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Abstract : Nous consid́erons ici des problèmes d’apprentissage où les donńees
sont pŕesent́eesà l’aide de caractéristiques fortement h́et́erog̀enes, par exemple,
une base de personnes où chaque individu est d́ecrit par son nom (une chaı̂ne
de caract̀eres), sa photo (une image), un enregistrement de sa voix (du son) et ses
mensurations (des réels). Il n’existe aucun algorithme capable d’apprendre en tra-
vaillant sur toutes ces caractéristiques̀a la fois (sauf en utilisant un codage et donc
en perdant de l’information), mais nous disposons d’algorithmes performants et
sṕecialiśes pour traiter efficacement chaque type de caractéristiques. Dans ce tra-
vail, nous proposons une nouvelle procédure de boosting,k-BOOST, permettant̀a
ces algorithmes de collaborer activement pendant la phase d’apprentissage, et de
construire ainsi une hypothèse globale tr̀es performante. Nouśetudions les pro-
priét́es th́eoriques dek-BOOSTpuis nous menons des expérimentations prouvant
que notre ḿethode fonctionne significativement mieux que toute autre combinai-
son d’hypoth̀eses qui seraient construites sans collaboration.

Mots-clés: Boosting, variables h́et́erog̀enes, ŕesultats de convergence.

1 Introduction

Most of the research on classifier ensembles aims at combining in some way the pre-
dictions of a set ofhomogeneousclassifiers, that is to say, classifiers built using a single
learning algorithm from various probability distributions, as done in boosting for exam-
ple (Freund & Schapire, 1996; Freund & Schapire, 1997). Another approach consists in
learning heterogeneous classifiers (that is, in the form of trees, neural networks, nearest-
neighbors, etc.) from a single learning distribution and combining them in an efficient
final classifier, as done instacking(Wolpert, 1992). However, we can remark in this lat-
ter case that the notion ofheterogeneityonly characterizes the model representation, but
does not concern the data themselves. In other words, what happens when each exam-
ple in the learning set is described by strongly heterogeneous features such as strings,
sounds, pictures, trees, . . . ? In fact, in their original forms, ensemble methods become
either useless, which is the case for boosting that does not consider such a situation in
its framework, or insufficient, for those combining classifiers built only from the subset
of features that they can deal with.
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However, simple examples show that such a situation can often occur. For instance,
consider a dataset that describes persons with 3 features, their first name, their height
and their weight, whereas the target to predict is the gender. It is clearly insufficient to
use only the first name (and “forget” the other features) to achieve this task, in particular
because many first names, such as ”Dana”, ”Taylor”, ”Jordan”, or ”Claude” are shared
by men and women. But on the other hand, it would be very unfortunate not to use the
first name of the person and only learn the target from the 2 numerical features. Another
example could be a database of on-line marketplaces such aswww.ebay.com where
the articles are described by a picture, a textual caption and a price. The variable that
one would like to predict could be the interest of a specific consumer with respect to
the articles. A last example is provided by the databaseBIOMET (Garcia-Salicettiet al.,
2003) which describes a person with 5 features: his face, speech, fingerprint, hand-
shape and online signature. The objective being to predict whether a given person is a
forger or not, the information provided by each feature is important.

The common characteristics of both these examples is that they contain heteroge-
neous features,i.e. textual information, images, sounds as well as numerical values
that cannot be efficiently handled by the same learning algorithm. Indeed, on the one
hand, the state of the art that allows to learn from strings usually usesn-grams (Good-
man, 2001) or other grammatical inference algorithms (de laHiguera, 2004). But these
techniques cannot be adapted to learn from numerical values. On the other hand, many
powerful algorithms learn from numerical features but cannot deal with strings directly.

