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Abstract : Nous consiérons ici des prokimes d’apprentissagél ¢es donies
sont pésengéesa I'aide de caraéristiques fortementé#€rognes, par exemple,
une base de personne8 chaque individu esté&trit par son nom (une chree

de caradires), sa photo (une image), un enregistrement de sa voix (dutsas) e
mensurations (degels). Il n’existe aucun algorithme capable d’apprendre en tra-
vaillant sur toutes ces caracistiquesa la fois (sauf en utilisant un codage et donc
en perdant de l'information), mais nous disposons d’algorithmespasnts et
specialis pour traiter efficacement chaque type de céaratigques. Dans ce tra-
vail, nous proposons une nouvelle pedare de boosting;-BOOST, permettanéa

ces algorithmes de collaborer activement pendant la phase d’éigpegre, et de
construire ainsi une hypodise globale &s performante. Noustudions les pro-
priétes tfeoriques dé-BOOSTpuis nous menons des éqmentations prouvant
gue notre rethode fonctionne significativement mieux que toute autre combinai-
son d’hypotleses qui seraient construites sans collaboration.

Mots-clés: Boosting, variableséterogenes, eésultats de convergence.

1 Introduction

Most of the research on classifier ensembles aims at congpinisome way the pre-
dictions of a set othomogeneouslassifiers, that is to say, classifiers built using a single
learning algorithm from various probability distributi®ras done in boosting for exam-
ple (Freund & Schapire, 1996; Freund & Schapire, 1997). Aeoapproach consists in
learning heterogeneous classifiers (that is, in the formeefst, neural networks, nearest-
neighbors, etc.) from a single learning distribution anthbming them in an efficient
final classifier, as done stacking(Wolpert, 1992). However, we can remark in this lat-
ter case that the notion bkterogeneitpnly characterizes the model representation, but
does not concern the data themselves. In other words, whatha when each exam-
ple in the learning set is described by strongly heterogenéeatures such as strings,
sounds, pictures, trees, ...? In fact, in their originahfsy ensemble methods become
either useless, which is the case for boosting that doesamsider such a situation in
its framework, or insufficient, for those combining classi$i built only from the subset
of features that they can deal with.
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However, simple examples show that such a situation can ofteur. For instance,
consider a dataset that describes persons with 3 featheasfitst name, their height
and their weight, whereas the target to predict is the gertisrclearly insufficient to
use only the first name (and “forget” the other features) loeae this task, in particular
because many first names, such as "Dana”, "Taylor”, "Jordan”Claude” are shared
by men and women. But on the other hand, it would be very umfiate not to use the
first name of the person and only learn the target from the 2emigad features. Another
example could be a database of on-line marketplaces sustwassbay. comwhere
the articles are described by a picture, a textual captiohaaprice. The variable that
one would like to predict could be the interest of a specifiestoner with respect to
the articles. A last example is provided by the datalzas#eT (Garcia-Salicettet al,
2003) which describes a person with 5 features: his facescspdingerprint, hand-
shape and online signature. The objective being to prediether a given person is a
forger or not, the information provided by each feature ipamant.

The common characteristics of both these examples is tegtdbntain heteroge-
neous features,e. textual information, images, sounds as well as humerickieg
that cannot be efficiently handled by the same learning dhgor Indeed, on the one
hand, the state of the art that allows to learn from stringsllg uses»-grams (Good-
man, 2001) or other grammatical inference algorithms (didmera, 2004). But these
techniques cannot be adapted to learn from numerical vaieshe other hand, many
powerful algorithms learn from numerical features but eamteal with strings directly.

A first solution could consist in standardizing all the featiinto a unique type,
numerical for example, thus to use an encoding stage. Evierséfems possible to
change a string or an image in a quantitative vector, the mskrof such a strategy is
to lose a part of the discriminant information of the feature@ overcome this drawback,
another solution could consist in building an efficient gtally boosted) classifier for
each type of features and using their predictions in a glbjpabthesis. This idea is the
one developed in a paper by Cherkauer (Cherkauer, 1996)thBuhain drawback of
such an approach is the lack of interaction between theifitlassduring the induction
process. Finally, another solution could aim at using a fiextlversion of a special case
of stacked generalization, namely cascade generalizgiama & Brazdil, 2000). The
level O of the cascade would be built using 1 set of attribatesthe dedicated learner
would be used, then the level 1 would be built by combiningth@oset of attributes
with the results of the first learner, etc. However, in thisesaeven if there exists a
collaboration between the classifiers, it is limited to adwtup unilateral interaction.

