
Computing the Overlaps of Two Maps

Jean-Christophe Janodet1 and Colin de la Higuera2?

1 IBISC Lab, University of Evry, 23 Bd de France, F-91037 Evry, France,
janodet@ibisc.univ-evry.fr

2 LINA Lab, University of Nantes, 2 R de la Houssinière, F-44322 Nantes, France,
cdlh@univ-nantes.fr

Abstract. Two combinatorial maps M1 and M2 overlap if they share a
sub-map, called an overlapping pattern, which can be extended without
conflicting neither with M1 nor with M2. Isomorphism and subisomor-
phism are two particular cases of map overlaps which have been studied
in the literature. In this paper, we show that finding the largest connected
overlap between two combinatorial maps is tractable in polynomial time.
On the other hand, without the connectivity constraint, the problem is
NP-hard. To obtain the positive results we exploit the properties of a
product map.
Keywords. 2D semi-open combinatorial maps, overlaps, overlapping
patterns, product map.

1 Introduction

2D-combinatorial maps are algebraic structures which allow to describe and work
with plane graphs, that is, embeddings of planar graphs. Using such structures
has allowed to establish several algorithmic properties. E.g., it is possible to
decide whether two drawings of planar graphs, or two maps, are isomorphic or
not in quadratic time [1–3]. Moreover, deciding whether a pattern (i.e., a draw-
ing made of a connected subset of faces) appears in a map is also tractable in
quadratic time; this property is interesting since determining whether a con-
nected graph is a sub-graph of a planar graph is known to be an NP-complete
problem [4, 5, 3]. So focusing on a particular drawing of a planar graph (among
possibly an exponential number of possibilities) is very helpful from an algo-
rithmic point of view. It has also been shown that searching for a disconnected -
pattern, built from several unconnected patterns, is an NP-hard problem [3].

A related problem consists in finding large common patterns in two maps. In
order to get a common pattern, one must eliminate subsets of faces from both
maps and obtain the same pattern up to an isomorphism. E.g., in Fig. 1, map (c)
is the maximum common pattern of maps (a) and (b); the eliminated faces are
shown with dotted lines. It has been proved in [6] that computing such large
common patterns is an NP-hard problem, even when patterns are connected.

In this paper, we constrain the definition of common patterns: we now require
the pattern to be extendable to both maps when adding independent groups of

? The second author wishes to acknowledge the support of University of Kyoto

2 Jean-Christophe Janodet and Colin de la Higuera

faces. Independence means that if any new face is added in a connected way to
the common pattern, then the result ceases to be a pattern of one of the two
maps; moreover, if any face is added to the pattern in order to get one of the
maps, then no face can be added at the same place in the pattern to get the
second map. See Fig. 1 (d) for an example. Every common pattern that has this
property results of an overlap between both maps, where pairs of faces of both
maps were merged together: such an overlap defines an overlapping pattern.

(a) (b) (d)(c)

Fig. 1. Maps (a) and (b) have map (c) as maximal common pattern, and map (d) as
maximal overlapping pattern. Dotted lines are construction features, and do not belong
to the maps.

Notice that the overlapping patterns can be smaller than the maximal com-
mon patterns. On the other hand, while the latter are not tractable in polynomial
time [6], we show in this paper that computing any connected overlap is tractable
in linear time, and enumerating all of the connected overlap is a quadratic-time
problem. It follows that finding the largest connected overlap can also be done
in polynomial time and space. In contrast, we prove that finding large possibly
disconnected overlaps is NP-hard.

Finally, in terms of applications, every maximal overlapping pattern O yields
a distance defined by: d(M1,M2) = size(M1) + size(M2)− 2.size(O). If one can
find any maximal overlap in polynomial time, distance d is efficiently computable,
and may then be used as an efficient rough approximation to tighter NP-hard
graph edit distances.

In Sect. 2, we recall the definitions of full and semi-open maps. The over-
laps are introduced in Sect. 3, and the overlapping patterns in Sect. 4. The
polynomial problems, related to the existence and the enumeration of the con-
nected overlaps, are investigated in Sect. 5. The correctness of both algorithms is
proved in Appendix, due to the lack of space. The case of disconnected overlaps
is discussed in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Combinatorial Maps

Definition 1. Let D be a finite set of darts. A 2D full combinatorial map is
a triple M = (D,α, β) such that (1) α : D → D is a 1-to-1 mapping (i.e., a
permutation over D), and (2) β : D → D is a 1-to-1 mapping such that for all

Computing the Overlaps of Two Maps 3

d ∈ D, β(β(d)) = d (i.e., an involution over D). Two darts d and d′ such that
d′ = α(d) or d′ = β(d) are respectively said α-sewn or β-sewn.

Figure 2 shows an example of a full map. Notice that, given a dart d, the
face which is incident to d is obtained by iterating α. E.g., in Fig. 2, the face
incident to dart 12 is described with set {12, 13, 14, 15} and we have α(12) = 13,
α(13) = 14, α(14) = 15 and α(15) = 12. Similarly, the edges and the vertices of
a full map are respectively introduced as the orbits of permutations β and β ◦α.

7
9

11

12

6

13 16

8 10

5

4

17

18

314

2

151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
α 2 3 4 5 6 7 1 9 10 11 8 13 14 15 12 17 18 16
β 15 14 18 17 10 9 8 7 6 5 12 11 16 2 1 13 4 3

Fig. 2. An example of full map. The darts are represented by numbered black seg-
ments. Two α-sewn darts are drawn consecutively, and two β-sewn darts are drawn
concurrently and in reverse orientation, with little gray segment between them.