A first solution could consist in standardizing all the features into a unique type,
numerical for example, thus to use an encoding stage. Even ifit seems possible to
change a string or an image in a quantitative vector, the mainrisk of such a strategy is
to lose a part of the discriminant information of the feature. To overcome this drawback,
another solution could consist in building an efficient (potentially boosted) classifier for
each type of features and using their predictions in a globalhypothesis. This idea is the
one developed in a paper by Cherkauer (Cherkauer, 1996). Butthe main drawback of
such an approach is the lack of interaction between the classifiers during the induction
process. Finally, another solution could aim at using a modified version of a special case
of stacked generalization, namely cascade generalization(Gama & Brazdil, 2000). The
level 0 of the cascade would be built using 1 set of attributesand the dedicated learner
would be used, then the level 1 would be built by combining another set of attributes
with the results of the first learner, etc. However, in this case, even if there exists a
collaboration between the classifiers, it is limited to a bottom-up unilateral interaction.

In this paper, we aim not only(i) at keeping the advantages of ensemble methods,
based on the premise that an ensemble is often much more accurate than its individual
components (Dietterich, 1997) and(ii) at dealing with heterogeneous features, but also
(iii) at generating bilateral interactions between the classifiers. To achieve this task, we
focus here on the adaptation of boosting to such a context. Let us recall in Algorithm 1
the strategy of boosting and its algorithmADABOOST. ADABOOST successively trains
T times a learning algorithmWL on various probability distributionswt over a learning
setLS that is composed ofm examples. The resulting base classifiersht are combined
into an efficient single classifierHT . At each new roundt + 1, the current distribution
exponentially favors the weights of examples misclassifiedby the previous classifierht.
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for i = 1 to m do w1(xi) = 1/m;
for t = 1 to T do

ht = WL(LS, wt);
γt =

∑m
i=1 wt(xi)yiht(xi);

ct = (1/2) ln((1 + γt)/(1 − γt));
Zt =

∑m
i=1 wt(xi) exp (−ctyiht(xi));

for i = 1 to m do wt+1(xi) = wt(xi) exp (−ctyiht(xi)) /Zt

return HT such thatHT (x) = sign
(

∑T
t=1 ctht(x)

)

Algorithm 1: Pseudo-code ofADABOOST.

A first boosting solution to deal with heterogeneous features would aim at selecting
for each feature a relevant algorithm and in optimizing its performance by usingAD-
ABOOST; At the end of all the runs, one could combine thek resulting hypotheses in
some way into a global classifier. However, this idea would not be sufficient. Indeed,
from a theoretical standpoint, optimizing individual performances would not ensure an
optimization of the final classifier. Moreover, by boosting each weak learnerindepen-
dentlyon the others, the main risk would be to encounter an overfitting phenomenon
or to decrease the convergence speed of the algorithm. For instance, consider a person
described by his face and his voice. Let us assume that the database contains 2 twin
brothers with the same face but different voices. Boosting aweak learnerWL1 from the
faces, and independently a weak learnerWL2 from the voices, would result in a useless
increase of the learning time ofWL1, whereas a collaboration between both would “in-
form” WL1 that the discrimination is possible thanks toWL2 and, thus, that it is useless
to try to discriminate 2 similar faces.

Therefore, we think that a better way to proceed consists in learningk classifiers
in parallelat each stepof boosting, and so in taking into account all the information
provided by thesek classifiers in the weight update rule. This strategy requires the con-
struction of a new weighting scheme and the verification thatit preserves the boosting
theoretical properties. That is the aim of this paper.

First, we propose in Section 2 a new boosting algorithm, calledk-BOOST. Then, in
the core of the paper, we aim at verifying that our weighting scheme keeps the standard
boosting properties: In Section 3, we tackle the problem of the convergence of the
empirical error; We deal with the generalization error in Section 4. Note that we only
concentrate our efforts in this paper on the particular caseof k = 2, for which we
are able to provide exact theoretical results. Finally, in Section 5, we carry out many
experiments to show the relevance of our approach, before concluding.

