
PJ, an algorithm for Contest BioGraph’14

Jean-Christophe Janodet1 and Frédéric Papadopoulos1

University of Evry, IBISC, F-91027, France
{janodet,fpapadopoulos}@ibisc.univ-evry.fr

Abstract. Graphs are usual data structures in Computational Biology
and Chemistry. Indeed, molecules and many biological structures can
easily be represented as graphs and stored in large databases. For this
reason and other applications in Image Analysis for instance, a lot of ex-
act and approximate matching algorithms have been proposed to address
the problem of searching for patterns in large graphs. In this paper, we
describe an exact algorithm, called PJ, tailored to participate to Contest
BioGraph’14. We develop both theoretical and empirical arguments
that explain the features of this algorithm.

1 Introduction

Graph matching is an old problem, that has been addressed with many tech-
niques and heuristics (see [CFSV04a,FPV14] for surveys). Several algorithms
are now well-established, in particular VF2 [CFSV04b] and Lad [Sol10]. See
[CFV13] for a comparison.

In this paper we to introduce a new algorithm, called PJ, that tackles the
problem of finding all the occurrences of a query (or pattern) graph in a target
graph. PJ stands in the category of exact pattern matching algorithms. Never-
theless, PJ was developed in the framework of Contest BioGraph’14, and is
doubtless optimized with respect to the databases provided by the organizers.

More precisely, there were 3 databases with similarities and proper charac-
teritics. Concerning the similarities, all the graphs are sparse, labeled, simple,
undirected (but for rare cases) and connected. Concerning the dissimilarities:

Molecules: This base is made of 50 query (or pattern) graphs, whose size varies
from 4 to 64 vertices with average degree 2, and 10 000 target graphs with 8
to 100 vertices with average degree 3. The labels are atomic symbols such as
C for Carbon, H for Hydrogen, Rare symbols such as Ag (Silver) or P
(Phosphorus) appear in many graphs. Notice that the arity of each symbol
(e.g., a Carbon should have 4 neighbours) is not preserved in the graphs,
perharps to keep them simple (that is, with no multiple edges).

Proteins: 60 queries with 8 to 256 vertices, and 300 targets with 535 to 10000
vertices. All the vertices have average degree 2, and the labels are the same
as those of base Molecules. Nevertheless, as the size of the graphs is quite
large, they are often close to chain graphs: the average treewidth is < 2.

2 J-C. Janodet & F. Papadopoulos

Contact Maps: 60 queries with 8 to 256 vertices and average degree 19, and
300 targets with 100 to 733 vertices and average degree 24. The labels are
the 22 amino acids, and within each graph, using the labels to distinguish
the vertices is very discriminating.

Due to the important disparities between the bases, one possibility was to
create several algorithms, each of them tailored to solve specific problems sep-
arately. However, we have decided to investigate a general procedure, unique
for all the graphs, which may adapt itself to the characteristics of each graphs
dynamically.

The theoretical background of our algorithm has its roots in some papers
dealing with the isomorphism problem [BES80,Cod13] where the authors study
the possibility to distinguish the vertices of a graph by using criteria such as
the degree sequences and the distance sequences. They show that the labeling
problem can be efficiently solved with high probability for random graphs with
respect to several types of distributions over the graphs. This implies that the
isomorphism problem itself can be solved efficiently on random graphs. PJ also
uses the degree sequences as a criterion to compute the possible assignments of
any query vertex.

In Section 2, we recall main definitions and properties about subgraph match-
ing. Section 3 aims at describing the principle of the PJ algorithm; we develop
the procedure and prove the correctness of the algorithm. Finally, Section 4 fo-
cuses on the heuristics used by PJ to prune the search tree and improve the
efficiency. A comparison of PJ with other standard algorithms is still in progress
and not presented here.

2 Preliminaries

Let G = 〈X,A〉 be a directed graph, where X denotes the set of vertices and A
the set of arcs (that is, directed edges). We assume that the vertices are labeled,
that is, there exist a finite set L, fixed and unique for all the graphs, and a
mapping lab : X → L that assigns label lab(u) to every vertex of u of G.

Given an arc (u, u′) ∈ A, we say that vertex u′ is a successor of vertex u,
and that u is a predecessor of u′. As usual, we denote by deg+(u) the outdegree
of vertex u, i.e., the number of successors of u, and deg−(u) the indegree of
vertex u, that is, the number of predecessors.