All the faces of a full map are defined, which is irrelevant if this map is
expected to overlap with others; some faces must be invisible, so function β
must be partially defined. This leads us to introduce semi-open maps, simply
called maps throughout the rest of this paper [7]. The idea is to implicitly add
a new element ε to the set of darts, and allow any dart to be β-linked with ε
whenever such a dart has no adjacent face. Figure 3 shows an example.

f

a

b

d

g

c e
a b c d e f g

α b c d a f g e
β ε ε e ε c ε ε

Fig. 3. An example of (semi-open) map. Darts a, b, d, f and g are not β-sewn.

Definition 2. Let D be a finite set of darts and ε 6∈ D a fresh implicit dart. A
semi-open map, or simply map, is a triple M = (D,α, β) such that

– α : D ∪ {ε} → D ∪ {ε} is a 1-to-1 mapping with α(ε) = ε;

4 Jean-Christophe Janodet and Colin de la Higuera

– β : D ∪ {ε} → D ∪ {ε} is a partial involution [8, Definition 4], that is, a
mapping such that (1) β(ε) = ε and (2) for all d ∈ D, if β(d) 6= ε, then
β(β(d)) = d.

The complexity of the problems that we address on the maps is often re-
lated to connectivity. For instance, searching for a connected pattern (subset
of contiguous faces) in a map is a quadratic problem, whereas searching for a
disconnected pattern (subset of independent patterns) is NP-complete [8].

Definition 3. Let M = (D,α, β) be a semi-open map. Any subset U ⊆ D is
connected in map M if for all d, d′ ∈ U , there exists a sequence d0, d1, . . . dn ∈ U
such that (1) d0 = d and (2) dn = d′ and (3) for all 0 ≤ k < n, we have
dk+1 = γk(dk) with γk = α or γk = β. We say that map M is connected if set
D itself is connected in map M .

3 The Overlaps of Two Maps

An overlap is a maximal one-to-one matching. Let M1 = 〈D1, α1, β1〉 and M2 =
〈D2, α2, β2〉 be two fixed semi-open maps.

Definition 4. A (one-to-one) matching is a function h : U1 → U2 such that

1. U1 ⊆ D1 and U2 ⊆ D2,
2. h is bijective,
3. for all d1 ∈ U1 and d2 = h(d1),

– α1(d1) ∈ U1 if and only if α2(d2) ∈ U2, and h(α1(d1)) = α2(d2);
– β1(d1) ∈ U1 if and only if β2(d2) ∈ U2, and h(β1(d1)) = β2(d2).

An example is given in Fig. 4. Notice that ε 6∈ U1 and ε 6∈ U2 (since ε 6∈ D1

and ε 6∈ D2); nevertheless, for convenience reasons, we shall implicitly suppose
that h(ε) = ε.

1 3

2

5

4

6 7

11 15

8

9 13

1210 14

Fig. 4. Consider the maps M1 and M2 above. Mapping h = {1 7→ 8, 2 7→ 9, 6 7→ 13}
is a matching, whereas mapping h′ = {1 7→ 8, 2 7→ 9, 6 7→ 10} is not; indeed, we have
α2(9) = 10, but α1(2) 6= 6. Any matching must preserve the seams of both maps.

Computing the Overlaps of Two Maps 5

Definition 5. Let h : U1 → U2 be a one-to-one matching as in Definition 4.
We say that h is an overlap if:

1. for all d1 ∈ U1, we have α1(d1) ∈ U1, and

2. for all d1 ∈ U1 and d2 = h(d1), if β1(d1) 6= ε and β2(d2) 6= ε, then β1(d1) ∈
U1 and β2(d2) ∈ U2.

We say that h is a connected overlap if subset U1 is connected in map M1. We
say that h is a disconnected overlap otherwise.

The first condition above implies that if a dart d1 of M1 matches a dart d2
of M2, then the whole face incident to d1 must match the whole face incident
to d2. The second condition means that if darts d1 and d2 match together and
both have adjacent faces, then opposite β-sewn darts, and thus adjacent faces
must also match together. In consequence, each pieces of both maps M1 and
M2 must be as large as possible, that is, the matching must be “maximal”. See
Fig. 5 and 6 for examples.

2

3

4

7

8

8′

5′

6′

7′

4′

1′

2′

3′

6

51

Fig. 5. An example of connected overlap h = {1 7→ 1′, 2 7→ 2′, . . . 8 7→ 8′}. Notice that
no overlap can be built with darts 5 and 4’ matched together.

1′

2′

3′

4′

5

6

7

8

1

2

3

4

5′

6′

7′

8′

Fig. 6. An example of disconnected overlap h = {1 7→ 1′, 2 7→ 2′, . . . 8 7→ 8′}.

6 Jean-Christophe Janodet and Colin de la Higuera

4 Properties of the Overlapping Patterns

Given two maps M1 and M2 and an overlap h : U1 → U2, the elimination of
all the darts, but those from sets U1 and U2, in maps M1 and M2 respectively,
defines two isomorphic sub-maps of M1 and M2. In other words, an overlap
defines an overlapping common pattern:

Definition 6. Map P = 〈D,α, β〉 is a pattern of map M = 〈D′, α′, β′〉 if there
exists a one-to-one matching ϕ : D → V (with V ⊆ D′). Moreover, any map P
is a common pattern of maps M1 and M2 if P is a pattern of both M1 and M2.

