 3. Let G1 and G2 two open plane graphs.

• When the outer faces of G1 and G2 are invisible, G1 and G2 are equivalent

if and only if their normal forms are sphere-isomorphic:

G1
∼= G2 iff Ĝ1 ≡s Ĝ2.
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• When the outer faces of G1 and G2 are visible, G1 and G2 are equivalent

if and only if their normal forms are plane-isomorphic:

G1
∼= G2 iff Ĝ1 ≡p Ĝ2.

• If the outer face of G1 is visible and the one of G2 is not, or vice-versa,

then G1 and G2 are not equivalent.

Proof. First of all, note that if Ĝ1 ≡s Ĝ2 (or Ĝ1 ≡p Ĝ2), then Ĝ1
∼= Ĝ2.

Moreover G1
∼= Ĝ1 and G2

∼= Ĝ2, by Theorem 2. So we deduce that G1
∼= G2,

by transitivity (Theorem 1).
Conversely, let us suppose that G1

∼= G2, and the outer face of G1 and G2

are invisible. We need few notations: For each j ∈ {1, 2}, we assume that Gj =

〈Xj , Ej , Fj , Vj , oj〉 and denote Ĝj = 〈X̂j , Êj , F̂j , V̂j , ôj〉 their normal forms. We

know that Ĝ1
∼= G1, so let 〈φ′1, (ψ

′
1f )f∈cV1

〉 be the pair of mappings that satisfy

the conditions of Definition 7. As G1
∼= G2 and G2

∼= Ĝ2, there also exist pairs
〈φ, (ψg)g∈V1

〉 and 〈φ2, (ψ2h)h∈V2
〉. As we aim at showing that Ĝ1 ≡ Ĝ2, we

need to define a pair 〈ξ, χ〉 that satisfies the conditions of Definition 5. The
construction is illustrated in Figure 24.

cG1

G1

cG2

G2

〈φ, (ψg)g∈V1
〉

〈ξ, χ〉

〈φ2, (ψ2h)h∈V2
〉〈φ′

1, (ψ
′

1f )
f∈ cV1

〉

Figure 24: Notations for the proof of Theorem 3.

Concerning mapping χ : X̂1 → X̂2, let x ∈ X̂1. As Ĝ1 is irreducible, x is
adjacent to at least one visible face f ∈ V̂1. Let g = φ′1(f) and h = φ(g); we fix

χ(x) =
(
ψ2h ◦ ψg ◦ ψ′

1f

)
(x). We claim that this definition does not depend on

chosen (visible) face f . Indeed, consider the neighbourhood Γ(x) = [y1y2 . . . yn]

in Ĝ1. As Ĝ1 is irreducible, at most one adjacent face to x is invisible, say
xyn
−−→

. Then for all i ∈ {1, 2 . . . n − 2}, faces fi = xyi
−→

and fi+1 = xyi+1
−−−→

are

visible and share edge {x, yi+1}. So by Condition 3 of Definition 7, we get
ψ′

1,fi
(x) = ψ′

1,fi+1
(x). As adjacent visible faces are also preserved by φ and φ2,

the same argument can be repeated, that yields a unique value for χ(x). Also
note that χ is a one-to-one mapping over the vertices: this property is inherited
from mappings (ψ′

1f )f∈cV1
, (ψg)g∈V1

and (ψ2h)h∈V2
.

Now let us define mapping ξ : F̂1 → F̂2. For any visible face f , we fix
ξ(f) = (φ2 ◦ φ ◦ φ′1) (f). As φ′1, φ and φ2 are one-to-one mappings over the
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visible faces, ξ is a one-to-one mapping from the visible faces of Ĝ1 to the
visible faces of Ĝ2. Let us now define ξ(f) for an invisible face f of Ĝ1. Suppose
that f = [v0v1 . . . vn]. We claim that [χ(v0)χ(v1) . . . χ(vn)] is the boundary of a

unique invisible face of Ĝ2 that we denote ξ(f).
Indeed, consider the edges e0 = {v0, v1} and e1 = {v1, v2}. Edge e0 separates

the invisible face f and a visible face g0, since Ĝ1 has no bridge. So by Condition
3 in Definition 7, {χ(v0), χ(v1)} is an edge of Ĝ2 that separates an invisible face
h0 and the visible face ξ(g0). For the same reason, edge e1 separates the invisible
face f and an visible face g1, and {χ(v1), χ(v2)} separates an invisible face h1