More generally, we say that vertex u′ is a k-successor of vertex u if u′ is a
successor of a (k − 1)-successor of u. We recursively definesucc0(u) = {u},

succ1(u) = {u′ : (u, u′) ∈ A},
succk(u) = {u′′ : ∃u′ ∈ succk−1(u) ∧ (u′, u′′) ∈ A} for all k > 1.

We similarly define k-predecessors and sets predk(u).
Note that the k-successors of a vertex are different from its k-neighbours: The

former are the vertices which are linked to vertex u with a sequence of arcs of

PJ, an algorithm for Contest BioGraph’14 3

length k, whereas the latter are the vertices whose distance to u is k. E.g., in the
case of an undirected graph, if (u, u′) ∈ A, then (u′, u) ∈ A, thus u ∈ succ2(u),
but u is at distance 0 from itself.

Let Q = 〈XQ, AQ〉 and T = 〈XT , AT 〉 be two labeled digraph, respectively
called the query graph and the target graph. We usually use u or u′ for the query
vertices (of Q), and v or v′ for the target vertices (of T).

Definition 1. We say that Q is a subgraph of T if there exists a mapping
h : XQ → XT , called a matching function, such that

1. h is an injective function: for all u, u′ ∈ XQ, u 6= u′ =⇒ h(u) 6= h(u′);
2. h preserves the labels: for all u ∈ XQ, lab(u) = lab(h(u));
3. h preserves the arcs of Q: for all u, u′ ∈ XQ,

(u, u′) ∈ AQ =⇒ (h(u), h(u′)) ∈ AT ;

4. h preserves the absence of arcs in Q: for all u, u′ ∈ XQ,

(u, u′) 6∈ AQ =⇒ (h(u), h(u′)) /∈ AT .

This definition corresponds to that of induced subgraphs. If Condition 4 is
skipped, we get the notion of partial subgraphs, which is out of the scope of
Contest BioGraph’14.

Determining whether a query graph is an (induced or partial) subgraph of a
target graph is an NP-complete problem [GJ79], thus enumerating all matching
functions is intractable. In order to get round of this problem, standard tech-
niques consist in developing a search tree that explores all possible query vertex
assignments until finding a solution.

Nevertheless, for efficiency reasons, the search tree is generally pruned by
using one or several consequences of Def. 1. In our contribution to Contest Bi-
oGraph’14, we have been using the following ones:

Proposition 1. Let Q = 〈XQ, AQ〉 and T = 〈XT , AT 〉 be two labeled digraph,
h : XQ → XT a matching function, and u, v two vertices such that h(u) = v.
Then:

1. lab(u) = lab(v), and deg+(u) ≤ deg+(v), and deg−(u) ≤ deg−(v);
2. h(succ1(u)) ⊆ succ1(v) and h(pred1(u)) ⊆ pred1(v);
3. h(succ1(u)) ⊆ succ1(v) and h(pred1(u)) ⊆ pred1(v);
4. for all k ≥ 0, h(succk(u)) ⊆ succk(v) and h(predk(u)) ⊆ predk(v).

Proof. The degree relations of Claim 1 is a direct consequence of Claim 2, which
is itself an instance of Claim 4 for k = 1. Concerning Claim 4, Case k = 0
is straightforward. Suppose that h(succk(u)) ⊆ succk(v) for some k ≥ 0 and
let u′ ∈ succk+1(u). There exists u′′ ∈ succk(u) such that u′ ∈ succ1(u

′′). By
induction hypothesis, we have h(u′′) ∈ succk(v). Moreover, as u′ ∈ succ1(u

′′), we
deduce that (u′′, u′) ∈ AQ, so (h(u′′), h(u′)) ∈ AT , that is, h(u′) ∈ succ1(h(u

′′)).
Therefore, h(u′) ∈ succ1(succk(v)) = succk+1(v). Finally, concerning Claim 3,
let u′ /∈ succ1(u), then (u, u′) /∈ AQ, so (h(u), h(u′)) /∈ AT , that is, h(u′) /∈
succ1(v), thus h(succ1(u)) ⊆ succ1(v). Notice that Claim 3 does not hold with
k-successors if k ≥ 2. ut

4 J-C. Janodet & F. Papadopoulos

3 The PJ Algorithm

3.1 Principle

Algorithm PJ aims at finding all the matching functions between a query graphQ
and a target graph T . As the problem is NP-hard, our procedure consists in con-
structing and exploring a search tree where we progressively build the solutions.

