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Abstract. Comparison of standard language learning paradigms (iden-
tification in the limit, query learning, Pac learning) has always been
a complex question. Moreover, when to the question of converging to
a target one adds computational constraints, the picture becomes even
less clear: how much do queries or negative examples help? Can we find
good algorithms that change their minds very little or that make very
few errors? In order to approach these problems we concentrate here on
two classes of languages, the topological balls of strings (for the edit dis-
tance) and the deterministic finite automata (Dfa), and (re-)visit the
different learning paradigms to sustain our claims.

1 Introduction

The study of the properties of the learning algorithms, particularly those in
grammatical inference, can be either empirical (based on experiments from data-
sets), or theoretical. In the latter, the goal is to study the capacity of the algo-
rithm to retrieve, exactly or approximately, a target language. Often, the goal
is also to measure the resources (time, amount of data) necessary to achieve
this task. Different paradigms have been proposed to take into account notions
of convergence from bounded resources, but none has really imposed itself, and
few comparison exists between these definitions.

In this paper, we visit standard criteria for polynomial identification and
compare them by considering two fundamentally different classes of languages:
the regular languages represented by deterministic finite automata, and the balls
of strings w.r.t. the edit distance [1].

When aiming to prove that a class of languages is learnable, there are typi-
cally three different settings. The first one, identification in the limit [2], mimes
the cognitive process of a child that would acquire his native language by picking
up the sentences that are broadcasted in his environment. More formally, infor-
mation keeps on arriving about a target language and the Learner keeps making
new hypotheses. We say that convergence takes place if there is a moment when
the process is stationary and the hypothesis is correct.
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The second one, query learning [3], looks like a game of riddles where the
Learner (pupil) can asks questions (queries) to an Oracle (teacher) about the
target language. The game ends when the Learner guesses the target. Of course,
the learning results strongly depends on the sort of queries that the Learner
is allowed to ask. Both previous paradigms are probably at least as interesting
for the negative results they induce as for the positive ones. Indeed, concerning
query learning, if a Learner cannot identify an unknown concept by choosing
and testing examples, how could he hope to succeed to learn from examples that
are imposed by an application?

The last paradigm, Pac learning (for Probably Approximately Correct) [4]
is intended to be a more pragmatic setting. It formalizes a situation where one
tries to build automatically a predictive model from the data. In this setting,
one assumes that there is a (unknown) distribution D over the strings of the
target language, which is used to sample learning and testing examples. Two
parameters are fixed: ǫ is related to the error of the model (i.e., the probability
of a string to be misclassified) and δ is related to the confidence one has in the
sampling. Ideally, a good Pac-Learner returns, with high confidence (> 1 − δ),
hypotheses that have small error rates (< ǫ).

The three settings are usually difficult to compare, in particular when com-
plexity issues are discussed. Some exceptions are the work by Angluin comparing
Pac-learning and using equivalence queries [5], the work by Pitt relating equiv-
alence queries and implicit prediction errors [6], comparisons between learning
with characteristic samples, simple Pac [7] and Mat in [8]. Other analysis of
polynomial aspects of learning grammars, automata and languages can be found
in [6, 9–11]. If the customary comparative approach is to introduce a learning
paradigm and survey a variety of classes of languages for this paradigm, we
choose here to fix the classes of languages and to proceed to a horizontal analy-
sis of their learnability by visiting the paradigms systematically.

Concerning the Dfa, we complete a long list of known results. Concerning
the balls of strings, our results are generally negative: identification in the limit
from examples and counter-examples is impossible in most cases, even from mem-
bership and equivalence queries. Pac-learning is also impossible in polynomial
time, unless RP = NP . Yet, the errors are usually due to the counter-examples.
Hence, we show that it is sometimes (and surprisingly) easier to learn from
positive examples only than from positive and negative examples.

Section 2 is devoted to preliminary definitions. In Sections 3, 4 and 5, we
focus on the so-called good balls and on the Dfa, and we present the results
concerning Pac-learning, query learning and polynomial identification in the
limit, respectively. We conclude in Section 6.