2 The Algorithm k-BOOST

Let LS = {(x1, y1), . . . , (xm, ym)} be a finite set ofm learning examples. Each in-
stancexi belongs to a domainX and is assigned to a boolean classyi ∈ {−1,+1}. We
assume thatLS was generated according to some fixed but unknown distributionD over
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X × {−1,+1}. Since we suppose that each example is described with strongly hetero-
geneous features,X is thus some cartesian productX1 ×X2 × . . . ×Xk. For instance,
in the first example given in Section 1,LS is a set of persons described by their first
name and their weight and their height, soX1 is a set of strings andX2 is the set of real
numbers covering both weight and height features. In this case, there does not exist any
algorithmWL able to learn a classifier from the whole spaceX but several algorithms,
each of them working on a part ofX , can cover it totally (for instance, one can use
n-grams to deal withX1 and C4.5 to learn a decision tree fromX2). Generalizing, let
us assume that we havek algorithms, denotedWL1, . . . , WLk, which will be used on
their corresponding subset of features.

for i = 1 to m do w1(xi) = 1/m;
for t = 1 to T do

for j = 1 to k do hjt = WLj(LS, wt);

define functionZt(u1, . . . , uk) =
∑m

i=1 wt(xi) exp
(

−∑k
j=1 ujyihjt(xi)

)

;

compute(c1t, . . . , ckt) ∈ R
k such thatZt(c1t, . . . , ckt) is minimum;

let Zt = Zt(c1t, . . . , ckt);

for i = 1 to m do wt+1(xi) = wt(xi) exp
(

−∑k
j=1 cjtyihjt(xi)

)

/Zt

return HT such thatHT (x) = sign
(

∑T
t=1

∑k
j=1 cjthjt(x)

)

Algorithm 2: Pseudo-code ofk-BOOST.

At each stept of our boosting algorithm, calledk-BOOST(see Algorithm 2), a distri-
butionwt is defined overLS. Then, each learnerWLj uses its ownviewof the data (i.e.,
the features it can handle) and the distributionwt to produce a hypothesishjt. Then
h1t, . . . , hkt are combined into a weighted classifier whoseglobal response is used to
updatewt. Finally, the resulting hypothesisHT is a combination of all the weighted
hypotheses produced byk-BOOST. Notice that when only one learner is used (k = 1),
our algorithm is exactlyADABOOST, so the former is an extension of the latter. More-
over, concerning computation time issues, note thatk-BOOST can be run in parallel.
Therefore, by usingk different machines, the total amount of running time shouldnot
exceed (assuming a small communication time between processors) that required by
ADABOOST on the worst algorithm amongWL1, . . . , WLk.

3 Results on the Empirical Error of 2-BOOST

The empirical errorε(HT , LS) is the error ofHT computed onLS. In this section,
we show thatε(HT , LS) is bounded by a quantity that decreases with the number of
boosting iterations. Even though some of these results can be extended tok-BOOST

(∀k), we focus our attention on the special case ofk = 2 for sake of simplicity.
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3.1 Conditions of the Empirical Error Minimization

Let us define the empirical error:

ε(HT , LS) = (1/m)

m
∑

i=1

[[HT (xi) 6= yi]],

where[[π]] is 1 if predicateπ holds and 0 otherwise. Running2-BOOST, we obtain the
following result:

Lemma 1
ε(HT , LS) ≤

(

∏T
t=1 Zt

)

, where

Zt =
∑m

i=1 wt(xi) exp (−c1tyih1t(xi) − c2tyih2t(xi)).

Proof: Let Ai = −
∑T

t=1 (c1tyih1t(xi) + c2tyih2t(xi)). Unraveling the update rule of

2-BOOST, we getwT+1(xi) = w1(xi) exp(Ai)/
(

∏T
t=1 Zt

)

, so summingwT+1(xi)

for all i ∈ 1..m yields
(

∏T
t=1 Zt

)

= (1/m)
∑m

i=1 exp(Ai). On the other hand,

[[HT (xi) 6= yi]] = 1 iff HT (xi)yi = −1, that is to say,Ai ≥ 0. Therefore,exp(Ai) ≥
[[HT (xi) 6= yi]]. So we deduceε(HT , LS) ≤ (1/m)

∑m
i=1 exp(Ai) =

(

∏T
t=1 Zt

)

, that

is the statement of the Lemma. 2

As a consequence of Lemma 1, the smallestZ1, . . . , ZT are, the smallest the em-
pirical error is. Therefore, as forADABOOST, 2-BOOST aims at computing the values
c1t, c2t that minimizeZt. SinceZt is a convex function of(c1t, c2t) (see (Schapire &
Singer, 1998, Appendix A) for a proof), so we need to solve:

(

∂Zt

∂c1t

)