In this paper, we aim not only) at keeping the advantages of ensemble methods,
based on the premise that an ensemble is often much moreatetiian its individual
components (Dietterich, 1997) ad) at dealing with heterogeneous features, but also
(#i7) at generating bilateral interactions between the classifiTo achieve this task, we
focus here on the adaptation of boosting to such a contektud eecall in Algorithm 1
the strategy of boosting and its algorithkDABOOST. ADABOOST successively trains
T times a learning algorithrwL on various probability distributions; over a learning
setLs that is composed oh examples. The resulting base classifiersre combined
into an efficient single classifigi;-. At each new round + 1, the current distribution
exponentially favors the weights of examples misclasshiiethe previous classifiét;.
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for i = 1tom dow;(x;) =1/m;
fort=1toT do
ht = WL(LS,W,);
M= Z?; wi () yihe (),
c = (1/2)In((1 +7) /(1 — 7))
Zy = 3 wi(2i) exp (—cyihe(24));
for i = 1tom do w1 (x;) = wi(x;) exp (—eryihe(x;)) [ Z4

return Hrp such thatHr(z) = sign (ZL ctht(x))

Algorithm 1: Pseudo-code ofDABOOST.

A first boosting solution to deal with heterogeneous featuveuld aim at selecting
for each feature a relevant algorithm and in optimizing gsf@rmance by usingp-
ABOOST; At the end of all the runs, one could combine theesulting hypotheses in
some way into a global classifier. However, this idea wouldb®osufficient. Indeed,
from a theoretical standpoint, optimizing individual prhances would not ensure an
optimization of the final classifier. Moreover, by boostirark weak learnendepen-
dentlyon the others, the main risk would be to encounter an ovedifphenomenon
or to decrease the convergence speed of the algorithm. §anice, consider a person
described by his face and his voice. Let us assume that tlabaks contains 2 twin
brothers with the same face but different voices. Boostingak learnewL; from the
faces, and independently a weak learwer, from the voices, would result in a useless
increase of the learning time ©fL,, whereas a collaboration between both would “in-
form” wL; that the discrimination is possible thankswa, and, thus, that it is useless
to try to discriminate 2 similar faces.

Therefore, we think that a better way to proceed consistganningk classifiers
in parallelat each stepf boosting, and so in taking into account all the informatio
provided by thesé classifiers in the weight update rule. This strategy regttie con-
struction of a new weighting scheme and the verification ithateserves the boosting
theoretical properties. That is the aim of this paper.

First, we propose in Section 2 a new boosting algorithmgeddllBoOST. Then, in
the core of the paper, we aim at verifying that our weighticigesne keeps the standard
boosting properties: In Section 3, we tackle the problemhef ¢onvergence of the
empirical error; We deal with the generalization error irct8s 4. Note that we only
concentrate our efforts in this paper on the particular ecdse = 2, for which we
are able to provide exact theoretical results. Finally, éati®n 5, we carry out many
experiments to show the relevance of our approach, befordwding.

2 The Algorithm k-BOOST

LetLs = {(z1,¥1),- .-, (xm,ym)} be a finite set ofn learning examples. Each in-
stancer; belongs to a domai’ and is assigned to a boolean clgss {—1,+1}. We
assume thats was generated according to some fixed but unknown distoib@iover
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X x {—1,41}. Since we suppose that each example is described with $§troetgro-
geneous featureg; is thus some cartesian produtt x X5 x ... x Xj. Forinstance,

in the first example given in Section s is a set of persons described by their first
name and their weight and their height,&pis a set of strings and is the set of real
numbers covering both weight and height features. In thie,dhere does not exist any
algorithmwL able to learn a classifier from the whole spac¢éut several algorithms,
each of them working on a part df, can cover it totally (for instance, one can use
n-grams to deal wittt’; and C4.5 to learn a decision tree froth). Generalizing, let
us assume that we hawealgorithms, denote@vLy, ..., WLy, which will be used on
their corresponding subset of features.

for i = 1to m dowy (z;) = 1/m;

fort =1toT do

for j =1t0o k dohj; = WL;(LS,W,);

define function Z, (u1, ..., ux) = Y 1w, we(x;) exp (— 2521 ujyihjt(a?i));
compute (cyy, . . ., cxt) € R¥ such that Z;(cyy, . . . , ¢t ) IS minimum;

let Zt = Zt(61t7 N ,th);

for i = 1tom do w41 (x;) = we(x;) exp (* Z?:l Cjtyihjt(xi)) /24

return Hr such thatH () = sign (Zthl Y cjthjt(x))

Algorithm 2: Pseudo-code df-BOOST.