2 Definitions

An alphabet Σ is a finite nonempty set of symbols called letters. In the sequel,
we suppose that |Σ| ≥ 2. A string w = a1 · · · an is any finite sequence of letters.
We write λ for the empty string and |w| for the length of w. Let Σ⋆ denote the



set of all strings over Σ. We say that u is a subsequence of v, denoted u � v,
ifdef u = a1 · · · an and there exist u0, · · · , un ∈ Σ⋆ s.t. v = u0a1u1 · · ·anun. We
introduce the set lcs(u, v) of all longest common subsequences of u and v. We also
introduce the hierarchical order : u � v ifdef |u| < |v| or (|u| = |v| and u ≤lex v).
A language is any subset L ⊆ Σ⋆. Let IN denote the set of non negative integers.
For all k ∈ IN, let Σ≤k (respectively Σ>k) be the set of all strings of length at
most k (respectively of length more than k). We define A⊕B = (A\B)∪(B\A).

Grammatical inference aims at learning the languages of a fixed class L

represented by the grammars of a class G. L and G are related by a naming
function L : G → L that is total (∀G ∈ G, L(G) ∈ L) and surjective (∀L ∈
L, ∃G ∈ G s.t. L(G) = L). For any string w ∈ Σ⋆ and language L ∈ L,
we shall write L |= w ifdef w ∈ L. Concerning the grammars, they may be
understood as any piece of information allowing some parser to recognize the
strings. For any string w ∈ Σ⋆ and grammar G ∈ G, we shall write G ⊢ w if
the parser recognizes w. Basically, the parser must be sound and complete w.r.t.
the semantics: G ⊢ w ⇐⇒ L(G) |= w. In the following, we will mainly consider
learning paradigms subject to complexity constraints. In their definitions, ‖G‖
will denote the size of the grammar G (e.g., the number of states in the case of
Dfa). Moreover, given a set X of strings, we will write |X | for the cardinality
of X and ‖X‖ for the sum of the lengths of the strings in X .

The edit distance d(w, w′) is the minimum number of primitive edit operations
needed to transform w into w′ [1]. The operation is either (1) a deletion: w = uav
and w′ = uv , or (2) an insertion: w = uv and w′ = uav, or (3) a substitution:
w = uav and w′ = ubv, where u, v ∈ Σ⋆, a, b ∈ Σ and a 6= b. E.g., d(abaa, aab) =
2 since abaa −→ aaa −→ aab and the rewriting of abaa into aab cannot be achieved
with less than two steps. d(w, w′) can be computed in O (|w| · |w′|) time by
dynamic programming [12].

The edit distance is a metric, so we can introduce the balls over Σ. The ball
of centre o ∈ Σ⋆ and radius r ∈ IN, denoted Br(o), is the set of all strings whose
distance is at most r from o: Br(o) = {w ∈ Σ⋆ : d(o, w) ≤ r}. E.g., if Σ = {a, b},
then B1(ba) = {a,b,aa,ba,bb,aba,baa,bab,bba} and Br(λ) = Σ≤r for all r ∈ IN.
We will write BALL(Σ) for the family of all the balls.

To the purpose of grammatical inference, we are going to represent any ball
Br(o) by the pair (o, r) that will play the role of a grammar. Indeed, its size
is |o| + log r (which corresponds to the number of bits necessary to encode the
grammar1). Moreover, the parser able to decide whether w ∈ Br(o) or not is
simple: (1) it computes d(o, w) and (2) it checks if this distance is ≤ r, that can
be achieved in time O (|o| · |w| + log r). Finally, as |Σ| ≥ 2, we can show that
(o, r) is a unique thus canonical grammar of Br(o) [14]. In consequence, we shall
also denote by BALL(Σ) the class of grammars associated to the balls.

A ball Br(o) is called good ifdef r ≤ |o|. The advantage of using good balls is
that there is a polynomial relation between the size of the centre and the size of

1 Notice that |o| + r is not a correct measure of the size as implicitly it would mean
encoding the radius in unary, something unreasonable [13].



the longest strings in the ball. We will write GB(Σ) for the class of all the good
balls (and that of the corresponding grammars).