and the visible face ξ(g1). Graph Ĝ2 is irreducible, so vertex χ(v1) is not an

hinge. As there is at most one invisible face adjacent to χ(v1) in Ĝ2, we conclude
that h0 = h1. In consequence, χ(v0), χ(v1) and then χ(v2), . . . χ(vn) surround

an invisible area which corresponds to some face h in Ĝ2. So we fix ξ(f) = h.
With this definition, ξ is a one-to-one mapping over the visible and invisible

faces, and χ preserves their boundaries by construction. Note that if the outer
faces are invisible, then they are not necessarily mapped together, that is, Ĝ1

and Ĝ2 are sphere-isomorphic. Conversely, if the outer faces are visible, then
they are mapped together by Condition 4 of Definition 7, so Ĝ1 and Ĝ2 are
plane-isomorphic.

4. Searching for Patterns

4.1. Subgraphs and Patterns

In the framework of standard graph theory, we say that graphG1 = 〈X1, E1〉
is a subgraph of G2 = 〈X2, E2〉 if X1 ⊆ X2 and E1 ⊆ X2. That is, G1 is ob-
tained from G2 by erasing vertices and edges. Nevertheless, the most interesting
component of a plane graph is not its vertices nor its edges, but its faces. In-
deed, when used to model images, the faces of the plane graph may represent
homogeneous regions computed by segmentation. In this case, searching for a
pattern in an image consists in detecting the presence of a subset of the faces
in corresponding plane graph.

Now, in terms of open plane graphs, the distinction between visible and
invisible faces allows us to construct such “face-based subgraphs” quite easily,
by transforming visible faces into invisible ones. The remaining set of visible
faces will have to be contiguous. Moreover, the subgraph that we get is generally
not irreducible, that is, it may contain bridges, hinges, etc. As these junks are
meaningless in a pattern recognition task, we eliminate them by normalisation:

Definition 13 (Pattern). Let P be an irreducible open plane graph, and G =
〈X,E, F, V, o〉 an open plane graph. We say that P is a pattern of G if there
exists an open plane graph G′ = 〈X,E, F,W, o〉 such that:

1. G′ has less visible faces than G : W ⊆ V ;

2. W is a set of contiguous faces;

3. P and the normal form of G′ are plane-isomorphic: P ≡p Ĝ′.
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An example of pattern is given in Figure 25. Note that in the left-hand
plane graph, the boundary that surrounds the feet of the penguin, crosses twice
one of the vertices. When the pattern was chosen, neither the face between the
legs was selected, nor the ground. So this vertex has become a hinge which
was divided into two vertices, by the normalisation procedure, in the right-hand
pattern. Also note that a pattern could contain the outer face.

Finally, as a side effect of the normalisation, it is interesting to note that
a pattern P can be larger (in the traditional sense: more vertices) than the
original graph. This is a reason why the term pattern is preferable to the more
standard term subgraph.

Figure 25: An open plane graph (on the left) and a pattern (on the right).

4.2. Searching for Patterns is Tractable

In many pattern recognition tasks, one aims at deciding in polynomial time
whether an open plane graph P is a pattern of an open plane graph G. So we
consider the following problem:

Problem: Pattern of an Open Plane Graph (Popg)
Instance: two open plane graphs P and G
Question: is P a pattern of G?

We shall show that:

Theorem 4. Problem Popg is in class P.

Besides, as the definition of a pattern tests whether two open plane graph
are plane-isomorphic or not, we will first need to solve:

Problem: Open Plane Graphs Plane-Isomorphism (Opgpi)
Instance: two open plane graphs G and G′

Question: are G and G′ plane-isomorphic?

We shall prove that:
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Theorem 5. Problem Opgpi is in class P.

More precisely, it is decidable in O (|E| · |E′|) time whether open plane graphs

G = 〈X,E, F, V, o〉 and G′ = 〈X ′, E′, F ′, V ′, o′〉 are plane-isomorphic or not.

Finally, almost as corollaries, this will ensure the tractability of both the
following problems:

Problem: Open Plane Graphs Sphere-Isomorphism (Opgsi)
Instance: two open plane graphs G and G′

Question: are G and G′ sphere-isomorphic?

Problem: Open Plane Graphs Equivalence (Opge)
Instance: two open plane graphs G and G′

Question: are G and G′ equivalent?

Theorem 6. Both problems Opge and Opgsi are in class P.

The remainder of this section is devoted to the proof of all these results.