As direct consequences of Definitions 4 and 5, the overlapping patterns have
the following properties:

– Every overlapping pattern of M1 and M2 is a pattern of both M1 and M2;
– Given every pair of darts (d1,d2), there exists at most one connected overlap,

and thus at most one connected overlapping pattern, in which d1 and d2 are
matched together;

– An overlapping pattern is maximal in the following sense: if we add to this
pattern something and the result is a semi-open map, then this map is no
longer a sub-map of M1 or of M2.

Concerning computational issues, we have provided in [2] an algorithm in
O(|D1| × |D2|) time to decide whether two (possibly non-connected) maps were
isomorphic or not. An extension of this algorithm can be used to prove that a
connected map is a pattern of another map. In both cases, due to the technical
necessity for the matching h to commute with bijections α and β, there are
no more than |D1| possible matching functions, and the algorithms actually
enumerate all of them in O(|D1| × |D2|) time. Concerning the second problem,
the fact that the first map is connected is crucial, since this problem is NP-
complete for disconnected patterns [6].

With respect to finding large common connected patterns, it has unfortu-
nately been shown in [6] that this problem is NP-hard too. But looking for
large overlapping patterns is simpler: whereas in general the pattern can be
placed anywhere in the maps, we now insist on the pattern to somehow be placed
on the border of both maps, corresponding to the part where they overlap.

In order to illustrate and discuss this point, we turn to strings. In terms of
strings, common patterns would be common sub-strings of two given strings:
given u, v ∈ Σ∗, a pattern is a string w ∈ Σ+ such that u = lwr and v = l′wr′

for some l, l′, r, r′ ∈ Σ∗.
On the other hand, an overlap defines a string w as above, such that u = lwr

and v = l′wr′ but with the added condition that l = ε or l′ = ε on one hand,
r = ε or r′ = ε on the other. This means that exactly 4 cases are possible:

1. u = lw and v = wr′, w is a suffix of u and a prefix of v,
2. u = wr′ and v = l′w, w is a prefix of u and a suffix of v,
3. u = lwr and v = w, v is a sub-string of u,
4. u = w and v = l′wr′, u is a sub-string of v.

So the problem is simpler.

Computing the Overlaps of Two Maps 7

5 Finding Connected Overlaps Efficiently

In this section, we show that it is possible to efficiently find the largest connected
overlap of two maps.

5.1 A Linear Time and Space Algorithm to Check whether a
Connected Overlap Exists

Let M1 = 〈D,α1, β1〉 and M2 = 〈D2, α2, β2〉 be two semi-open maps. The first
problem we tackle consists in determining whether two darts d1 ∈ D1 and d2 ∈
D2 can match together in an overlap. This is the purpose of Algorithm 1.

This procedure performs a parallel traversal of both maps M1 and M2, start-
ing from the darts d1 and d2, which are grouped together into a couple (d1, d2).
The procedure uses the α- and β-functions of both maps to discover new cou-
ples of darts from the couples that have been discovered so far. It more precisely
builds a candidate overlap h such that h[d1] = d2. So initially, h[d1] is set to d2,
whereas h[d] are set to nil for all other darts d.

Each time a couple (a, a′) is discovered from another couple (d, d′) by using
the α-functions, we check whether both darts a and a′ have ever been met. If
either a or a′ have already been visited through the traversal, we carefully check
basic conditions which ensure us to get a valid matching h at the end of the
algorithm. Otherwise, h[a] is set to a′ and the couple (a, a′) is further used to
discover new darts. With respect to β-functions, the same principle holds, but
more cases of failure can occur, as the darts d or d′ may have no adjacent face.

Note that Algorithm 1 returns a single Boolean value. Nevertheless, one can
easily modify the procedure and get the connected overlap h as a certificate,
in case of success. The following theorem (which is proved in Appendix) claims
that this algorithm is correct.

Theorem 1. Algorithm 1 is correct, that is:

– If checkConnectedOverlap(M1,M2, d1, d2) returns true, then the ar-
ray h that is built by the procedure encodes a connected overlap h : U1 → U2

such that h(d1) = d2.
– If checkConnectedOverlap(M1,M2, d1, d2) returns false, then no over-

lap h : U1 → U2 exists such that h(d1) = d2.

With respect to the complexity of the algorithm, we have:

Theorem 2. Algo. 1 runs in O(min(|D1|, |D2|)) time and O(max(|D1|, |D2|)) space.

Proof. Suppose that |D1| ≤ |D2| without loss of generality. Then the while loop
of Algorithm 1 is iterated at most |D1| times. Indeed, (1) at each iteration,
exactly one dart d ∈ D1 is removed from the stack S, within a couple (d, x) for
some x ∈ D2, and (2) each dart d ∈ D1 enters S at most once, within a couple
(d, x) for any x ∈ D2 : d enters S only if h[d] = nil, and before entering S, h[d]
is set to dart x. So the algorithm runs in O(min(|D1|, |D2|)) time. As for space
issues, notice that the arrays h and g respectively have |D1| and |D2| entries,
while stack S never contains more than min(|D1|, |D2|) couples of darts. ut

8 Jean-Christophe Janodet and Colin de la Higuera

Algorithm 1: checkConnectedOverlap(M1,M2, d1, d2)