A deterministic finite automaton (Dfa) is a 5-tuple A = 〈Σ, Q, q0, F, δ〉 s.t. Q
is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states and
δ : Q × Σ → Q is a transition function. Every Dfa can be completed with one
sink state s.t. δ is a total function. As usual, δ is extended to Σ⋆. The language
recognized by A is L(A) = {w ∈ Σ⋆ : δ(q0, w) ∈ F}. The size of A is |Q|. We will
write DFA(Σ) for the class of all Dfa over the alphabet Σ.

The inference of Dfa has been intensively studied for forty years at least
[2, 6, 15]. On the other hand, the learnability of the balls is a recent issue [14]
motivated by the problem of identifying languages from noisy data. However,
our approach raises a preliminary question: if any ball whose grammar would
have size n could be recognized by a Dfa with p(n) states (for some polynomial
p()), then one could deduce learnability results on the former from (known)
learnability results on the latter. Yet it is generally believed (albeit still an open
question) that the transformation of a ball into a Dfa is not polynomial [16].

3 PAC-learnability

The Pac paradigm [4] has been widely used in machine learning. It aims at
building, with high confidence, good approximations of an unknown concept.

Definition 1 (ǫ-good hypothesis). Let G be the target grammar and H be a
hypothesis grammar. Let D be a distribution over Σ⋆ and ǫ > 0. We say that H
is an ǫ-good hypothesis w.r.t. G ifdef PrD(x ∈ L(G) ⊕ L(H)) < ǫ.

The Pac-learnability of grammars from strings of unbounded size has always
been tricky [17, 10, 18]. Indeed, with the standard definition, a Pac-Learner can
ask an Oracle to return a sample randomly drawn according to the distribu-
tion D. However, in the case of strings, there is always the risk (albeit small) to
sample a string too long to account for in polynomial time. In order to avoid this
problem, we will sample from a distribution restricted to strings shorter than a
specific value given by the following lemma:

Lemma 1. Let D be a distribution over Σ⋆. Then ∀ǫ, δ > 0, with probability at
least 1 − δ, if one draws a sample X of at least 1

ǫ
ln 1

δ
strings following D, then

the probability of any new string x to be longer than all the strings of X is less
than ǫ. Formally, let µX = max{|y| : y ∈ X}, then Prx∼D(|x| > µX) < ǫ.

Proof. Let ℓ be the smallest integer s.t. PrD(Σ>ℓ) < ǫ. A sufficient condition for
PrD(|x| > µX) < ǫ is that we take a sample X large enough to be nearly sure
(with probability > 1 − δ) to have one string ≥ ℓ. Basically, the probability of
drawing n strings in X of length < ℓ is ≤ (1− ǫ)n. So the probability of getting
at least one string of length ≥ ℓ is > 1 − (1 − ǫ)n. In order to build X , we thus
need 1 − (1 − ǫ)n > 1 − δ, that is to say, (1 − ǫ)n < δ. As (1 − ǫ)n ≤ e−nǫ, it is
sufficient to take n ≥ 1

ǫ
ln 1

δ
to reach a convenient value for µX . ⊓⊔



An algorithm is now asked to learn a grammar given a confidence parameter
δ and an error parameter ǫ. The algorithm must also be given an upper bound
n on the size of the target grammar and an upper bound m on the length
of the examples it is going to get (perhaps computed using Lemma 1). The
algorithm can query an Oracle for an example randomly drawn according to the
distribution D. The query of an example or a counter-example will be denoted
Ex(). When the Oracle is only queried for a positive example, we will write
Pos-Ex(). And when the Oracle is only queried for string of length ≤ m, we
will write Ex(m) and Pos-Ex(m) respectively. Formally, the Oracle will then
return a string drawn from D, or D(L(G)), or D(Σ≤m), or D(L(G) ∩ Σ≤m),
respectively, where D(L) is the restriction of D to the strings of L: PrD(L)(x) =
PrD(x)/PrD(L) if x ∈ L, 0 otherwise. PrD(L)(x) is not defined if L = ∅.