4.3. Deciding Plane-Isomorphism in Polynomial Time

The proof of Theorem 5 is similar to the one which can be found in [17]
concerning the tractability of the isomorphism problem for combinatorial maps.
The idea is to use the arcs (called darts in [17], half-edges in [10]) in order visit
both graphs G and G′ in parallel.

More precisely, suppose that the faces of a plane graph has to be described
using a plane graph system. Then each edge e = {x, y} is used twice, once
when “walking” from vertex x to vertex y, and once from y to x. In other
words, we implicitly consider that an edge is composed of two arcs, xy and
yx, with opposite direction (see Figure 26). Given an open plane graph G =
〈X,E, F, V, o〉, we shall denote by A the set of arcs, that is, A = {xy ∈ X2 :
∃f ∈ F, ∃u ∈ X∗, f = [xyu]}.

Figure 26: Any edge is met twice, thus composed of two arcs (represented with different line
styles), when used to describe the faces of a plane graph.

We now introduce two low-level operations over the set of arcs, called next :
A → A and opp : A → A (following the terminology of [10]), that will be used
to traverse graph G:

• Given an arc xy ∈ A, we denote by opp(xy) the counter-arc (or opposite

arc) yx;
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• Let xy ∈ A and suppose that [xyu] = f for some f ∈ F, u ∈ X∗. Then
function next(xy) returns either yx if u = ǫ, or yz if u = zu′ for some
z ∈ X,u′ ∈ X∗.

For example, in Figure 27, we have next(ec) = cf and next(cf) = fc and
next(fc) = cd. . . In other words, one visits the boundary of a face by iterating
function next. As for function opp, it allows one to swap from a face to an
adjacent face. Note that in [17], function next is called β1 and function opp is
called β2.

a

b

c

d

eff1 f2 f3

Figure 27:

We now reformulate the plane-isomorphism property in terms of arcs:

Lemma 4. Let G = 〈X,E, F, V, o〉 and G′ = 〈X ′, E′, F ′, V ′, o′〉 be two open

plane graphs having A and A′ as sets of arcs respectively. If G and G′ are not

reduced to isolated vertices, then G and G′ are plane-isomorphic if and only if

there exists a one-to-one mapping ρ : A→ A′ such that

1. function ρ commutes with functions next and opp: ∀a ∈ A,

ρ(next(a)) = next(ρ(a)) and ρ(opp(a)) = opp(ρ(a));

2. function ρ preserves both the visible faces and the outer faces: ∀a ∈ A,

( a−→ ∈ V iff ρ(a)
−−→

∈ V ′) and ( a−→ = o iff ρ(a)
−−→

= o′).

Proof. (⇒) Suppose that G ≡p G′ using functions 〈ξ, χ〉 with χ : X → X ′ (see
Definition 6). For all arcs a = xy, we define ρ(h) = χ(x)χ(y) and the conditions
hold. (⇐) As graph G is connected, every vertex x ∈ X is the extremity of an
edge {x, y} for some y ∈ X , thus of an arc xy. Assuming that ρ(xy) = x′y′,
we fix χ(x) = x′. As for any face f = xy

−→
, we fix ξ(f) = χ(x)χ(y)

−−−−−−→
. Then the

conditions of Definition 6 immediately hold, thus G ≡p G′.

We are ready to tackle the proof of Theorem 5. Consider Algorithms 28
and 29. The former first fixes an arc a0 ∈ A lying on the boundary of the
outer face of G. Then, for every arc a′0 ∈ A

′ of the outer face of G′, we call
Algorithm 29 to build a candidate matching function f : A → A′, and finally
checks whether f satisfies the conditions of Lemma 4. Algorithm 29 performs
a traversal of graph G, starting from arc a0, and using functions next and opp
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to discover new darts from discovered darts. Initially, f [a0] is set to a′0 whereas
f [a] is set to nil for all the other arcs. Each time an arc a′ ∈ A is discovered
from another arc a ∈ A using function next (resp. opp), f [a′] is set to arc
next(f [a]) (resp. opp(f [a])).