Input: Two semi-open maps M1 = 〈D1, α1, β1〉 and M2 = 〈D2, α2, β2〉, and an
initial couple of darts (d1, d2) ∈ D1 ×D2

Output: true if a connected overlap h exists such that h(d1) = d2, false
otherwise

Variables: Two arrays h : D1 → D2 and g : D2 → D1 (where g = h−1) both
initialized with nil, and a stack S which is initially empty

h[d1]← d2 ; g[d2]← d1 ; push (d1, d2) in S ;1

while S is not empty do2

pop a couple of darts (d, d′) from S ;3

a← α1(d) ; a′ ← α2(d′) ;4

if h[a] = nil and g[a′] = nil then5

h[a]← a′ ; g[a′]← a ; push (a, a′) in S ;6

else if h[a] 6= a′ or g[a′] 6= a then7

return false ;8

b← β1(d) ; b′ ← β2(d′) ;9

if b 6= ε and b′ 6= ε then10

if h[b] = nil and g[b′] = nil then11

h[b]← b′ ; g[b′]← b ; push (b, b′) in S ;12

else if h[b] 6= b′ or g[b′] 6= b then13

return false ;14

else if b = ε and b′ 6= ε and g[b′] 6= nil then15

return false ;16

else if b 6= ε and b′ = ε and h[b] 6= nil then17

return false ;18

return true ; // Array h may be returned as a certificate19

Notice that Algorithm 1 exploits the same key idea as the algorithms devel-
oped in [2] to solve the map isomorphism and sub-isomorphism problems. We
nevertheless improve them as the failure cases are detected during the traversal
of the maps, and no further verification stage is needed after the traversal.

5.2 A Quadratic Time and Space Algorithm to Get all the
Connected Overlaps

Let M1 = 〈D,α1, β1〉 and M2 = 〈D2, α2, β2〉 be two semi-open maps. In Sect. 5.1,
we have given a procedure that checks whether two darts d1 ∈ D1 and d2 ∈ D2

can match together in a connected overlap. To achieve this goal, Algorithm 1
performs a parallel traversal of both maps M1 and M2, starting from couple
(d1, d2), and using the α- and β-functions of both maps to investigate new couples
of darts from the couples that have been visited so far. Clearly, this procedure
may visit any couple of D1×D2. So we use this set to define a new map, denoted
M1 ⊗M2, and call the product map of maps M1 and M2:

Computing the Overlaps of Two Maps 9

Definition 7. The product of two maps M1 and M2 is M1 ⊗ M2 = 〈D1 ×
D2, α, β〉 where, for all (d1, d2) ∈ D1 ×D2:

α(d1, d2) = (α1(d1), α2(d2)), and

β(d1, d2) =

{
(β1(d1), β2(d2)) if β1(d1) 6= ε and β2(d2) 6= ε,
ε otherwise.

For instance, consider the maps of Fig. 7, respectively made of 7 and 6 darts.
The product map M1 ⊗ M2, which has 42 darts, contains 6 connected com-
ponents. Clearly, two kinds of connected components appear. The four small
components will be called real, and the two large ones, imaginary :

11

10

8 9

1213
7 5

4

3

6

1 2

Map M1

Map M2

α β

(1, 8) (2, 9) ε
(2, 9) (3, 10) ε
(3, 10) (1, 8) (4, 11)
(4, 11) (5, 12) (3, 10)
(5, 12) (6, 13) ε
(6, 13) (7, 11) ε
(7, 11) (4, 12) ε
(4, 12) (5, 13) ε
(5, 13) (6, 11) ε
(6, 11) (7, 12) ε
(7, 12) (4, 13) ε
(4, 13) (5, 11) ε
(5, 11) (6, 12) ε
(6, 12) (7, 13) ε
(7, 13) (4, 11) ε

α β

(1, 12) (2, 13) ε
(2, 13) (3, 11) ε
(3, 11) (1, 12) (4, 10)
(4, 10) (5, 8) (3, 11)
(5, 8) (6, 9) ε
(6, 9) (7, 10) ε
(7, 10) (4, 8) ε
(4, 8) (5, 9) ε
(5, 9) (6, 10) ε
(6, 10) (7, 8) ε
(7, 8) (4, 9) ε
(4, 9) (5, 10) ε
(5, 10) (6, 8) ε
(6, 8) (7, 9) ε
(7, 9) (4, 10) ε

α β

(1, 9) (2, 10) ε
(2, 10) (3, 8) ε
(3, 8) (1, 9) ε

α β

(1, 10) (2, 8) ε
(2, 8) (3, 9) ε
(3, 9) (1, 10) ε

α β

(1, 11) (2, 12) ε
(2, 12) (3, 13) ε
(3, 13) (1, 11) ε

α β

(1, 13) (2, 11) ε
(2, 11) (3, 12) ε
(3, 12) (1, 13) ε

Fig. 7. Given the maps M1 and M2, we build the product map M1⊗M2 and display its
connected components. The two big components are imaginary, and the four small ones
are real. Couple (1, 8) belongs to an imaginary component, so following Theorem 3,
no overlap exists such that darts 1 and 8 match. Conversely, couple (1, 9) is in a real
component and mapping {1 7→ 9, 2 7→ 10, 3 7→ 8} is a connected overlap.