Definition 2 (Polynomial Pac-learnability). Let G be a class of grammars.
G is Pac-learnable ifdef there exists an algorithm A s.t. ∀ǫ, δ > 0, for any dis-
tribution D over Σ⋆, ∀n ∈ N, ∀G ∈ G of size ≤ n, for any upper bound m ∈ N

on the size of the examples, if A has access to Ex(), ǫ, δ, n and m, then with
probability > 1 − δ, A returns an ǫ-good hypothesis w.r.t. G. If A runs in time
polynomial in 1

ǫ
, 1

δ
, n and m, we say that G is polynomiallly Pac-learnable.

Typical techniques proving non Pac-learnability depend on complexity as-
sumptions [19]. Let us recall that RP (Randomised Polynomial Time) is the
complexity class of decision problems for which a probabilistic Turing machine
exists which (1) runs in time polynomial in the input size, (2) on a negative
instance, always returns No and (3) on a positive instance, returns Yes with
probability > 1

2 (otherwise, it returns No). The algorithm is randomised: it is
allowed to flip a random coin while it is running. The algorithm does not make
any error on negative instances, and it is important to remark that on positive
instances, since the error is < 1

2 , by repeating the run of the algorithm as many
times as necessary, the actual error can be brought to be as small as one wants.
We will use the strong belief and assumption that RP 6= NP [13].

We are going to show that the good balls are not polynomially Pac-learnable.
The proof follows the classical lines for such results: we first prove that the asso-
ciated consistency problem is NP-hard, through reductions from a well known
NP-complete problem (Longest Common Subsequence). Then it follows that
if a polynomial Pac-learning algorithm for balls existed, this algorithm would
provide us with a proof that this NP-complete problem would also be in RP .

Lemma 2. The following problems are NP-complete:

1. Longest Common Subsequence (Lcs): Given n strings x1, . . . , xn and
an integer k, does there exist a string w which is a subsequence of each xi

and is of length k?
2. Longest Common Subsequence of Strings of a Given Length (Lcssgl):

Given n strings x1, . . . , xn all of length 2k, does there exist a string w which
is a subsequence of each xi and is of length k?

3. Consistent ball (Cb): Given two sets X+ and X− of strings, does there
exist a good ball containing X+ and which does not intersect X−?



Proof. (1) See [20]. (2) See [21, page 42], Problem Lcs0. (3) We use a reduction
of Problem Lcssgl. We take the strings of length 2k, and put these with string
λ into the set X+. We build X− by taking each string of length 2k and inserting
every possible symbol once only (hence constructing at most n(2k+1)|Σ| strings
of size 2k +1). It follows that a ball that contains X+ but no element of X− has
necessarily a centre of length k and a radius of k (since we focus on good balls
only). The centre is then a subsequence of all the strings of length 2k that were
given. Conversely, if a ball is built using a subsequence of length k as centre,
this ball is of radius k, contains also λ, and because of the radius, contains no
element of X−. Finally the problem is in NP , since given a centre o, it is easy
to check if maxx∈X+

d(o, x) < minx∈X−
d(o, x). ⊓⊔

Theorem 1. Unless RP = NP, GB(Σ) is not polynomially Pac-learnable.

Proof. Suppose that GB(Σ) is polynomially Pac-learnable with A and take an
instance 〈X+, X−〉 of Problem Cb. We write h = |X+| + |X−| and define over
Σ⋆ the distribution Pr(x) = 1

h
if x ∈ X+ ∪ X−, 0 if not. Let ǫ = 1

h+1 , δ < 1
2 ,

m = n = max{|w| : w ∈ X+}. Let Br(o) be the ball returned by A(ǫ, δ, n, m)
and test if (X+ ⊆ Br(o) and X−∩Br(o) = ∅). If there is no consistent ball, then
Br(o) is inconsistent with the data, so the test is false. If there is a consistent
ball, then Br(o) is ǫ-good, with ǫ < 1

h
. So, with probability at least 1 − δ > 1

2 ,
there is no error at all and the test is true. This procedure runs in polynomial
time in 1

ǫ
, 1

δ
, n and m. So if the good balls were Pac-learnable, there would be

a randomized algorithm for the NP-complete Cb Problem (by Lemma 2). ⊓⊔

Concerning the Pac-learnability of the Dfa, a lot of studies have been done
[6, 10, 18, 19] The associated consistency problem is hard [22] and an efficient
learning algorithm could be used to invert the Rsa encryption function [10]:

Theorem 2 ([10]). DFA(Σ) is not polynomially Pac-learnable.