Input: two open plane graphs G = 〈X,E, F, V, o〉 and
G′ = 〈X ′, E′, F ′, V ′, o′〉 having A and A′ as sets of arcs

Output: True if G ≡p G′, False otherwise
choose a0 ∈ A such that a0−→

= o ;
1

foreach a′0 ∈ A
′ such that a′0−→

= o′ do
2

f ← traverseAndBuildMatching(G,G′, a0, a
′
0);3

if f satisfies the conditions of Lemma 4 then4

return True5

return False6

Figure 28: checkPlaneIsomorphism(G, G′)

Input: two open plane graphs G = 〈X,E, F, V, o〉 and
G′ = 〈X ′, E′, F ′, V ′, o′〉 and two arcs a0 ∈ A and a′0 ∈ A

′

Output: returns an array f : A→ A′

foreach arc a ∈ A do f [a]← nil;1

f [a0]← a′0;2

let S be an empty stack;3

push a0 in S;4

while S is not empty do5

pop an arc a from S;6

if f [next(a)] = nil then7

f [next(a)]← next(f [a]);8

push next(a) in S9

if f [opp(a)] = nil then10

f [opp(a)]← opp(f [a]);11

push opp(a) in S12

return f13

Figure 29: traverseAndBuildMatching(G, G′, a0, a′

0
)

Proof of Theorem 5. Essentially the same as that of [17]. If procedure
checkPlaneIsomorphism(G,G′) returns True, then there exists f : A → A′

that fulfils the conditions of Lemma 4, thus G ≡p G′. Conversely, assume that
G ≡p G

′. Then there exists a function ρ : A → A′ that satisfies the conditions
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of Lemma 4. Let a0 ∈ A be the arc chosen at line 1 of Algorithm 28 (such that
a0−→

= o). As the loop (lines 2-5) iterates on every arc a′0 ∈ A
′ that lies on the

outer face of G′, there is an iteration for which a′0 = ρ(a0). We claim that for
this iteration, traverseAndBuildMatching(G,G′, a0, a

′
0) returns f such that for

all a ∈ A, f [a] = ρ(a). Indeed, we have the two following properties:

1. When pushing an arc a in S, f [a] = ρ(a). This is true for the push of line
4 as f [a0] is set to a′0 = ρ(a0) at line 2. This is also true for the push of line
9 as f [next(a)] is set to next(f [a]) at line 8, and f [a] = ρ(a) (by induction
hypothesis), and (ρ(a) = a′ ⇒ ρ(next(a)) = next(a′)) (by Lemma 4). And
the same for function opp.

2. Each arc a ∈ A is pushed once and only once in S. Indeed, G is connected.
So there exists at least one sequence a0, . . . , an such that an = a and, for all
k ∈ {1, 2, . . . n}, either ak = next(ak−1), or ak = opp(ak−1). Therefore,
each time an arc ai of this sequence is popped from S (line 6), ai+1 is
pushed in S (lines 9 and 12) if it had not been pushed before through
another path (lines 7 and 10).

In consequence, checkPlaneIsomorphism(G,G′) will return True.
Finally, concerning complexity issues, Algorithm 29 is in O(|A|) time. In-

deed, the while loop is iterated |A| times as (1) exactly one arc a is removed from
stack S at each iteration, and (2) each arc a ∈ A is pushed in S at most once.
In Algorithm 28, the test of line 4 can be performed in O(|A|) time. Hence, the
overall time complexity of Algorithm 28 is O(|A| · |A′|), that is, O(|E| · |E′|).

4.4. Deciding Sphere-Isomorphism and Equivalence in Polynomial Time

The tractability of sphere-isomophism (claimed in Theorem 6) follows from
what we have just done for plane-isomorphism. Indeed, Lemma 4, without the
condition concerning the outer faces, holds for sphere-isomorphism. So, one just
has to use algorithm checkPlaneIsomorphism(G,G′), leaving out the verification
of the preservation of the outer faces at line 4, and gets an algorithm that solves
problem Opgsi in polynomial time.

Concerning the equivalence problem, let us describe the procedure, based on
Theorem 3. The first step consists in testing the outer faces: if one is visible
and the other is not, then both graphs are not equivalent. Otherwise, we need
to normalise, in polynomial time, the graphs by using Algorithm 18 and get
their normal forms. Then, there are two cases. If the outer faces are both
invisible, then the graphs are equivalent if and only if their normal forms are
sphere-isomorphic, which can be decided in polynomial time. And if the outer
faces are visible, then the graphs are equivalent if and only if their irreducible
forms are plane-isomorphic, which can also be checked in polynomial time by
Theorem 5. So Problem Opge is solvable in polynomial time.

4.5. The Tractability of the Subisomorphism Problem

The proof of Theorem 4 rests on two procedures that allow one to check
whether an irreducible open plane graph is a pattern of another graph (see
Algorithm 30 and 31). Procedure checkPattern(P,G)
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1. maps all the visible faces of P with faces of G (that may be visible or not,
at this point),

2. checks that the selected faces in G forms a contiguous set of visible faces,

3. normalises the graph built from G using the selected faces and

4. checks that both the latter graph and pattern P are plane-isomorphic.