A node N of the search tree contains:

– a function dom : XQ → 2XT that gives, for each query vertex, the set of
target vertices to which it is or it may be assigned;

– a set U ∈ XQ of query vertices that have not been assigned yet;
– a partial solution, that is, a set S of couples (u, v) where u is a query vertex

that has been assigned to target vertex v;
– the set of all complete solutions that have already been found at this point

of the exploration of the search tree.

When exploring the search tree rooted by nodeN , PJ may face two situations.
Either there is no more unassigned query vertex (that is, U = ∅); in this case, we
shall prove that (complete) solution S is necessarily a matching function from
Q to T . Thus this solution is kept in the set of all complete solutions, and PJ
backtracks.

Or, PJ selects an unassigned query vertex u ∈ U , and creates, for each
possible target vertex vi ∈ dom(u), a new node Ni where u is assigned to vi in
new partial solution. Then, in node Ni, PJ reduces the domains of the query
vertices by taking into account new assignment (u, vi) and its consequences.
Finally, PJ recursively explores the subtree rooted by node Ni.

PJ backtracks if dom(u) is empty when query vertex u is selected. Also,
before recursion, PJ regularly checks if any domain is empty and in this case,
stops the exploration and backtracks.

3.2 Main procedures

See Algorithms 1, 2 and 3.

Algorithm 1: PJ(Q,T)
Input: Two labeled digraphs Q and T
Output: The list of all the matching functions from Q to T

1 if ImmediateFailCriteria(Q,T) then /* see Section 4.5 */
2 return (∅);
3 else
4 N ← CreateInitialNode(Q,T);
5 ExploreTree(N,Q,T);
6 return (N.all_solutions);

PJ, an algorithm for Contest BioGraph’14 5

Algorithm 2: CreateInitialNode(Q,T)
Input: Two labeled digraphs Q and T
Output: A node N, that is, a record whose fields are:
– unassigned: the list of query vertices that have not been assigned yet;
– domains: an array that gives, for each query vertex, the list of target vertices to

which it may be assigned;
– current_solution: a list of couple (u,v) where u is a query vertex u, and v is its

assignment in graph T;
– all_solutions: the list of matching functions that have already been found.

1 N ← new node();
2 N.unassigned ← XQ;
3 N.current_solution ← ∅;
4 N.all_solutions ← ∅;
5 for u ∈ XQ and v ∈ XT do
6 if lab(u) = lab(v) and deg+(u) ≤ deg+(v) and deg−(u) ≤ deg−(v) then
7 N.domains.(u) ← N.domains.(u) ∪ { v };

8 N.domains ← RefineInitialDomains(N,Q,T) /* see Section 4.1 */;
9 return N ;

3.3 Correctness of PJ

Before describing the heuristics that are used to prune the search tree, we show
that PJ is correct, that is, all the solutions returned by PJ are effective matching
functions.

This question is unavoidable since in lines 1-2 of Procedure ExploreTree,
as soon as all the query vertices have been assigned to target vertices, we do not
check whether the current solution satisfies the Conditions of Definition 1 before
we add it to the set of complete solutions.

Theorem 1. When all the query vertices have been assigned to target vertices,
any (complete) solution S is the graph of a matching function from graph Q to
graph T .

In order to prove this result, we first show that in each node of the search
tree, partial solution S satifies following invariants:

1. if (u, v) ∈ S, then lab(u) = lab(v), and
2. if (u, v1) ∈ S and (u, v2) ∈ S then v1 = v2, and
3. if (u1, v) ∈ S and (u2, v) ∈ S then u1 = u2.

Concerning Claim 1, the initial domain of query vertex u is made of target
vertices with the same label as u (line 6 of Function CreateInitialNode).
Since vertex v comes from this domain when (u, v) is added to S (line 7 of
Proc. ExploreTree), we deduce that lab(u) = lab(v).

Claim 2 comes from the fact that when u is selected from the list of unassigned
query vertices (line 4 of Proc. ExploreTree), we immediately eliminate u from

6 J-C. Janodet & F. Papadopoulos

Algorithm 3: ExploreTree(N,Q,T)
Input: A node N of the search tree, the digraphs Q and T
Output: Void, but N.all_solution is the set of all matching functions

1 if N.unassigned = ∅ then
2 N.all_solutions ← { N.current_solution } ∪ N.all_solutions

3 else
4 u ← SelectUnassignedVertex(N,Q) /* see Section 4.2 */;
5 for v ∈ N.domains.(u) do
6 P ← new node();
7 P.current_solution ← N.current_solution ∪ { (u,v) } ;
8 P.unassigned ← N.unassigned \ { u };
9 P.domains ← copy N.domains;