In certain cases, it may even be possible to Pac-learn from positive examples
only. In this setting, during the learning phase, the examples are sampled follow-
ing Pos-Ex() whereas during the testing phase, the sampling is done following
Ex(), but in both cases the distribution is identical. Again, we can sample using
Pos-Ex(m), where m is obtained by using Lemma 1 and little additional cost.
For any class L of languages, we get:

Lemma 3. If L contains 2 languages L1 and L2 s.t. L1 ∩L2 6= ∅, L1 6⊂ L2 and
L2 6⊂ L1, then L is not polynomially Pac-learnable from positive examples only.

Proof. Let w1 ∈ L1 − L2, w2 ∈ L2 − L1 and w3 ∈ L1 ∩ L2. Consider the
distribution D1 s.t. PrD1

(w1) = PrD1
(w3) = 1

2 and the distribution D2 s.t.
PrD2

(w2) = PrD2
(w3) = 1

2 . Basically, if one learns either L1 from positive ex-
amples drawn according to D2, or L2 from positive examples drawn according
to D1, only the string w3 will be used. However, the error will be ≥ 1

2 . ⊓⊔

Theorem 3. (1) GB(Σ) and (2) DFA(Σ) are not polynomially Pac-learnable
from positive examples only.

Proof. An immediate consequence of Lemma 3 with L1 = B1(a), L2 = B1(b),
w1 = aa, w2 = bb and w3 = ab. ⊓⊔



4 Query learning

Learning from queries involves the Learner (he) being able to interrogate the
Oracle (she) using queries from a given set [3]. The goal of the Learner is to
identify a grammar of an unknown language L. The Oracle knows L and properly
answers to the queries (i.e., she does not lie). Below, we will use three kinds of
queries. With the Membership Queries (Mq), the Learner submits a string w to
the Oracle and she answers Yes if w ∈ L, No otherwise. With the Equivalence
Queries (Eq), he submits (the grammar of) a language K and she answers Yes if
K = L, and a string belonging to K ⊕L otherwise. With the Correction Queries
based on the Edit Distance (CqEdit), he submits a string w and she answers Yes
if w ∈ L, and any correction z ∈ L at minimum edit distance of w otherwise.

Definition 3. A class G is polynomially identifiable from queries ifdef there is
an algorithm A able to identify every G ∈ G s.t. at any call of a query, the total
number of queries and of time used up to that point by A is polynomial both in
‖G‖ and in the size of the information presented up to that point by the Oracle.

In the case of good balls, we have shown:

Theorem 4 ([14]). (1) GB(Σ) is not polynomially identifiable from Mq and
Eq. (2) GB(Σ) is polynomially identifiable from CqEdit.

Notice however that if the Learner is given one string from a good ball, then he
can learn using a polynomial number of Mq only.

Concerning the class of the Dfa, we get:

Theorem 5. (1) DFA(Σ) is polynomially identifiable from Mq and Eq [15],
but is not from (2) Mq only [3], nor (3) Eq only [5], nor (4) CqEdit only.

Proof. (4) Let Aw denote the Dfa that recognizes Σ⋆ \{w}. Let n ∈ N and
DFA≤n = {Aw : w ∈ Σ≤n}. Following [5], we describe an Adversary that
maintains a set X of all the possible Dfa. At the beginning, X = DFA≤n.
Each time the correction of any string w is demanded, the Adversary answers
Yes and eliminates only one Dfa of X : Aw. As there is Ω(|Σ|n) Dfa in DFA≤n,
identifying one of them will require Ω(|Σ|n) queries in the worst case. ⊓⊔