10 Jean-Christophe Janodet and Colin de la Higuera

Definition 8. A connected component C = 〈D,α, β〉 of product map M1 ⊗M2

is said real if for all (d1, d2), (d′1, d
′
2) ∈ D,

1. d1 = d′1 iff d2 = d′2, and
2. β1(d1) = d′1 iff β2(d2) = d′2.

A connected component which is not real is said imaginary.

Remark 1. The reader may wonder why no condition addressing the α-functions
is given in Definition 8. Actually, a consequence of Condition 1 is that for all
(d1, d2), (d′1, d

′
2) ∈ D, we have α1(d1) = d′1 iff α2(d2) = d′2. Indeed, let (d1, d2) ∈

D and suppose that (α1(d1), d′2) ∈ D; as component C is connected, we have
α(d1, d2) = (α1(d1), α2(d2)) ∈ D; so using Condition 1, we deduce that d′2 =
α2(d2). Such a proof cannot be given for Condition 2, due to the fact that d1 or
d2 can β-free.

Connected overlaps of maps M1 and M2 on the one hand, and real connected
components of product map M1 ⊗M2 on the other hand, are strongly related.
Indeed, we get the following result (which is proved in Appendix):

Theorem 3. Let M1 and M2 be two semi-open maps.

– For each connected overlap h : U1 → U2, there exists a real connected com-
ponent C of product map M1⊗M2 whose set of darts is {(d, h(d)) : d ∈ U1};

– Conversely, for every real connected component C = 〈D,α, β〉 of product
map M1 ⊗M2, set D is the graph of a connected overlap of M1 and M2,
that is to say, if we fix h(d1) = d2 for all (d1, d2) ∈ D, then h is a connected
overlap.

As a consequence of Theorem 3, we get an efficient algorithm to enumerate
all the connected overlaps (see Algorithm 2).

Algorithm 2: getAllConnectedOverlaps(M1,M2)

Input: Two semi-open maps M1 = 〈D,α1, β1〉 and M2 = 〈D2, α2, β2〉)
Output: All the connected overlaps of M1 and M2

Compute product map M1 ⊗M2 ; // see Definition 71

Select all the real connected components ; // see Definition 82

Return all the connected overlaps; // see Theorem 33

Theorem 4. Algorithm 2 is correct and runs in O(|D1| · |D2|) time and space.

Proof. The correctness follows from Theorem 3. As for the complexity, the prod-
uct map M1⊗M2 has |D1| · |D2| darts. Obviously, the computation of functions
α and β, and the computation of the connected components, and the selection
of the real connected components, are in linear time and space with respect to
|D1| · |D2|. ut

Computing the Overlaps of Two Maps 11

5.3 Finding the Largest Overlap of Two Maps

It is straightforward to use the results from the previous algorithm to return the
largest overlap, provided this one is connected.

Furthermore a direct procedure exists to find the largest possibly discon-
nected overlap: consider a graph whose nodes are the connected overlaps between
maps M1 and M2, each with a weight indicating how many darts they concern,
and an edge indicates that two overlaps are compatible (do not contain common
darts). Finding a clique with maximum sum of weights gives the largest possibly
disconnected overlap. This procedure clearly runs in exponential time, and the
following section shows that we cannot hope better.

6 Finding Large Disconnected Overlaps Is Intractable

We consider the following problem:

Name Large Disconnected Overlap;
Instance An integer N , and two semi-open maps M1 and M2;
Problem Does there exist a disconnected overlap h : U1 → U2 s.t. |U1| ≥ N?

We get the following result:

Theorem 5. Problem Large Disconnected Overlap is NP-complete.

Proof. Basically, Problem Large Disconnected Overlap is in classNP since
any certificate h can easily be verified. Now consider following problem:

Name Disconnected Pattern;
Instance Two semi-open maps M1 and M2;
Problem Is map M1 a disconnected pattern of map M2?

One can prove, by reduction from Separable Planar 3SAT [9, Lem. 1], that
this problem is NP-complete. We do not give the details here: the proof is
essentially the same as that provided in [6, Sect. 4] 3. We can finally reduce Dis-
connected Pattern to Large Disconnected Overlap: we simply need to
fix N = |D1|. Indeed, map M1 is a pattern of map M2 iff an overlap h : U1 → U2

exists with |U1| ≥ |D1| (that is, U1 = D1). ut

7 Conclusion and Future Works

Computing the overlaps has two advantages over computing the common pat-
terns of two maps: on one hand, the optimisation problems are tractable (Sect.
5), and on the other, the overlaps are maximal objects (Sect. 4).

3 Actually, Problem Disconnected Pattern, which is defined for semi-open maps,
is an instance of Problem Induced Submap Isomorphism, which is defined for nG-
maps, but proved NP-complete by using 2G-maps, and gadgets that can easily be
redefined in terms of semi-open maps. Thus rewriting such a proof is of no relevance.

12 Jean-Christophe Janodet and Colin de la Higuera

The overlaps allow us also to consider super-maps, where a super-map of M1

and M2 is a map of which both M1 and M2 are patterns. Then the smallest
common super-map is obtained by adding to the largest overlap the faces which
belong to M1 and M2 but are not matched.

Super-maps offer interesting possibilities as smallest common super-maps
would be constructable in polynomial time whereas their duals, the largest com-
mon sub-maps, are not.

Finally, notice that the techniques introduced in this paper can, with no
difficulty, be extended to open maps4, nD-maps and n-Gmaps [10].