At each step of our boosting algorithm, callel-BooST (see Algorithm 2), a distri-
butionw, is defined ovecrs. Then, each learnavL ; uses its owrviewof the dataie.,
the features it can handle) and the distributento produce a hypothesis;;. Then
h1, ..., hy are combined into a weighted classifier whgsabal response is used to
updatew;. Finally, the resulting hypothesi; is a combination of all the weighted
hypotheses produced liyBOOST. Notice that when only one learner is uséd= 1),
our algorithm is exacthADABOOST, so the former is an extension of the latter. More-
over, concerning computation time issues, note thabosT can be run in parallel.
Therefore, by using: different machines, the total amount of running time shadtl
exceed (assuming a small communication time between wo®sthat required by
ADABOOST on the worst algorithm amongL, ..., WL.

3 Results on the Empirical Error of 2-BOOST

The empirical erroe(Hr,LS) is the error ofHy computed orLs. In this section,

we show that(Hy,LS) is bounded by a quantity that decreases with the number of
boosting iterations. Even though some of these results eaextended td-BoOST
(Vk), we focus our attention on the special casé ef 2 for sake of simplicity.
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3.1 Conditions of the Empirical Error Minimization

Let us define the empirical error:

e(Hr,LS) = (1/m) Z[[HT ;) # yil,

=1

where[r] is 1 if predicater holds and 0 otherwise. RunnirlgsoosT, we obtain the
following result:

Lemmal
e(Hr,LS) < (Ht 1Zt) where

Zy =3 wi(x;) exp (—eryihae (z:) — coryihor(w;)).

Proof: Let 4; = — Zthl (c1eyihai(x;) + caryihai(2;)). Unraveling the update rule of
2-BOOST, we getwri1(z;) = wi(x;)exp(4;)/ (Ht 1 Zt> SO summingur 41 (z;)
for all i € 1..m yields (Hthl Zt> = (1/m) >, exp(4;). On the other hand,
[Hr(z;) # yi] = 11ff Hr(z;)y; = —1, thatis to sayA; > 0. Thereforeexp(4;) >
[Hz(2:) # yi]. So we deduce(Hr, LS) < (1/m) X7, exp(A;) = (Ht . Zt),that
is the statement of the Lemma. O

As a consequence of Lemma 1, the smallégt. .., Zr are, the smallest the em-
pirical error is. Therefore, as fotDABOOST, 2-BOOSTaims at computing the values
c1t, cor that minimizeZ;. SinceZ; is a convex function ofcy:, co:) (See (Schapire &
Singer, 1998, Appendix A) for a proof), so we need to solve:

0Z; 0Z,
)y [ ) — 0. 1
<8clt> <802t> 0 ( )
To tackle this problem, we first decompaBgby separating the elements of the sum
with respect to the positive and negative values;gfi;(z;) andy;ho(x;). So we

define,Vbl,bQ S {—,+}, the SetSEt(blbg) = {’L e l.m : (thlt(xz) = bll) A
(yihot(x;) = ba1)} and their weightdV; (b1 bs) = ZiEEt(blbz) we(z;). Then we get:

Zy = Wi(+4)e e 4 Wy(4—)e cretex
+ Wi(—4)ert e 4 Wy (——)ecreten, @)
(0Zi)0c1y) = —Wi(++)e 2 — Wy(+—)e retee
+ W(—+)et 70 4 Wy(——)er e =0, 3)
(0Z¢)0car) = —Wi(++)e ™2 4 Wy (4—)e utex
Wi (—+)e ™2 + Wi(——)er e = 0. (4)

We add and subtract Eq.(3) and (4) in order to solve Eq.(licwbringscy; + co =

1in (%) andcy; — ¢y = 1 1n (%EJFJH) Therefore, we deduce:
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Proposition 1
The empirical error 02-800STIis minimal whenvt € 1..T':

_ 1 (W W)y 1 (W)W ()
ao= (e ) e i (e owe ) ©
Moreover, the minimal value df; is:

2V Wi (+H)Wi(——) + 2/ Wi (=) Wi (—+). (6)

Note that Eq.(5) are meaningful only\h,, by € {—, +}, Wi (b1b2) # 0. We assume
this in the following but it may be wrong in practice. In thiase,2-BoosTwill have
to stop and returt/;_,, aSADABOOST does wheriV;(+) or W;(—) are null (Meir &
Raetsch, 2003).