Concerning Steps 2 to 4, we simply follow the definition of a pattern and reuse
Procedure checkPlaneIsomorphism (see Algorithm 28). As for Step 1, we use a
variant of Procedure traverseVisibleFacesAndBuildMatching (see Algorithm 31)
where we restrict the traversal of the pattern to its visible faces only (that is,
we modify line 10 only).

This algorithm is only designed to establish the polynomiality of Problem
Popg, thus is not optimized.

Input: an irreducible open plane graphs P = 〈X,E, F, V, o〉 and an open
plane graph G = 〈X ′, E′, F ′, V ′, o′〉, respectively having A and A′

as sets of arcs
Output: True if P is a pattern of G, False otherwise
choose a0 ∈ A such that a0−→

∈ V ;
1

foreach a′0 ∈ A
′ such that a′0−→

∈ V ′ do
2

f ← traverseVisibleFacesAndBuildMatching(P,G, a0, a
′
0);3

W ← ∅;4

foreach a ∈ A such that a−→ ∈ V do5

W ←W ∪ {f [a]
−−→
}

6

if W ⊆ V ′ and W is a set of contiguous faces in G then7

G′′ ← 〈X ′, E′, F ′,W, o′〉;8

G′′ ← normaliseGraph(G′′);9

if checkPlaneIsomorphism(P,G′′) then return True10

return False11

Figure 30: checkPattern(P, G)

5. Searching for Piecewise Patterns

Open plane graphs are defined by declaring that some faces are visible, and
the others invisible. This distinction is essential to define the patterns and the
subisomorphism problem. However, the tractability of the latter was based on
an important property: the visible faces must be contiguous. In this section, we
study the case of patterns whose visible faces are non-contiguous. We call them
piecewise patterns.
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Input: two open plane graphs G = 〈X,E, F, V, o〉 and
G′ = 〈X ′, E′, F ′, V ′, o′〉 and two arcs a0 ∈ A and a′0 ∈ A

′ such
that a0−→

∈ V and a′0−→
∈ V ′

Output: an array f : A→ A′

foreach a ∈ A do f [a]← nil;1

f [a0]← a′0;2

let S be an empty stack;3

push a0 in S;4

while S is not empty do5

pop an arc a from S;6

if f [next(a)] = nil then7

f [next(a)]← next(f [a]);8

push next(a) in S9

if opp(a)
−−−−→

∈ V and f [opp(a)] = nil then
10

f [opp(a)]← opp(f [a]);11

push opp(a) in S12

return f13

Figure 31: traverseVisibleFacesAndBuildMatching(G, G′, a0, a′

0
)

5.1. The Importance of the Contiguity Assumption

Until now, a pattern was got from an open plane graph by (1) selecting a
subset of contiguous visible faces and (2) normalising, in order to “empty” the
invisible area. However, this construction is not extensible to piecewise patterns,
in particular because the normalisation procedure is undefined for a plane graph
whose visible faces are not contiguous.

Indeed, consider the plane graph of Figure 32(a). The elimination of the
bridges yields the plane graphs of Figure 32(b) which is disconnected. In con-
sequence, some of its faces are compound, that is, they need several boundaries
to be completely specified. Thus, they cannot be described with a plane graph
system, which is nevertheless what our normalisation procedure returns.

Besides, allowing non-contiguity introduces several new problems that are
outside the scope of this paper. To illustrate one of these, consider the plane
graph of Figure 32(c); this graph is equivalent to that of Figure 32(a) since we
can pair together the visible faces with a one-to-one mapping, while preserving
the boundaries. However, once normalised, the bridges are eliminated in both
graphs, but the normal forms are not plane-isomorphic. Indeed, the invisible
faces now play a role; however, both invisible faces of the former graph will
have two boundaries after normalisation, while those of the latter graph will
have either one or three boundaries.
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(a) An example of (connected) plane graph with a set
of non-contiguous visible faces.

(b) The plane graph 32(a) once normalised: Eliminat-
ing the bridges disconnects the graph. Such a plane
graph cannot be described with a plane graph system.

(c) Another plane graph with a set of non-contiguous
visible faces. This graph is equivalent to that of Fig-
ure 32(a). However, once the bridges are eliminated,
we get a disconnected plane graph which is not plane-
isomorphic to the plane graph of Figure 32(b).