=

(

∂Zt

∂c2t

)

= 0. (1)

To tackle this problem, we first decomposeZt by separating the elements of the sum
with respect to the positive and negative values ofyih1t(xi) and yih2t(xi). So we
define,∀b1, b2 ∈ {−,+}, the setsEt(b1b2) = {i ∈ 1..m : (yih1t(xi) = b11) ∧
(yih2t(xi) = b21)} and their weightsWt(b1b2) =

∑

i∈Et(b1b2)
wt(xi). Then we get:

Zt = Wt(++)e−c1t−c2t + Wt(+−)e−c1t+c2t

+ Wt(−+)ec1t−c2t + Wt(−−)ec1t+c2t , (2)

(∂Zt/∂c1t) = −Wt(++)e−c1t−c2t − Wt(+−)e−c1t+c2t

+ Wt(−+)ec1t−c2t + Wt(−−)ec1t+c2t = 0, (3)

(∂Zt/∂c2t) = −Wt(++)e−c1t−c2t + Wt(+−)e−c1t+c2t

− Wt(−+)ec1t−c2t + Wt(−−)ec1t+c2t = 0. (4)

We add and subtract Eq.(3) and (4) in order to solve Eq.(1), which bringsc1t + c2t =
1
2 ln

(

Wt(++)
Wt(−−)

)

andc1t − c2t = 1
2 ln

(

Wt(+−)
Wt(−+)

)

. Therefore, we deduce:
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Proposition 1
The empirical error of2-BOOST is minimal when∀t ∈ 1..T :

c1t =
1

4
ln

(

Wt(++)Wt(+−)

Wt(−−)Wt(−+)

)

, c2t =
1

4
ln

(

Wt(++)Wt(−+)

Wt(−−)Wt(+−)

)

. (5)

Moreover, the minimal value ofZt is:

2
√

Wt(++)Wt(−−) + 2
√

Wt(+−)Wt(−+). (6)

Note that Eq.(5) are meaningful only if∀b1, b2 ∈ {−,+},Wt(b1b2) 6= 0. We assume
this in the following but it may be wrong in practice. In this case,2-BOOST will have
to stop and returnHt−1, asADABOOST does whenWt(+) or Wt(−) are null (Meir &
Raetsch, 2003).

3.2 The Characteristic Parameters of2-BOOST

It is well-known that the empirical error withADABOOST exponentially converges to-
wards 0 with the number of iterationsT . The usual way to prove this consists in showing
that eachZt is significantly< 1 for all t ≥ 1; This is done by introducing a characteris-
tic parameter of ADABOOST, denotedγt and called theedgeof hypothesisht (Meir &
Raetsch, 2003). The aim of this section is to reveal the proper characteristic parameters
of 2-BOOST.

Let X1 andX2 be 2 random variables that specify the correctness of hypothesesh1t

andh2t respectively.X1 takes 2 values, either +1 whenh1t correctly classifies an ex-
ample (i.e., yih1t(xi) = +1), or -1 whenh1t makes an error (yih1t(xi) = −1). And the
same forX2 with respect toh2t. In this context, the set of weightsWt(b1b2) describes
the joint distribution ofX1 andX2, i.e., ∀b1, b2 ∈ {−,+},Wt(b1b2) = P[X1 = b11 ∧
X2 = b21]. Moreover, by Eq.(2), we getZt(c1t, c2t) = E[exp (−c1tX1 − c2tX2)], so
Zt is theLaplace transformof the random pair(X1,X2). For such a transform, it is
known that:

∂p+qZt

∂pc1t∂qc2t
(0, 0) = (−1)p+q

E[Xp
1Xq

2 ],∀p, q ∈ N, (7)

whereE[Xp
1Xq

2 ] is a joint moment ofX1 andX2. In other words,Zt is a moment-gen-
erating function that completely and uniquely determines the distribution of(X1,X2).
Using Eq.(2) and (7), we get for allp, q ≥ 0:

E[X2p
1 X2q

2 ] = E[1] = 1, E[X2p+1
1 X2q

2 ] = E[X1],

E[X2p
1 X2q+1

2 ] = E[X2], E[X2p+1
1 X2q+1

2 ] = E[X1X2].