3.2 The Characteristic Parameters oR2-BOOST

It is well-known that the empirical error withDABOOST exponentially converges to-
wards 0 with the number of iteratiofis The usual way to prove this consists in showing
that each?; is significantly< 1 for all t > 1; This is done by introducing a characteris-
tic parameter of AABOOST, denotedy; and called theedgeof hypothesis; (Meir &
Raetsch, 2003). The aim of this section is to reveal the prcip@racteristic parameters
of 2-BOOST.

Let X; and X5 be 2 random variables that specify the correctness of hggeth
andho; respectively.X; takes 2 values, either +1 when, correctly classifies an ex-
ample (e, y;h1¢(x;) = +1), or -1 whenh,; makes an erronfhy;(z;) = —1). And the
same forX, with respect tdhy,. In this context, the set of weight®’; (b,b2) describes
the joint distribution ofX; and X, i.e, Vb1,bs € {—, +}, Wy (b1b2) = P[ X1 = b11 A
Xy = by1]. Moreover, by Eq.(2), we g&f;(cit, cor) = Elexp (—c1: X1 — c2: X52)], SO
Z, is theLaplace transfornof the random paif X, X5). For such a transform, it is
known that:

ap-&-th

Fendicy 00 = (—1PTIE[XTX3],Yp,q € N, @)

whereE[ X1 X]] is a joint moment ofX; andX,. In other wordsZ, is a moment-gen-
erating function that completely and uniquely determiresdistribution of( X7, X5).
Using Eq.(2) and (7), we get for all ¢ > 0:

E[X? X2 = E[1] =1, E[X?P T X2 = E[X,],
E[XZ X277 = E[X,)], E[X 2P+ x 2971 = E[X, X,).

As a consequence’, can be totally described with only 3 parametdi$X; |, E[X,]
andE[X; X5] (plusE[1] = 1), since every higher-order moment ©f, X) is equal
to one of these values.

In terms of boostingE[X] andE[X>], that we shall now denote ; and~;, are the
edges of the hypothesés; andh,,. They quantify the relevance of both classifigis
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andhs; with respect to the class of examples, singeand~,; are the expected values
of the correctness of the answersgf andhs; :

Ve = Zwt i)yihai (i) andya, = B[Xo] = > wi(@:)yihai(x:).  (8)

ConcerningE[X; X,], we use it within more understandable quantities, hamedy th
covarianced, of X; and X, and thecorrelation coefficienp, of X; and X,:

0y = Cov[X1, Xo] = Y wi(w)hae(wi)hoe(w:) — yivar,  (9)
i=1

(COV[)(l7 XQ} . 5t
\/Var[Xl]\/V‘ar[Xﬂ V1= 712t V1- ’Y%t.

Since the classifiers,; andhs; collaborate for updatingy,, it is not surprising to find

pt @s an important parameter oB50ST. It denotes the level of independence between
X, andX,. Other measures of independence could be used, for insthiedaterclass
correlation coefficient ofX, with respect taX;, or the y2-distance betweeX; and
X5, but we checked that these measures were basically retateddue to the fact that
X, and X, take only+1 and—1 as values. We get:

(10)

pt =

Wi(++) + Wi(+—) + Wie(—+) + Wy(——) = 1,
Wi(++) + We(+=) = Wi(—+) = Wi(—=) = s,
Wi(++4) = Wi(+=) + Wi(=+) = Wi(—=) = 7o,
Wi(++) = Wi(+=) = Wi(—=+) + Wi(—==) = & +71e72t
th++; = ((&5"‘(2""7115)%%4‘721&););1’
Wi (+ = O + (1 +710)(1 —v2t)) /4,
S WD) = (ot () (D
Wi(==) = (6 + (1 —ye)(1 —72))/4,

by Eqg.(2) and (7). Finally, plugging Eq.(11) and (10) in By ¥ields:

1
Zo = S8+ 260+ ) + (1= 3)(1 - 3)

1
+ 5\/6? = 20:(1 — yuey2e) + (1= 73) (1 = 13,),
whered, = pi\/1 —12,1/1 =3, (12)

3.3 Convergence of the Empirical Error

The aim of this section is to provide a bound4f that allows to show the exponential
convergence of the empirical error 2fBoosTtowards 0. We first establishvaeak
learning assumptiofKearns & Vazirani, 1994; Meir & Raetsch, 2008)LA for short,
that is to say, conditions under which bath; andwL, areweak learners
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Definition 1

LetLs = {(x1,v1),..., (xm,ym)} be a finite set ofn learning examples. An algo-
rithm wL is aweak learnewith respect to.s iff there exists a constafit > 0 such
that for all distributiongl overLs and all hypothesels = wL(LS, d),

m

i=1

Assuming thatvL; andwL, are both weak learners implies that there exist 2 constants
I'y,Ts such thatforalk > 1, v, > T'y > 0and~s, > T’y > 0.