Figure 32: About contiguity
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5.2. Piecewise Patterns

Piecewise patterns are sets of disconnected plane graphs whose internal faces
are all visible and outer face is shared and invisible (see Figure 33(a)):

Definition 14 (Piecewise-compact plane graph).

• An open plane graph G = 〈X,E, F, V, o〉 is compact if all its faces but the
outer face are visible: V = F \ {o}.

• A piecewise-compact plane graph is a finite set P = {G1, G2, . . .Gk} with
k ≥ 2 such that

1. Each component Gi = 〈Xi, Ei, Fi, Vi, oi〉 is a compact open plane
graph.

2. The components are pairwise independent: Xi∩Xj = ∅ and Vi∩Vj =
∅ for all 1 ≤ i < j ≤ k.

3. The components share their outer face: oi = oj for all 1 ≤ i < j ≤ k.

Given a piecewise-compact plane graph P = {G1, G2, . . . Gk}, we denote by
XP = ∪ki=1Xi the set of vertices, EP = ∪ki=1Ei the set of edges, FP = ∪ki=1Fi
the set of faces, VP = ∪ki=1Vi the set of visible faces and oP the (invisible) outer
face (with oP = oi for any 1 ≤ i ≤ k).

Now searching for a piecewise-compact plane graph in an open plane graph
will consist in finding all its components independently. That is, two components
do not share any vertex nor edge, so their images must have the same property.
This yields the following definition:

Definition 15 (Piecewise pattern). Let P be a piecewise-compact plane
graph and G = 〈X,E, F, V, o〉 an open plane graph. We say that P is a piecewise

pattern of G if:

1. there exists an injection χ : XP → X over the vertices;

2. there exists an injection ξ : VP → V over the visible faces whose bound-
aries are preserved: ∀f1 ∈ VP , ∀f2 ∈ V,

if ξ(f1) = f2 and f1 = [x1x2 . . . xp], then f2 = [χ(x1)χ(x2) . . . χ(xp)];

3. the outer face of G is not matched: ξ−1(o) = ∅.

An example is given in Figure 33: the piecewise-compact plane graph 33(a)
is a piecewise pattern of only the open plane graph 33(d); indeed, in the other
cases, vertices a and b from Figure 33(a) should be merged, which is forbidden
by Definition 15.

In this section, we are finally going to show that searching for a piecewise
pattern is intractable. Formally, we consider the following problem:

Problem: Piecewise Pattern of an Open Plane Graph (Ppopg)
Instance: a piecewise-compact plane graph P and an open plane
graph G
Question: is P a piecewise-pattern of G?
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ba

(a) A piecewise-compact
plane graph with two
components.

(b)

(c) (d)

Figure 33: Piecewise-compact plane graph 33(a) is not a piecewise pattern of open plane
graphs 33(b) and 33(c), because vertices a and b would have to be merged together. On the
other hand, it is a piecewise pattern of plane graph 33(d).
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and we get:

Theorem 7. Problem Ppopg is NP-complete.

5.3. Proof of intractability

Problem Ppopg belongs to class NP since one can check in polynomial time
whether two given injections χ and ξ satisfy the conditions of Definition 15. In
order to prove that problem Ppopg is NP-complete, we show that problem
Planar-4 3-SAT can be reduced to it.

Planar-4 3-SAT is a special case of the SAT problem, which involves deciding
if there exists a truth assignment for a set X of variables such that a boolean
formula F overX is satisfied. We assume that F is in Conjunctive Normal Form
(CNF), i.e., it is a conjunction of clauses such that each clause is a disjunction
of litterals which are either variables of X or negations of variables of X . The
formula-graph associated with a CNF formula F over a set of variables X is
the bipartite graph GX,F = (V,E) such that V associates a vertex with every
variable xi ∈ X and every clause cj of F , and E associates an edge (xi, cj)
with every variable/clause couple such that variable xi occurs in clause cj . See
Figure 34 for an instance of Planar-4 3-SAT and its associated formula-graph.

X = {x, y, z, u, w}
F = (¬x ∨ y ∨ u)∧

(¬x ∨ y ∨ ¬z)∧
(¬y ∨ z ∨ u)∧
(¬z ∨ u ∨ ¬w)∧
(x ∨ w ∨ ¬u)

C1

C2

y

C3

z

u

x
C4

w

C5

Figure 34: An instance of Planar-4 3-SAT and its associated formula graph.