5 Polynomial identification in the limit

Identification in the limit [2] is standard: a Learner receives an infinite sequence
of information (presentation) that should help him to find the grammar G ∈ G of
an unkown target language L ∈ L. The set of admissible presentations is denoted
by Pres, each presentation being a function N → X where X is any set. Given
f ∈ Pres, we will write fm for the m + 1 first elements of f, and f(n) for its nth

element. Below, we will consider two sorts of presentations. When Pres=Text,
all the strings in L are presented: f(N) = L(G). When Pres=Informant, a
presentation is of labelled pairs (w, l) where (w ∈ L ⇒ l = +) and (w 6∈ L ⇒
l = −): f(N) = L(G)×{+}∪L(G)×{−}; we will write Pres = Presentation
for all the results that concern both Text and Informant.



Definition 4. We say that G is identifiable in the limit from Pres ifdef there
exists an algorithm A s.t. for all G ∈ G and for any presentation f of L(G),
there exists a rank n s.t. for all m ≥ n, A(fm) = A(fn) and L(A(fn)) = L(G).

This definition yields a number of learnability results. However, the absence
of efficiency constraints often leads to unusable algorithms. Firstly, it seems
reasonable that the amount of time an algorithm has to learn should be bounded:

Definition 5 (Polynomial Update Time). An algorithm A is said to have
polynomial update time ifdef there is a polynomial p() s.t., for every presentation
f and every integer n, computing A(fn) requires O(p(‖fn‖)) time.

It is known that polynomial update time is not sufficient [6]: a Learner could
receive an exponential number of examples without doing anything but wait,
and then use the amount of time he saved to solve any NP-hard problem. . .
Polynomiality should also concern the minimum amount of data that any Learner
requires:

Definition 6 (Polynomial Characteristic Sample). We say that G admits
polynomial characteristic samples ifdef there exist an algorithm A and a polyno-
mial p() s.t. for all G ∈ G, there exists Cs ⊆ X s.t. (1) ‖Cs‖ ≤ p(‖G‖), (2)
L(A(Cs)) = L(G) and (3) for all f ∈ Pres, for all n ≥ 0, if Cs ⊆ fn then
A(fn) = A(Cs). Such a set Cs is called a characteristic sample of G for A. If A

exists, we say that G is identifiable in the limit in Cs polynomial time.

Lastly, polynomiality may concern either the number of implicit prediction
errors [6] or the number of mind changes (Mc) [23] done by the learner:

Definition 7 (Implicit Prediction Errors). We say that an algorithm A

makes an implicit prediction error (Ipe) at time n of a presentation f ifdef
A(fn−1) 6⊢ f(n). A is called consistent ifdef it changes its mind each time a
prediction error is detected with the new presented element.

A identifies G in the limit in Ipe polynomial time ifdef (1) A identifies G

in the limit, (2) A has polynomial update time and (3) A makes a polynomial
number of implicit prediction errors: let #Ipe(f) = |{k ∈ N : A(fk) 6⊢ f(k + 1)}|;
there exists a polynomial p() s.t. for each G ∈ G and each presentation f of
L(G), #Ipe(f) ≤ p(‖G‖).

Definition 8 (Mind Changes). We say that an algorithm A changes its mind
(Mc) at time n of presentation f ifdef A(fn) 6= A(fn−1). A is called conservative
ifdef it never changes its mind when the current hypothesis is consistent with the
new presented element.

A identifies G in the limit in Mc polynomial time ifdef (1) A identifies G

in the limit, (2) A has polynomial update time and (3) A makes a polynomial
number of mind changes: Let #Mc(f) = |{k ∈ N : A(fk) 6= A(fk+1)}|; there
exists a polynomial p() s.t. for each G ∈ G and each presentation f of L(G),
#Mc(f) ≤ p(‖G‖).



Concerning both last notions, one can notice that if an algorithm A is con-
sistent then #Ipe(f) ≤ #Mc(f) for every presentation f. Likewise, if A is con-
servative then #Mc(f) ≤ #Ipe(f). So we deduce the following lemma:

Lemma 4. If A identifies the class G in Mc polynomial time and is consistent,
then A identifies G in Ipe polynomial time. Conversely, if A identifies G in Ipe
polynomial time and is conservative, then A identifies G in Mc polynomial time.