References

1. Cori, R.: Un code pour les graphes planaires et ses applications. PhD thesis,
Université Paris 7 (1973)

2. Damiand, G., de la Higuera, C., Janodet, J.C., Samuel, E., Solnon, C.: Polynomial
algorithm for submap isomorphism: Application to searching patterns in images.
In: Proc. 7th IAPR International Workshop on Graph Based Representation in
Pattern Recognition (GbRPR’09)., LNCS 5534 (2009) 102–112

3. de la Higuera, C., Janodet, J.C., Samuel, E., Damiand, G., Solnon, C.: Polyno-
mial algorithms for open plane graph and subgraph isomorphisms. Theoretical
Computer Science 498 (2013) 76–99

4. Dorn, F.: Planar subgraph isomorphism revisited. In: Proc. 27th International
Symposium on Theoretical Aspects of Computer Science (STACS’10). Volume 5
of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010) 263–274

5. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Jour-
nal of Graph Algorithms and Applications 3(3) (1999) 1–27

6. Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.C.: On the complexity of
submap isomorphism and maximum common submap problems. Pattern Recog-
nition 48(2) (2015) 302–316

7. Poudret, M., Arnould, A., Bertrand, Y., Lienhardt, P.: Cartes combinatoires ou-
vertes. Research Notes 2007-1, Laboratoire SIC E.A. 4103, F-86962 Futuroscope
Cedex - France (2007)

8. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Samuel, E.: Polynomial
algorithms for subisomorphism of nd open combinatorial maps. Computer Vision
and Image Understanding 115(7) (2011) 996–1010

9. Lichtenstein, D.: Planar formulæ and their uses. SIAM Journal of Computing
11(2) (1982) 329–343

10. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press (2014)

4 for which the α-functions may be partial permutations [7].

Computing the Overlaps of Two Maps 13

A Proof of Theorem 3

Proposition 1. Consider a real connected component C = 〈D,α, β〉 of product
M1 ⊗M2. Then the set D is the graph of a connected overlap of M1 and M2,
that is, if we set h(d1) = d2 for all (d1, d2) ∈ D, then h is a connected overlap.

Proof. Let U1 = {d1 : (d1, d2) ∈ D for any d2 ∈ D2} and U2 = {d2 : (d1, d2) ∈
D for any d1 ∈ D1}. We basically have U1 ⊆ D1 and U2 ⊆ D2. Let h be the
relation defined be D. As connected component C is real, if (d1, d2) ∈ D and
(d1, d

′
2) ∈ D, then d2 = d′2 so relation h is a function from U1 to U2. Moreover,

for any d2 ∈ U2 there exists d1 ∈ D1 such that (d1, d2) ∈ D, so there exists
d1 ∈ U1 such that h(d1) = d2, that is, h is surjective. Finally, let d1, d

′
1 ∈ U1

such that h(d1) = h(d′1) = d2 for some d2 ∈ D2. We have that (d1, d2) ∈ D and
(d′1, d2) ∈ D. Since connected component C is real, we deduce that d1 = d′1, so
function h is injective. In consequence, h : U1 → U2 is a bijection.

We claim that h is a matching. Indeed, let d1 ∈ U1 and d2 = h(d1). Com-
ponent C is connected and (d1, d2) ∈ D, so we deduce that α(d1, d2) ∈ D, that
is, (α1(d1), α2(d2)) ∈ D. Therefore we have α1(d1) ∈ U1 and α2(d2) ∈ U2 and
h(α1(d1)) = α2(d2). Now suppose that β1(d1) ∈ U1. We have (d1, d2) ∈ D, and
there exists d′2 ∈ U2 such that (β1(d1), d′2) ∈ D. Since component C is real, we
deduce that d′2 = β2(d2), so β2(d2) ∈ U2 and h(β1(d1)) = β2(d2). Conversely,
if β2(d2) ∈ U2, then there exists d′1 ∈ U1 such that (d′1, β2(d2)) ∈ D, and we
have (d1, d2) ∈ D. As component C is real, we deduce that d′1 = β1(d1), thus
β1(d1) ∈ U1.

We now show that h is an overlap. Let d1 ∈ U1 and d2 = h(d1), that is,
(d1, d2) ∈ D. In product map M1⊗M2, we have α(d1, d2) = (α1(d1), α2(d2)), so
the darts (d1, d2) and (α1(d1), α2(d2)) are α-sewn. Therefore (α1(d1), α2(d2)) is a
dart of connected component C, thus α1(d1) ∈ U1. Now suppose that β1(d1) 6= ε
and β2(d2) 6= ε. Then in product M1⊗M2, we have β(d1, d2) = (β1(d1), β2(d2)).
The darts (d1, d2) and (β1(d1), β2(d2)) are β-sewn, so (β1(d1), β2(d2)) is a dart
of connected component C. Therefore, β1(d1) ∈ U1 and β2(d2) ∈ U2.

Finally, let us prove that h is a connected overlap. Let e, e′ ∈ U1. There exist
f, f ′ ∈ U2 such that (e, f), (e′, f ′) ∈ D. Component C is connected, so in product
map M1 ⊗M2, there is a sequence (e, f) = (d0, d

′
0), . . . , (dn, d

′
n) = (e′, f ′) such

that (dk+1, d
′
k+1) = δk(dk, d

′
k) with δk ∈ {α, β} for all 0 ≤ k < n. By construction

of M1 ⊗M2, we deduce that in M1, there is a sequence e = d0, . . . , dn = e′ such
that dk+1 = γk(dk) with γk = α1 if δk = α, and γk = β1 if δk = β, for all
0 ≤ k < n. Hence U1 is connected, thus h is a connected overlap. ut

Proposition 2. For each connected overlap h : U1 → U2, there exists a real
connected component C = 〈D,α, β〉 of product M1 ⊗M2 whose set of darts is
the graph of h.