Problem Planar-4 3-SAT is formally defined as follows:

Problem: Planar-4 3-SAT
Instance: A CNF formula F over a set of variables X such that
(1) every clause of F is a disjunction of 3 litterals, (2) the formula-
graph GX,F is planar, and (3) the degree of every vertex of GX,F is
bounded by 4 (i.e., each variable occurs in at most 4 different clauses)
Question: Does there exist a truth assignment for X which satis-
fies F?

Planar-4 3-SAT has been shown to be NP-complete in [25]. To reduce an
instance (X,F ) of Planar-4 3-SAT to an instance (P,G) of Ppopg, we first
perform a preprocessing to eliminate variables which occur in only one clause
of F : We iteratively eliminate from (X,F ) every variable xi ∈ X which occurs
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in only one clause cj of F (those whose degree is equal to 1 in the formula-
graph), set xi to the truth value which satisfies cj, and eliminate cj from F ,
until either X and F become empty (thus showing that the intial instance is
trivially consistent), or all variables in X occur in 2, 3, or 4 clauses of F .

Let us now show how to build a piecewise-compact plane graph P and an
open plane graphG by combining building blocks (which are open plane graphs).
Table 1 displays the building blocks (gadgets) associated with the variables and
the clauses:

• For each variable xi ∈ X such that the degree of xi in the formula-graph
GX,F is equal to k (with 2 ≤ k ≤ 4), we build two variable patterns Vk
and V ′

k which will respectively occur in G and P . These variable patterns
look like flowers which have 2k petals in G and k petals in P , where each
petal is a 6-edge face. The core of the flower is composed of two adjacent
5-edge faces.

• For each clause, we build two clause patterns C and C′ which will respec-
tively occur in G and P . In G, the clause pattern is composed of a 3-edge
central face which has 3 adjacent 4-edge faces whereas in P it is composed
of a 3-edge face which has 1 adjacent 4-edge face.

Variable patterns Clause patterns
in G: V2 : V3 : V4 : C :

in P : V ′
2 : V ′

3 : V ′
4 : C′ :

Table 1: Variable and clause patterns used as building blocks to define G and P . Connecting
edges in G are displayed in bold.

Variable and clause patterns in G are plugged together by merging some
edges, called connecting edges, to form an open plane graph. These connecting
edges are displayed in bold in Table 1: For each petal in each variable pattern
Vk, the edge opposite to the core of the flower is a connecting edge and, for each
4-edge face in the clause pattern C, the edge opposite to the 3-edge face is also
a connecting edge.
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Figure 35: Open plane graph G associated with the SAT instance displayed in Figure 34.
Faces in light grey correspond to variable and clause patterns; faces in dark grey are new faces
which have been created when merging edges of variable and clause patterns. These new faces
have at least 8 edges. They have 8 edges when variable and clause patterns are connected by
adjacent petals for the two variables (see, e.g., face F1); they have more than 8 edges when
they are connected by non adjacent petals (see, e.g., face F2).

Given these building blocks, we define G and P as follows:

Open plane graph G: For each variable xi ∈ X such that the degree of xi
in the formula-graph GX,F is equal to k, G contains an occurrence of the
variable pattern Vk. Each petal of this occurrence of Vk is alternatively
labeled with xi and ¬xi. For each clause cj of F , G contains an occurrence
of the clause pattern C. Each 4-edge face of this occurrence of C is labeled
with a different literal of cj . Variable and clause patterns are connected
to define an open plane graph by merging every connecting edge of each
clause pattern with a different connecting edge of a variable pattern such
that the two faces which become adjacent by this merge are labeled with
the same litteral. We can easily check that this open plane graph can
always be built as the formula-graph GX,F is planar. Figure 35 displays
the open plane graph associated with the formula displayed in Figure 34.
Note that new faces have been created when merging connecting edges
of variable patterns with connecting edges of clause patterns. These new
faces have at least 8 edges (see Figure 35).

Piecewise-compact plane graph P : If the SAT instance has n variables and
c clauses, then P is composed of n+ c different components: a component
V ′
k is associated with every variable xi ∈ X , where k is the degree of
xi in the formula-graph GX,F ; a component C′ is associated with every
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Figure 36: Solution of the Ppopg instance associated with the Planar-4 3-SAT instance dis-
played in Figure 34. The images of the components of P in G are displayed in dark grey.

clause. For example, the piecewise-compact plane graph associated with
the formula displayed in Figure 34 contains 10 components: 3 occurrences
of V ′

3 , 1 occurrence of V ′
4 , 1 occurrence of V ′

2 , and 5 occurrences of C′.