Let us now study the conditions of convergence of the engligaror. We can afford
to state a simple majoration &f;, considered as a function of the correlatigrwhen
~1: andyy, are fixed. Indeed, let us fix particular values fgr and~,; and study the
shape ofZ,. In Figure 1, interestingly, we can observe thatis dramatically smaller
than 1 whatever the value @f, which ensures convergence aift{ 1, LS) towards O.
Of course, we tested many configurationsyef and~s; and that the behavior of;
remained the same.

0.75

0.7

++

06

05 L L L L L L L L
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 03 0.4 0.5 0.6

Figure 1: Z; in function of p; when~;; = 0.2 andy,; = 0.7.

Under thewLA and using Maple 98, we can formally confirm the previous re-
marks. Indeed, starting with Eq.(12), we géf; when0 < vy < 9 < 1, Z; reaches

. - — 2 ..
a maximum,/1 —~3,, in p; = % i_—zgf and(ii) when0 < vor < 11t < 1, Zy
1t

. . A2
reaches a maximum,/1 —~%,, in p; = % 1_—15‘ In other words, we get:
2t

Zy < \/1 — max(y1e, y2t ). (13)

Amazingly, p; does not appear in this bourics., the empirical error of Z00sSTis not
influenced by the correlation betweer, andhs,, but that will not be the case for the
generalization error. Ldty = max(I'y,'2). We deduce:

{12 I
Zy <4/1 =T <exp sy < 1.
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Therefore, by Lemma 1, we can conclude:

Proposition 2 )
Under thewLA, e(Hrp,LS) < exp (—T%), wherel'y = max(I'1,T'y). So, the em-

pirical error of 2BO0OST converges— 0 whenT' — +oo.

Also notice that Def.1 specifies a weak learmer with respect tall distributionsd
that may be used oves. Basically, we could only focus on the distributiong In fact,
this definition allows to compare the convergence speexbeaB0OOST and2-BOOST.
Let 17 (resp.co7) be the empirical error of the classifier produced ALyABOOST
when run orLs with wL; (resp.wLs). Itis standard to show thatr < exp(—7T%/2)
andesr < exp(—1T3/2). Ase(Hr,LS) < exp(—TT3/2) with Ty = max(I'y,'y),
we conclude that:

Proposition 3
The convergence speedXBB0OOST, run with bothwL, andwL., cannot be worse than
the worst convergence speedimABOOST, run with wL, andwLo independently.

However, in practice, we have observed that the behavidrsdfosTwas often closer
to the average of that efbABOOSTonwL; andwL rather than the worst among them.

4 Convergence of the Generalization Error

The generalization error of the final classifier producedapnBOOST is often ob-

served to decrease with the numHeof iterations. (Schapiret al,, 1998) explained
this phenomenon by relating the generalization error aedrhrgins of the learning
examples. More sophisticated but realistic bounds werentgcproposed in order to
provide quantitative explanations (Koltchinskii & Panoke, 2002). In this section,
we recall these results and extend them ®aBST.

4.1 Decomposition of the Generalization Error

Let H be a class of binary classifiers of VC-dimensip Let co(H) denote the convex
hull of H, i.e, the set of all (finite) linear combinations of hypothesex’) = {f =
Yo ozhi :Vi,ay > 0and ), a; = 1}. Given a particulaf € co(H) and an instance
z, f(z) = >, ayhi(z) is areal in[—1,+1]; Its sign,+1 or —1, determines the class
assigned by to z; Themargin|f(x)| is @ measure of the confidence tlfagives on its
prediction of the class of.