Proof. Let h : U1 → U2 be an connected overlap. We define D = {(d, h(d)) :
d ∈ U1}. Since h is an instance of matching, we have U1 ⊆ D1 and U2 ⊆ D2, so
D ⊆ D1 × D2, that is, D is a subset of the darts of product map M1 ⊗M2 =
〈D1 ×D2, α, β〉.

14 Jean-Christophe Janodet and Colin de la Higuera

Let us show that D is stable with respect to functions α and β. Let (d1, d2) ∈
D and (d′1, d

′
2) = α(d1, d2) = (α1(d1), α2(d2)). We have d1 ∈ U1 and d2 = h(d1).

Since h is an overlap, we have α1(d1) ∈ U1, and since h is an instance of matching,
we deduce that α2(d2) ∈ U2 and h(α1(d1)) = α2(d2), so (d′1, d

′
2) ∈ D. Now, with

respect to β, suppose that β(d1, d2) 6= ε. Then β1(d1) 6= ε and β2(d2) 6= ε, so let
(d′1, d

′
2) = β(d1, d2) = (β1(d1), β2(d2)). We have d1 ∈ U1 and d2 = h(d1). Since

h is an overlap, we have β1(d1) ∈ U1 and β2(d2) ∈ U2, and as h is an instance
of matching, we deduce that h(β1(d1)) = β2(d2), so (d′1, d

′
2) ∈ D. On the other

hand, if β(d1, d2) = ε, then the property holds if we suppose that ε implicitly
belongs to D.

Hence, map M = 〈D,α, β〉 is a sub-map of product map M1 ⊗M2 = 〈D1 ×
D2, α, β〉. We now show that M is a connected component of M1 ⊗ M2. Let
(d, f), (d′, f ′) ∈ D. We have d, d′ ∈ U1 and f, f ′ ∈ U2. Since h is an connected
overlap, U1 is connected, so there exists a sequence (d = d0, d1, . . . , dn = d′)
such that dk+1 = γk(dk) with γk ∈ {α1, β1} for all 0 ≤ k < n. We claim that
we can dub this sequence with another sequence (f = f0, f1, . . . , fn = f ′) in
U2 where (1) fk = h(dk) and (2) fk+1 = δk(fk) with δk = α2 if γk = α1, and
δk = β2 if γk = β1, for all 0 ≤ k < n. Indeed, we have h(d) = f , so h(d0) = f0.
Let 0 ≤ k < n, and suppose that h(dk) = fk. On the one hand, if dk+1 =
α1(dk) ∈ U1, then α2(fk) ∈ U2 and h(α1(dk)) = α2(fk) since h is an instance of
matching. So we fix fk+1 = α2(fk) and the property holds. On the other hand,
if dk+1 = β1(dk) ∈ U1, then β2(fk) ∈ U2 and h(β1(dk)) = β2(fk) since h is an
instance of matching. So we fix fk+1 = β2(fk) and the property holds. Finally, we
have fn = h(dn) = h(d′) = f ′. Using both sequences, we conclude that in sub-
map M , there exists a sequence ((d, f) = (d0, f0), (d1, f1), . . . , (dn, fn) = (d′, f ′))
such that (dk+1, fk+1) = ζk(dk, fk) with ζk = α if γk = α1 (and δk = α2), and
ζk = β if γk = β1 (and δk = β2). In other words, sub-map M is connected.

We finally need to show that connected component M is real, and this follows
from the fact that h is an instance of matching. Indeed, let (d1, d2), (d′1, d

′
2) ∈ D.

We have d2 = h(d1) and d′2 = h(d′1). So if d1 = d′1 then d2 = d′2 because h is a
function, and conversely, if d2 = d′2, then d1 = d′1 because h is a bijection. Now
if d′1 = β1(d1), then β2(d2) ∈ U2 and h(β1(d1)) = β2(d2), so h(d′1) = β2(d2), that
is, d′2 = β2(d2), and conversely, if d′2 = β2(d2), then the same arguments yield
d′1 = β1(d1). ut

B Proof of Theorem 1 (Sketch)

We here prove the correctness of Algorithm 1, by exploiting Theorem 3. So let
M1 = 〈D,α1, β1〉 and M2 = 〈D2, α2, β2〉) be two semi-open maps, and d1 ∈ D1

and d2 ∈ D2 two darts.

Consider the product map M1 ⊗M2 and let C = 〈D,α, β〉 be the connected
component such that (d1, d2) ∈ D. Following Theorem 3, either component C is
real and there exists a connected overlap ϕ : U1 → U2 such that ϕ(d1) = d2, or
component C is imaginary and no such connected overlap exists.