Let us show that P is a piecewise pattern of G iff there exists a truth as-
signment of X which satisfies F .

(⇒). Let us assume that there exist two injections χ and ξ which satisfy the
conditions of Definition 15, and let us show that there exists a truth assignment
of X which satisfies F . ξ matches every visible face of P to a different visible
face of G so that the images of the components of P do not share any vertex nor
edge. Figure 36 displays an example of such a solution for the instance (P,G)
of Ppopg associated with the instance (X,F ) of Planar-4 3-SAT displayed in
Figure 34. P contains c occurrences of C′, where c is the number of clauses of
F . Each occurrence of C′ has a 3-edge face adjacent to a 4-edge face. These
faces can only be matched to faces which belong to occurrences of C in G as all
other faces in G have a different number of edges (5 for the cores of the flowers,
6 for the petals of the flowers, and 8 or more for the new faces which are created
when merging variable and clause patterns). As there are c occurrences of C in
G, each occurrence of C′ in P is matched with a different occurrence of C in G.
For the same reasons, each occurrence of a variable pattern V ′

k in P is matched
with a different occurence of a variable pattern Vk in G: Petal and core faces in
P can only be matched with petal and core faces in G, and an occurrence of V ′

i

cannot be matched with faces of an occurrence of Vj if i 6= j.
For each variable pattern Vk, the label of the petals of Vk which are not
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matched with petals of variable patterns of P gives the truth assignment for the
corresponding variable. For each clause pattern C, the label of the 4-edge face
of C which is matched with a 4-edge face of C′ corresponds to a litteral which
satisfies the clause associated with C. As the images in G of the components of
P by ξ cannot share edges, we ensure that when a 4-edge face is matched, then
the adjacent petal is not matched, i.e., when a clause is satisfied by a litteral l,
then no other clause can be satisfied by the negation of this litteral so that the
truth assignment deduced from the flower matching actually satisfies all clauses
of F .

For example, the truth assignment corresponding to the solution displayed
in Figure 36 is {¬x, y,¬z, u, w}.

(⇐). Let us assume that there exists a truth assignment of X which satisfies
F and let us show that there exist two injections χ and ξ which satisfy the
conditions of Definition 15. For each variable pattern V ′

k in P associated with
a variable xi, we match the two core 5-edge faces with the two core 5-edge
faces of the variable pattern associated with xi in G and we match the k 6-edge
petals of V ′

k with the k 6-edge petals which are labeled with the negation of
the truth value of xi. For each clause pattern C′ in P associated with a clause
cj , we match the 3-edge face of C′ with the 3-edge face of the clause pattern
associated with cj in G and we match the 4-edge face of C′ with one of the
three 4-edge faces: We choose a 4-edge face which is labeled with a literal which
is satisfied by the truth assignment (this 4-edge face cannot be adjacent to a
matched 6-edge petal). From the face matching ξ, we can easily deduce a vertex
matching χ.

6. Conclusion

Open plane graphs have been introduced in order to define embedded planar
graphs in which faces can be visible or invisible. Invisible faces define holes,
obtained by removing faces, or stating that certain faces are unreachable. This
induces a special equivalence relation over open plane graphs for which a normal
form exists and can be computed.

Beyond, open plane graphs allowed us to investigate a new class of subgraphs,
called patterns, by declaring that some faces of a plane graph are invisible. We
have shown that searching for patterns was tractable in polynomial time as soon
as the selected faces are contiguous. This result is quite strong since we have
also established that the search of piecewise patterns, a slight generalization of
patterns, was a NP-complete problem.

A certain number of questions remain open and are of interest:

• When introducing open plane graph systems, the hypothesis was that the
system is built from the graph, once drawn. But the converse question re-
mains to be explored: given an open graph system respecting syntaxically
Definition 3, can a graph always be drawn, and how?
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• For practical reasons approximate isomorphisms would be of interest: this
is related to having a definition of an edit distance. Both definitions would
need to take into account normalisation.

• In many graph mining applications, the important question is that of
extracting maximal common subgraphs of various graphs. The status of
the problem, for the definitions introduced in this paper, is left open.

• When introducing piecewise patterns in Section 5, it was shown (see Figure
32) that several notions introduced earlier had to be updated in the case
of non connected graphs. There are a number of complex issues related
with this question.

• If open plane graphs are to be used to model images, alternative problems
appear: a first one is to find, given two open plane graphs, the largest
common pattern. The largest common piecewise pattern is also of interest.
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