It was proved in (Koltchinskii & Panchenko, 2002) that, giveesample.s =
{(z1,%1),-- -, (Tm,Ym)} Of m learning examples, drawn independently from some dis-
tribution D over X’ x {—1, +1}, and with probability at least — ¢, for all f € co(H)
andf > 0, thegeneralization errorof f is smaller than:

59(f,LS)+O<%\/%) +(9< w> (14)
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The first term aboves? (£, Ls), is theempirical margin-errorof f onLs; it denotes
the proportion of learning examples that are either misdiasl, or correctly classified
but with a small margir:

LS = 3 [ < 0]

The remainder of Ineq.(14) is a complexity penalty term. Bbend by (Koltchinskii
& Panchenko, 2002) improves that given in (Schapiral,, 1998) by removing a factor
Vv1og m. Itis rather clear that iff is able to achieve large margins osg, thend andé
can be chosen large, so the right-hand side of Ineq.(14 tteugeneralization error of
f itself, is small.

4.2 The Case of B0OOST

The result above holds for all voting methods, thus also 8o sT:

b= D (k@) + cahay(2)) 15
frtz) Yy (1o +car) . (o)

However, 2B00OST has remarkable properties. On the one hand, it uses a special
spaceH of hypotheses, that is the union &f; and H,, the respective spaces ex-
plored bywL; andwL,. From the definition of the VC-dim, we deduce thii =
min(dy, , dr, ). SO, up to constants, the penalty term in Ineq.(14) is theeszstihat of
the best run oADABOOST ONWL; andwLs.

On the other hand, we claim that the empirical margin-eremrelases with the num-
ber of iterations. Indeed, we get:

Lemma 2
(fr,LS) < (HL Zg,t), whereZy., = Z,Wy(+-+)°/2Wy(——)~0/2.

Proof: Let Al = — Zle (Cltyihlt(l'i) + CQtyith(l'i)) andB = GZtT:l(clt —+ Cgt).
From Eq.(15), we deduce th@y; fr(z;) <60] = 1iff A, + B > 0, which brings
exp (A; + B) > [yifr(z;) < 0]. Thereforegl (fr,Ls) < (1/m) Y1, exp(A; + B)
= exp(DB) (ILT=1 Zt), by the proof of Lemma 1. Finally, sincg; + co: = (1/2)
In(W,(++)/Wi(——)), we getexp(B) = (HL Wt(++)9/2Wt(——)*9/2), that al-
lows us to conclude. O

Let us assume for the moment that the hypothéseandh.; are independenpf ~
0). Such an assumption is often formulated in order to progestficiency of ensemble

1since Hr(z) = sign(fr(z)). Notce that Eq.(15) is sounde, c1¢z + cor > 0,¥¢ > 1. Indeed,
c1r + car = (1/2) In(Wi(++)/Wi(==)) and Wy (++) — Wi(==) = (3¢ + 72¢)/2 by Eq.(11), s0
Wi(++) > Wi(——) > 0 under thewLA.
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methods (Dietterich, 2000). In such a case, by Eq.(11) aky (e have:

Z V(=) (1 =13,),
Wi(++) ~ w7
Wt(__) ~ (1*’YuL(1*’th).

R

So by Lemma 2, we get:

+6 —6 +6
2 2 2

1 1 1 1—6
Zot > (1+71) 2 (L—mv) 2 (L+72) 2 (1 —72) 2 .

It can be shown (Schapiret al, 1998) that if0 < ~1;/2, then(1 + vu)#(l -

%t)Te < 1 (and the same foy,,). So we conclude:

Proposition 4

Given a fixed margind, if at each iteration of Z00ST, the hypotheses produced are
(7) independentq; ~ 0) and(ii) their respective edges; and~y; are> 26, then
Zo+ < 1. So the empirical-margin erref (fr,Ls) of 2-B00ST converges towards 0
with the number of iterations (by Lemma 2).

The generalization error ofr will thus decrease with the number of iterations, by
Ineq.(14), that will be confirmed from an experimental sfaoidt in Section 5.

4.3 Discussion on the Independence Assumption

By assuming the independence of the hypotheses at each ob2ABIOOST, we have
shown thatZy ; < 1, and we have deduced thét(fT, LS) converged towards 0. This
independence assumption could be perceived as being togd$tom a practical point
of view. Nevertheless, we are going to show that it could seafided without chal-
lenging the convergence of the generalization error.

In Figure 2, we show the shape & . in function of the correlation coefficiep for
fixed values ofyy4, 72, andf. Note here again that we tested several values confirming
a similar behavior as the one observed in Figure 2.

From this chart, we can make the following remarks:

1. ltis rather clear that whep, is around 0, as we assumed in PropZg, < 1.

2. Moreover, we can notice thatEsosTwill also behave well on new data jf;
is often strongly positive. Indeed, in such a cdsg,andhs; agree on the label
of almost all the learning examples, so these classifiedsprobably have the
same behavior in the presence of new examples. Howeveglthance of using
2-B00sSTis limited in this case, since it has the same behaviok@sB00ST
working with eitherwL; or wiL,.