10 P.domains.(u) ← { v };
11 for u’ ∈ P.unassigned do
12 P.domains.(u’) ← P.domains.(u’) \ { v };
13 for u’ ∈ XQ do
14 if u’ ∈ succ1(u) then
15 P.domains.(u’) ← P.domains.(u’) ∩ succ1(v);

16 else
17 P.domains.(u’) ← P.domains.(u’) \ succ1(v);

18 P.domains ← RefineDomainsFurthermore(P,Q,T,u,v) /* see
Section 4.3 */;

19 if NoEmptyDomains(P.domains) = true then /* see Section 4.4 */
20 P.all_solutions ← N.all_solutions;
21 ExploreTree(P,Q,T);
22 N.all_solutions ← P.all_solutions;

the list of unassigned vertices (line 8 of Proc. ExploreTree). So if (u, v1) is
added to S, there is no way to further add (u, v2) to S.

As for Claim 3, it comes from the fact that when (u1, v) is added to S (line 7
of Proc. ExploreTree), we eliminate v from the domain of unassigned query
vertices (lines 11-12 of Proc. ExploreTree). So there is no way to further
assign v to any other unassigned query vertex u2.

Hence, by Claims 1, 2 and 3, we deduce that when all the query vertices
have been assigned, complete solution S is the graph of a injective function
h : XQ → XT that preserves the labels of Q, thus h fulfills Conditions 1 and 2
of Def. 1.

In order to establish Conditions 3 and 4, we use both following invariants:

4. if (u, v) ∈ S and u′ ∈ succ1(u) and (u′, v′) ∈ S, then v′ ∈ succ1(v), and
5. if (u, v) ∈ S and u′ /∈ succ1(u) and (u′, v′) ∈ S, then v′ /∈ succ1(v).

Both these Claims come from lines 13-17 of Procedure ExploreTree. In-
deed, when couple (u, v) is added to S (line 7 of Proc. ExploreTree), we filter

PJ, an algorithm for Contest BioGraph’14 7

the domain of every successor u′ of u with successors of v (line 15 of Proc. Ex-
ploreTree). This is sound with respect to Claim 2 of Prop. 1. The consequence
is that when any successor u′ of u is further selected and (u′, v′) added to S,
then v′, which is necessarily selected from dom(u′), is a successor of v.

As for Claim 5, when couple (u, v) is added to S, we eliminate all the succes-
sors of v from the domain of non successors of u (line 17 of Proc. ExploreTree).
This is sound with respect to Claim 3 of Prop. 1. The consequence is that when
any non successor u′ of u is further selected and (u′, v′) added to S, then v′,
which is necessarily selected from dom(u′), is a non-successor of v.

Now by Claims 4 and 5, we get that when all the query vertices have been
assigned, complete solution S is the graph of a function h : XQ → XT that both
preserves the presence and the absence of arcs in Q. In other word, h fulfills
Conditions 3 and 4 of Def. 1, what completes the proof.

4 The heuristics of PJ

4.1 Initial domains of the variables

We here develop the alternatives that we have considered for function Re-
fineInitialDomains(Q,T) of function CreateInitialNode.

Firstly, a query vertex u can only be matched with a target vertex v for which
Condition 1 of Prop. 1 is satisfied. So we set:

N.domains.(u)← {v : lab(u) = lab(v)∧deg+(u) ≤ deg+(v)∧deg−(u) ≤ deg−(v)}.

It could be possible to be less restrictive, e.g., by setting N.domains.(u)
to XT . This choice is probably the best for very small query graphs of base
Molecules 4, up to that fact that one must now check whether a complete so-
lution is a matching function or not (since Condition 2 of Def. 1 is no more
guaranteed). Nevertheless, for most graphs of Contest BioGraph’14, some la-
bels rarely appear, and in this case, the domain of corresponding query vertices is
very small. Moreover, some labels are very common, thus considering the degree
of corresponding vertices helps to reduce their domain.

Secondly, we have exploited Condition 2 of Prop. 1 as follows: suppose that
N.domains.(u) = {v1, . . . vn} and u′ ∈ succ1(u); in this case, u′ can only be
assigned to a target vertex which is a successor of v1, . . . vn. In other words, we
can reduce the domain of u′ with:

N.domains.(u′)← N.domains.(u′) ∩

(
n⋃

i=1

succ1(vi)

)
.