5.1 Polynomial identification from text

The aim of this section is to show the following result:

Theorem 6. GB(Σ) is identifiable in the limit from Text in (1) Mc polyno-
mial time, (2) Ipe polynomial time and (3) Cs polynomial time.

Notice that as the Dfa recognize a superfinite class of languages (i.e., con-
taining all the finite languages and at least one infinite language), it is impossible
to identify the class in the limit from positive examples only:

Theorem 7 ([2]). DFA(Σ) is not identifiable in the limit from Text.

In order to prove Theo. 6, we will need to build the minimum consistent good
ball containing a set X = {x1, . . . , xn} of strings (sample). This problem is NP-
hard but some instances are efficiently solvable. Let Xmax (resp. Xmin) denote
the set of all longest (resp. shortest) strings of X . A minimality fingerprint is a
subset {u, v, w} ⊆ X s.t. (1) u, v ∈ Xmax, (2) w ∈ Xmin, (3) |u| − |w| = 2r for
some r ∈ N, (4) u and v have only one longest common subsequence, that is,
lcs(u, v) = {o} for some o ∈ Σ⋆, (5) |o| = |u| − r and (6) X ⊆ Br(o).

Checking if X contains a minimality fingerprint, and computing o and r can
be achieved in polynomial time (in ‖X‖). Indeed, the only critical point is that
the cardinal of lcs(u, v) may be > 1.442n [24] (where n = |u| = |v|); nevertheless,
a data structure such as the Lcs-graph [25] allows one to conclude polynomially.
Moreover, the minimality fingerprints are meaningful. Indeed, only the properties
of the edit distance are needed to show that if X contains a minimality fingerprint
{u, v, w} for the ball Br(o) and X ⊆ Br′(o′), then either r′ > r, or (r′ = r and
o′ = o). In other words, Br(o) is the smallest ball containing X w.r.t. the radius.

We can now consider Algo. 1. This algorithm does identify GB(Σ) in the
limit since if Br(o) denotes the target ball, then at some point, the algorithm will
meet the strings u = aro, v = bro, and some w of length |o| − r that constitute a
minimality fingerprint for Br(o). Moreover, it obviously has a polynomial update
time. Finally, it makes a polynomial number of Mc. Indeed, it only changes its
hypothesis in favour of a valid ball if the ball has a larger radius than all the valid
balls it has ever conjecture, that may happen ≤ r times. And it only changes its
hypothesis in favour of a junk ball if either it must abandon a valid ball, or if the
actual junk ball does not contain all the examples, that may happen ≤ r + 2r
times. So the total number of Mc is ≤ 4r. So Claim (1) holds.

Concerning Claim (2), note that Algo. 1 is consistent (thanks to the use
of the junk balls), thus Claim (2) holds by Lemma 4. Lastly, every minimality
fingerprint is a characteristic set that makes Algo. 1 converge, so Claim (3) holds.



Algorithm 1: Identification of good balls from text.

Data: A text f = {x1, x2, . . .}
read(x1); c← x1; output (x1, 0);
while true do

read(xi);
if f

i
is a minimality fingerprint for Br(o) then

output (o, r) (* valid ball *)
else

if c 6∈ fmax

i
then c← any string in fmax

i
;

output (c, |c|) (* junk ball *)
end

end

5.2 Polynomial identification from informant

Theorem 8. (1) GB(Σ) is not identifiable from Informant in Ipe polynomial
time, but is identifiable in (2) Mc polynomial time and (3) Cs polynomial time.

Proof. (1) Similar proof as that of [6] for the Dfa: if GB(Σ) was identifiable
in Ipe polynomial time from Informant, then GB(Σ) would be polynomially
identifiable from Eq, that contradicts Theo. 4. (2) As the hypotheses are not
necessarily consistent with the data, one can use Algo. 1, ignoring the negative
examples. (3) Same characteristic sets as those of Theo. 6, Claim (3). ⊓⊔

Theorem 9. (1) DFA(Σ) is not identifiable from Informant in Ipe polyno-
mial time [6], but is identifiable in (2) Mc polynomial time and (3) Cs polyno-
mial time [26, 27].