3. Finally, the only case which challenges our frameworkuogevhery;, is strongly
negative. Actually, in such a context, we can observe #at>> 1. This is not
surprising, since; ~ —1 means that the hypotheskg andhs; disagree on the
class of almost all learning examples. If this often hapglming the iterations of
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Figure 2: Zy ; in function of p, when~;; = 0.05, 7o, = 0.07 andf# = 0.02; Zy .,
becomes infinite when the correlation coefficippbecomes negative enough.

2-BOOST, then the global hypothesfs-, that results of the combination of &ll;
andhq,, will certainly perform randomly on any new data. Howevarpractice,
we never faced a so strongly negative correlation betwezhythotheses.

5 Experimental Results

We present in this section the experiments we carried outderao assess the gen-
eralization abilities oR-BOOST. In particular, we aim at showing that the global hy-
pothesis produced b3~BoosT from 2 learning algorithmsvL, andwL, is better on
average than any combination of hypotheses producesbyoosT from wL; and
WL, independently run. To achieve this task, we will test 2 coration methods:

Method A: Both weak learners are boosted individually withaBoOST; let fr(z) =
(Sim ceha(@) /(S e) and fr(w) = (i, ¢hi(2)/ (21, ¢4) be the re-

sulting classifiers; Method A consists in returning the igrfr (z) + f7-(x).

Method B: The same as Method A, except that the voting method retumsigin of
the weighted combinatiofy",_, ¢:) fr () + (31—, &) fr(x)).

5.1 Results on a Simulated Database

The aim of this section is to show the relevance of our appraache presence of
data described with strongly heterogeneous features. ®the tack of unpreprocessed
datasets on the web, we have decided to build a databasehsu@ny single attribute
is not informative enough to learn the whole concept.

We started with a base containing 1877 first names and theiceged gender: +1
for female first names and -1 for male first names. It is cleanlyossible to learn the
gender of a person by using only his first name, due to theayéetween both classes.
Then we added a new feature, a favorite sport that could be&)arennis or Soccer,
by assuming that Dance was often preferred by women, Sogameh and Tennis by
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both genders. In consequence, this new feature does nat@dldo deduce the gender
of any person again.

Then the task consists in verifying if it is possible to builcclassification model
predicting the gender (+1 or -1) of a person in function offirig name and favorite
sport. We consider 2 weak learners. The discrete featurer{fa sport) is investigated
with a decision stump. Concerning the first names, that aregst we designed a weak
learner based on bigrams (Goodman, 2001). Roughly speakibigrams are built, 1
per class{1 and—1), that allows us to assess the probability of any stringixedy to
each gender. The label of any new string is then assigneddyiginam that maximizes
this probability. Although the principle is rather simplagtice that we adapted this
algorithm to also take into account the current distributig, and so to be a weak
learner.

Figure 3 presents the results we obtained (with a 5 fold evadation procedure)
over 50 iterations witl{i) 2-B00ST, (i¢) the 2 single boosted weak learners, @fid)
their combinations by Methods A and B. We can make the folhgiemarks. First,
we note that both Methods A and B outperform each single ledoatgorithm, not
only in terms of generalization accuracy but also of emplréccuracy, that means that
each feature is useful to learn a specific part of the targategat. Moreover2-00ST
outperforms both Methods A and B, that proves the relevafceioboosting scheme
with respect to combining independently-run algorithims. aldvantage is statistically
significant using a Student paired t-test.

" 2-boost

Boosted bigram -------

Boosted stump --------
Method A
Method B ————

L L L L
0 10 20 30 40 50

Algo Empirical Accuracy | Generalization Accurac
2-BOOST 97.73 85.10
Boosted stump 66.11 64.10
Boosted bigram 90.20 79.22
Method A 90.26 81.57
Method B 92.12 80.87

Figure 3: The curves represent the evolution over 50 imatof the generalization
accuracy usin@-BoOST, a Boosted stumpa Boosted bigram, Method And Method
B. The table shows the average results after 50 iterationsedéittpirical accuracy and
the generalization accuracy.
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5.2 A Comparison from Feature Subsets

In a second series of experiments, we verified that the behalsserved in the previous
section was not an artifact due to the database. Thereferdawe used 13 databases
coming from the UCI Repositofy Since most of them are homogeneous, we have
simulated heterogeneity by randomly splitting the set atdees into 2 disjoint sub-
spaces i, &) of equal size. We have ruliBoosTwith 2 weak learners: A decision
stump algorithm and a naive bayesian learner (John & Lan@j#85). Table 1 (column
Expe. 5.2) shows the results we get in this setting.