We can use this reduction rule until convergence, that is, as long as we
do not reach a fixpoint where all the domains are irreducible. In practice, this
strategy was interesting for most query graphs of bases Molecules and Contact
Maps, as the convergence occurred after 2 or 3 iterations. However, in the case
of Proteins, convergence could occur after hundreds of iterations, and in this

8 J-C. Janodet & F. Papadopoulos

case, the computation cost of the reduction was much larger than its benefits.
Therefore, we have decided to stop the reduction after D = 5 iterations, even if
at this stage the convergence had not occurred. This threshold was empirically
fixed.

At this point, let min_init_dom be the smallest size over all the domains
of query vertices. We have empirically observed 3 typical situations. Either the
reduction process has converged and min_init_dom is very small, that is, there
exists at least one query vertex that cannot be assigned to any target vertex, or
necessarily to 1 vertex, sometimes 2 at most. In this case, procedure Explore-
Tree starts the exploration of the tree with such a vertex (see Section 4.2), that
allows matching functions to be discovered rapidly, and limits the depth where
fail node may appear in the search tree.

Or the convergence of the reduction process has occurred butmin_init_dom
is still quite large, e.g., 60 target vertices. We particularly saw this phenomenon
on small graphs of bases Molecules 8 and Proteins 8, where the labels of the
vertices are common, the degrees are low, thus our criteria to define the initial
domains are not discriminant. In this case, the best choice is to pass the deal
to procedure ExploreTree: assigning any query vertex u to some target ver-
tex v dramatically reduces the domains of the successors of u (lines 13-15 of
Proc. ExploreTree), and a large value min_init_dom is not a problem, a
posteriori.

Or the reduction process has not converged after 5 iterations and the value
of min_init_dom is very large, that is, the smallest domain may contain more
than 200 target vertices, and up to 800 target vertices. This is often the case with
large graphs of bases Proteins 128 and Proteins 256. The point here is that even
though we pass the deal to procedure ExploreTree, successive assignments of
query vertices often have little impact on the reduction of other domains for such
graphs. So we have decided to postpone further domain reductions to function
RefineDomainsFurthermore (line 18 of Proc. ExploreTree), which uses
the value of min_init_dom as a parameter (see Section 4.3).

Lastly, we could have used Condition 3 of Prop. 1 as follows: suppose that
N.domains.(u) = {v1, . . . vn} and u′ /∈ succ1(u); in this case, u′ cannot be
assigned to any target vertex which would be a common successor to v1, . . . vn.
In other words, we could reduce the domain of u′ with:

N.domains.(u′)← N.domains.(u′) \

(
n⋂

i=1

succ1(vi)

)
.

We did not develop this idea in the framework of Contest BioGraph’14 because
all the graphs are sparse, so the degree of the vertices is very low. Therefore, in
the target graphs, it is almost always the case that the intersection of the sets
of successors of v1, . . . vn is empty, whereas the computation cost of such a rule
is not null. This rule might be interesting if we had to deal with dense graphs.

PJ, an algorithm for Contest BioGraph’14 9

4.2 Choice of the next vextex to assign

This choice is made by function SelectUnassignedVertex(N,Q) at line 4
of procedure ExploreTree: we consider all unassigned query vertices, and
compare them with respect to the size of their current domain; then we select
the vertex whose domain is the smallest.

In the case where several vertices have the same domain size, we select the
vertex which has the maximum number of successors. Indeed, once a query vertex
is matched, PJ reduces the domains of its successors (see Section 4.3), so this
heuristics favours a large number of domain reductions afterwards.

And in case of equality, we also consider the number of 2-successors of the ver-
tices, and also try to maximise it for the same reason. Note that it is sometimes
interesting to consider k-successors for k ≥ 3, in particular when the algorithm is
used on large graphs of base Proteins. But the computation cost of this operation
is prohibitive for other bases and we did not keep this idea.

4.3 Domain reduction during the exploration of the search tree

We have already seen that whenever a query vertex u is assigned to any target
vertex v, procedure ExploreTree modifies and adapts the domain of other
query vertices. Indeed, lines 8-17 are necessary to get a matching function from
graph Q to graph T when the set of unassigned vertex is empty, as shown in
Section 3.3.

Further refinements are performed by function RefineDomainsFurther-
more, which makes use of Condition 4 of Prop. 1, that is, if vertex u is assigned
to vertex v, then every k-successor of v, for k ≥ 2, must be assigned to some
k-successor of v. We use this rule for 2-successors, 3-successors, . . . up to a max-
imum threshold max_dist that we discuss below. Notice that the distinction
we made about successors with respect to neighbours is important here, since
several reductions of the same domain can yield an empty domain, which allows
the algorithm to backtrack precociously.