Let us prove Claim (2) with minimality fingerprints again. We say that X =
〈X+, X−〉 contains a minimality fingerprint ifdef the following conditions hold:
(1) let A = 〈Σ, Q, q0, F, δ〉 be the Dfa computed by Rpni [27] on X possibly
completed with one hole state; (2) for all q ∈ Q, the smallest string wq w.r.t. the
hierarchical order � s.t. δ(q0, wq) = q belongs to either X+ if q ∈ F , or X− if
q /∈ F ; (3) for all q ∈ Q, a ∈ Σ, wqa belongs to either X+ if δ(q, a) ∈ F , or X− if
δ(q, a) /∈ F ; (4) for all p, q, r ∈ Q, a ∈ Σ s.t. δ(p, a) = q 6= r, there exists f ∈ Σ⋆

s.t. either (wpaf ∈ X+, wrf ∈ X−), or (wpaf ∈ X−, wrf ∈ X+).
Notice that not all the Dfa have minimality fingerprints. Moreover, every

fingerprint contains a characteristic sample of A for Rpni [27], plus new infor-
mation: actually, all the states and the transitions of A are determined by the
fingerprint, so any other complete Dfa A′ compatible with X necessarily has
more states than A. A is thus the unique complete minimal Dfa compatible
with X . Lastly, checking if X contains a minimality fingerprint, and computing
A is achievable in polynomial time (in ‖X‖).

We can now define a Learner A. At each step, A tests if fi contains a mini-
mality fingerprint. If yes, A changes its mind in favour of the Dfa Ai returned
by Rpni on fi. If no, A returns the previous hypothesis (that may not be con-
sistent). Clearly, the number of states of Ai strictly increases (thanks to the



fingerprints). As this number is bounded by the number of states of the target
Dfa A, we get #Mc(f) ≤ ‖A‖. Moreover, at some point, a fingerprint (thus a
characteritic set of A) will appear in the data, and then A will converge. ⊓⊔

6 Conclusion

In this paper, we have performed a systematic study of two classes of languages
whose definitions is based on very different principles (see Table 1). Clearly, the
goal of this work was not to prove that any paradigm is equivalent or better
than any other: comparing two classes is not sufficient. Nevertheless, we have
shown that several hints were wrong. For instance, it is wrong to think that the
identification in Mc polynomial time implies the identification in Ipe polyno-
mial time. It is also wrong to think that it is easier to learn from positive and
negative examples (Informant) than from positive examples only (Text) (be-
cause in some paradigm, misclassifying negative examples is expensive in terms
of complexity). Finally, one can note that the good balls are not learnable from
a polynomial number of Mq and Eq, that is the case of the Dfa. As the balls
are finite languages, they are recognizable with Dfa. Thus a subclass of a learn-
able class could be non learnable! We conjecture, following [28, 16], that this is
because the size of the minimal Dfa recognizing a ball is exponential in the size
of the ball.

Table 1. A synthetic view of the results presented in this paper. † marks the theorems
proved above. Due to lack of space, the results concerning BALL(Σ) are just claimed.

Criterion GB(Σ) DFA(Σ) BALL(Σ)

Pac Inform. No† Theo. 1 No Theo. 2 No

Pac Text No† Theo. 3 (1) No† Theo. 3 (2) No

Ipe Inform. No† Theo. 8 (1) No Theo. 9 (1) No

Ipe Text Yes† Theo. 6 (2) No Theo. 7 No

Mc Inform. Yes† Theo. 8 (2) Yes† Theo. 9 (2) Yes

Mc Text Yes† Theo. 6 (1) No Theo. 7 No

Cs Inform. Yes† Theo. 8 (3) Yes Theo. 9 (3) No

Cs Text Yes† Theo. 6 (3) No Theo. 7 No

Mq (or Eq) No Theo. 4 (1) No Theo. 5 (2,3) No

Mq and Eq No Theo. 4 (1) Yes Theo. 5 (1) No

CqEdit Yes Theo. 4 (2) No Theo. 5 (4) No
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