For each database, we present its $iz, its number of original features #Feat,
and the generalization accuracy (by 5 fold cross-validgtiee obtained foR-BOOST,
Method A and Method B. Moreover, we indicated in underlinewtf the method which
reached the best result. From this table we can make theviojoremarks. First, for
9 databases (over 13), our boosting procedure has the bestibe versus 4 times for
Method B and none for A. Moreover, we computed the averageracyg, by weighting
each individual accuracy by the learning set siz&8o0sTreaches a rate &2.70%,
that is much higher thaii5.97% of the Method A (+6.73 in favor o2-Bo0sT) and
significantly higher (using a Student paired t-test) tan9% of the Method B (+1.51).

By analyzing the results according to the learning set size¢an also make the in-
teresting following remark. The advantage2e600STin comparison with the Method
B (which is the closest) seems to be higher on average forl slatdbases. Actually,
the average accuracy for databases containing less th&@nir&i@inces is about7.8%
for 2-800sTand75.6% for the Method B (+2.2), while this difference is only of +1.3
for databases with more than 2000 instances. This resolj$to the fore the necessity,
above all with few examples, of a collaboration throughdwat learning between both
classifiers.

Expe. 5.2 Expe. 5.3

Base |Ls] | #Feat || 2-BoOST | Method A | Method B || 2-BoosT | Method A | Method B
Bigpole 1996 5 67.59 62.32 63.48 68.04 67.53 67.48
Horse 1468 23 79.90 73.50 78.68 85.35 76.63 84.60
Austral 2756 15 86.97 73.00 86.39 87.26 87.84 87.45
Balance 2496 5 92.05 71.39 89.51 98.10 97.14 97.46
Breast 2792 10 96.24 95.88 96.67 97.39 96.10 96.45
German 1004 25 73.10 73.30 73.60 73.10 73.30 73.60
Glass 167 10 74.40 72.81 72.61 81.65 79.95 81.03
Heart 274 14 79.19 79.17 79.91 81.02 81.02 78.81
lonosphere | 736 35 98.91 92.67 93.08 92.26 91.03 91.03
Pima 3068 9 73.01 72.62 72.62 73.01 72.62 72.62
TicTacToe | 2396 10 78.96 71.62 74.96 91.95 90.19 92.41
WhiteHouse | 439 17 96.89 95.80 95.05 98.30 97.12 97.41
xd6 604 11 74.83 70.86 75.33 75.82 75.49 75.49
Average 1728 14 82.70 75.97 81.19 85.60 84.34 85.22

Table 1: Comparison &f-BoosTwith Methods A and B on 14 databases. In Expe. 5.2,
each weak learning algorithm is run from a subset of the waidieatures. In Expe. 5.3,
each weak algorithm is run with the entire set of features.

http://www.ics.uci.edutmlearn
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5.3 Results from the Entire Feature Set

In this last series of experiments, we wanted to verify BQosT remains efficient,
relatively to Methods A and B, in the casel@dmogeneoudata. In other words, what
happens when the whole set of features was used by bothrigaigorithms? Is it still
relevant to use 800s7? Table 1 (column Expe. 5.3) shows the results we obtained by
5 fold cross-validation.

First of all, we can note that the difference, in favor of oppmach, between 2-
BoosTand Methods A and B is considerably reduced. This behavioeotisurprising
since the 3 methods have now access to the entire databaseptimore information.
However, despite this, note that the difference remairtsstally significant using a
Student paired t-test betweersB®osTand Methods A and B. Moreover, these results
confirm the relevance and the stability of our method sincérs over 13 it obtains
the best result.

6 Discussion and Future Work

As far as we know, 200sTis the first boosting procedure able to deal with heteroge-
neous features, so our results are encouraging. Nevesthelgiece of work remains
to be done whert > 3, particularly for proving theoretical convergence prdigss.

A first problem is the computation of the optimal valugsg, . . . , ¢ that minimizeZ,

that can only bepproximatedby using a standard Newton-Raphson method. As for
the probabilistic interpretation &f, as a Laplace transform, it reveals th4t— 1 basic
moments are required to descrifg. That makes things hard to prove, but we think
that both the empirical and the generalization errok-@00sT should also decrease
exponentially with the number of iterations.
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