Computing the Overlaps of Two Maps 15

Now, consider Algorithm 1. By Theorem 2, this procedure halts after no more
than min(|D1|, |D2|) iterations. After this run, we define two sets:

V = {(d, d′) ∈ D1 ×D2 | (d, d′) was popped from S at some point}
W = {(d, d′) ∈ D1 ×D2 | (d, d′) was pushed in S at some point}

We clearly have (d, d′) ∈W iff h[d] = d′ iff g[d′] = d.
Moreover, for all (d, d′) ∈W , there is a sequence ((e0, f0), (e1, f1), . . . , (en, fn))

such that (1) (e0, f0) = (d1, d2) and (en, fn) = (d, d′) and (2) (ek, fk) ∈ V for all
0 ≤ k < n and (3) (dk+1, fk+1) = γk(dk, fk) with γk ∈ {α, β} for all 0 ≤ k < n.

As component C is connected, we deduce that V ⊆W ⊆ D.

When the Algorithm Returns false:

We suppose that checkConnectedOverlap(M1,M2, d1, d2) returns false.
Consider the couple (d, d′) ∈ V that produced this early exit.

First case: let a = α1(d) and a′ = α2(d′), and either h[a] 6= a′ or g[a′] 6= a.
Suppose that h[a] = f 6= a′. On the one hand, we have (a, a′) ∈ D, since
(d, d′) ∈ V ⊆ W ⊆ D and (a, a′) = α(d, d′). On the other hand, we have
(a, f) ∈ W since h[a] = f , so (a, f) ∈ D. As a′ 6= f , we deduce that component
C is imaginary. Same conclusion if g[a′] 6= a.

Second case: let b = β1(d) and b′ = β2(d′) and suppose that b 6= ε and b′ 6= ε
and either h[b] 6= b′ or g[b′] 6= b. Same case as Case 1.

Third case: let b = β1(d) and b′ = β2(d′) and suppose that b = ε and b′ 6= ε
and g[b′] = e 6= nil. We have (d, d′) ∈ D and (e, b′) ∈ D and b′ = β2(d′) but
e 6= β1(d), so component C is imaginary. Same conclusion if b 6= ε and b′ = ε
and h[b] = f 6= nil.

So we conclude that if checkConnectedOverlap(M1,M2, d1, d2) returns
false, then component C is imaginary. Following Theorem 3, no connected
overlap h such that h(d1) = d2 exists in this case.

When the Algorithm Returns true:

We now suppose that checkConnectedOverlap(M1,M2, d1, d2) returns true.
Then we have V = W (since true is returned only if stack S is empty) and
V ⊆ D.

We actually have D ⊆ V , thus D = V . Indeed, let (d, d′) ∈ D. As component
C is connected, there exists in C a sequence ((d1, d2) = (e0, f0), (e1, f1), . . . ,
(en, fn) = (d, d′)) such that (dk+1, fk+1) = γk(dk, fk) with γk ∈ {α, β} for all
0 ≤ k < n. By induction, we get (dk, fk) ∈ V for all 0 ≤ k ≤ n, so (d, d′) ∈ V .

Now let us prove that component C is real, so let (e1, f1), (e2, f2) ∈ D, that
is, (e1, f1) ∈ V and (e2, f2) ∈ V . Suppose that e1 = e2 and f1 6= f2, or e1 6= e2
and f1 = f2, thus couples (e1, f1) and (e2, f2) are distinct. Assume without loss
of generality that (e1, f1) was pushed in S first, before (e2, f2) was pushed in S.
When couple (e2, f2) is met, we have h[e1] = f1 and g[f1] = e1. Moreover couple

16 Jean-Christophe Janodet and Colin de la Higuera

(e2, f2) is met when a couple (d, d′) is popped from S and (e2, f2) = γ(d, d′) with
γ ∈ {α, β}. If e1 = e2, then we have h[e2] = h[e1] = f1 6= nil. If h[e2] 6= f2, then
the procedure returns false, which contradicts the assumption, so h[e2] = f2,
that is, f1 = f2. On the other hand, if f1 = f2, then we have g[f2] = g[f1] =
e1 6= nil. If g[f2] 6= e2, the procedure returns false, so e1 = e2 likewise.

We now suppose that e2 = β1(e1) (or equivalently that e1 = β1(e2), since
β1(β1(d)) = d for all darts d such that β1(d) 6= ε). We assume again that
(e1, f1) was pushed in S before (e2, f2) was pushed in S. Let us look at the
point where (e2, f2) was popped from S. We have h[e1] = f1 and g[f1] = e1
and h[e2] = f2 and g[f2] = e2. Let b = β1(e2) and b′ = β2(f2). As e2 = β1(e1)
and b = β1(e2), we deduce that b = e1, so b 6= ε. If b′ = ε, then as b 6= ε
and b′ = ε and h[b] = h[e1] = f1 6= nil, the procedure returns false, which
contradicts the assumption, so b′ 6= ε. Therefore, we have b 6= ε and b′ 6= ε and
h[b] = h[e1] = f1 6= nil. If h[b] 6= b′, then the procedure returns false, which
contradicts the assumption. So h[b] = b′, that is, h[e1] = b′, and since h[e1] = f1,
we deduce that b′ = f1 = β2(f2), thus f2 = β2(f1). If instead of assuming that
e2 = β1(e1), we suppose that f2 = β2(f1), then we can easily adapt the proof to
reach the same conclusion.

Hence, if checkConnectedOverlap(M1,M2, d1, d2) returns true, then
component C is real. By Theorem 3, we know that the set D, that is the set V ,
is the graph of a connected overlap of M1 and M2. Since (d, d′) ∈ V iff h[d] = d′,
we deduce that h is a connected overlap such that h[d1] = d2. ut