Concerning parameter max_dist, there is about O
(
av_degmax_dist

)
do-

mains to reduce each time the algorithm assigns a query vertex to a target
vertex, where av_deg denotes the average degree of the query graph. So a large
value of max_dist can penalize the execution time of the algorithm, even though
this rule dramatically reduces many domains.

After several experiments, we have finally decided to relate this parameter
with the minimal size min_init_dom of initial domains (defined in Section 4.1)
as follows:

max_dist = 2 +

⌊
min_init_dom

100

⌋
.

Indeed, once initial domains reduction is performed, most graphs have do-
mains of small size. In this case, it is useless to refine the domains of successors at
a distance greater than 2 in procedure ExploreTree. On the other hand, when
the refinement process of initial domains evolves so slowly that we have to stop

10 J-C. Janodet & F. Papadopoulos

it before convergence, the query graphs can have very large initial domains, and
for these graphs, it is often interesting to refine the domains of far k-successors.

For instance, with min_init_dom = 364, which is quite common with base
Proteins 256, the algorithm will refine all the domains of 1-, 2-, 3-, 4- and 5-
successors of every query vertex u that is assigned to some target vertex.

4.4 Testing the emptyness of the domains

Each time a domain is reduced, it is interesting to check if it became empty, what
function NoEmptyDomains performs (line 19 of Proc. ExploreTree). In this
case, the corresponding query vertex cannot be matched with any target vertex,
and the algorithm has to backtrack. Nevertheless, this verification is not costless,
because many vertices can have their domain reduced after each assignment.

More precisely, our experiments have showed that for small query graphs,
with less than 8 vertices, procedure ExploreTree was more efficient if it never
checked the emptyness of any reduced domain. As for large graphs, the price of
a systematic testing was also challenging.

So we have decided to test the emptyness of the domains every 9 performed
assignments only. This empirical value appeared to be a good tradeoff between
the cost of the verification, and the capacity to early detect dead branches of
the search tree. An improved mechanism would aim at finding the best parent
node of the search tree where to backtrack in this case.

4.5 Immediate fail criteria

We here explain function ImmediateFailCriteria(Q,T). Motivated by the
enumeration of matching functions in the framework of induced subgraphs (as
opposed to partial graphs) over connected graphs, we have considered following
criteria which allows PJ to declare no solution immediately:

– if Q has strictly more vertices than T ;
– if Q has strictly more arcs than T ;
– if Q and T have the same number of vertices, but not the same number of

arcs: indeed, Q and T must be isomorphic in this case;
– if Q and T have the same number of arcs, but not the same number of

vertices: indeed, Q and T are connected, so this situation also requires Q
and T to be isomorphic;

– if Q is a directed graph and T a non-directed graph: Q could be a partial
subgraph of T , but not an induced subgraph;

– if LabQ 6⊆ LabT , where LabQ and LabT denote the multisets of labels in Q
and T respectively. E.g., if Q contains three Carbon (among others), and T
only two Carbon, then the matching is impossible.

References

[BES80] L. Babai, P. Erdös, and S. M. Selkow. Random graph isomorphism. SIAM
Journal of Computing, 9(3):628–635, 1980.

PJ, an algorithm for Contest BioGraph’14 11

[CFSV04a] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recog-
nition and Artificial Intelligence, 18(3):265–298, 2004.

[CFSV04b] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(10):1367–1372, 2004.

[CFV13] V. Carletti, P. Foggia, and M. Vento. Performance comparison of five exact
graph matching algorithms on biological databases. In Proc. International
Conference on Image Analysis and Processing (ICIAP’13), pages 409–417.
LNCS 8158, 2013.

[Cod13] P. Codenotti. Distinguishing vertices of inhomogeneous random graphs.
Technical Report IMA Preprint Series 2419, Institute for Mathematics and
its Applications, University of Minnesota, Minneapolis, Minnesota, July
2013.

[FPV14] P. Foggia, G. Percannella, and M. Vento. Graph matching and learning in
pattern recognition in the last 10 years. International Journal of Pattern
Recognition and Artificial Intelligence, 28(1), 2014.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[Sol10] C. Solnon. Alldifferent-based filtering for subgraph isomorphism. Artificial
Intelligence, 174(12-13):850–864, 2010.