As a consequence,Zt can be totally described with only 3 parameters:E[X1], E[X2]
andE[X1X2] (plusE[1] = 1), since every higher-order moment of(X1,X2) is equal
to one of these values.

In terms of boosting,E[X1] andE[X2], that we shall now denoteγ1t andγ2t, are the
edges of the hypothesesh1t andh2t. They quantify the relevance of both classifiersh1t
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andh2t with respect to the class of examples, sinceγ1t andγ2t are the expected values
of the correctness of the answers ofh1t andh2t :

γ1t = E[X1] =
m

∑

i=1

wt(xi)yih1t(xi) andγ2t = E[X2] =
m

∑

i=1

wt(xi)yih2t(xi). (8)

ConcerningE[X1X2], we use it within more understandable quantities, namely the
covarianceδt of X1 andX2 and thecorrelation coefficientρt of X1 andX2:

δt = Cov[X1,X2] =

m
∑

i=1

wt(xi)h1t(xi)h2t(xi) − γ1tγ2t, (9)

ρt =
Cov[X1,X2]

√

Var[X1]
√

Var[X2]
=

δt
√

1 − γ2
1t

√

1 − γ2
2t

. (10)

Since the classifiersh1t andh2t collaborate for updatingwt, it is not surprising to find
ρt as an important parameter of 2-BOOST: It denotes the level of independence between
X1 andX2. Other measures of independence could be used, for instance, the interclass
correlation coefficient ofX2 with respect toX1, or theχ2-distance betweenX1 and
X2, but we checked that these measures were basically related to ρt, due to the fact that
X1 andX2 take only+1 and−1 as values. We get:















Wt(++) + Wt(+−) + Wt(−+) + Wt(−−) = 1,
Wt(++) + Wt(+−) − Wt(−+) − Wt(−−) = γ1t,
Wt(++) − Wt(+−) + Wt(−+) − Wt(−−) = γ2t,
Wt(++) − Wt(+−) − Wt(−+) + Wt(−−) = δt + γ1tγ2t,

⇐⇒















Wt(++) = (δt + (1 + γ1t)(1 + γ2t))/4,
Wt(+−) = (−δt + (1 + γ1t)(1 − γ2t))/4,
Wt(−+) = (−δt + (1 − γ1t)(1 + γ2t))/4,
Wt(−−) = (δt + (1 − γ1t)(1 − γ2t))/4,

(11)

by Eq.(2) and (7). Finally, plugging Eq.(11) and (10) in Eq.(6) yields:

Zt =
1

2

√

δ2
t + 2δt(1 + γ1tγ2t) + (1 − γ2

1t)(1 − γ2
2t)

+
1

2

√

δ2
t − 2δt(1 − γ1tγ2t) + (1 − γ2

1t)(1 − γ2
2t),

whereδt = ρt

√

1 − γ2
1t

√

1 − γ2
2t. (12)

3.3 Convergence of the Empirical Error

The aim of this section is to provide a bound ofZt, that allows to show the exponential
convergence of the empirical error of2-BOOST towards 0. We first establish aweak
learning assumption(Kearns & Vazirani, 1994; Meir & Raetsch, 2003),WLA for short,
that is to say, conditions under which bothWL1 andWL2 areweak learners:
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Definition 1
Let LS = {(x1, y1), . . . , (xm, ym)} be a finite set ofm learning examples. An algo-
rithm WL is a weak learnerwith respect toLS iff there exists a constantΓ > 0 such
that for all distributionsd over LS and all hypothesesh = WL(LS, d),

m
∑

i=1

d(xi)yih(xi) ≥ Γ.

Assuming thatWL1 andWL2 are both weak learners implies that there exist 2 constants
Γ1,Γ2 such that for allt ≥ 1, γ1t ≥ Γ1 > 0 andγ2t ≥ Γ2 > 0.

Let us now study the conditions of convergence of the empirical error. We can afford
to state a simple majoration ofZt, considered as a function of the correlationρt when
γ1t andγ2t are fixed. Indeed, let us fix particular values forγ1t andγ2t and study the
shape ofZt. In Figure 1, interestingly, we can observe thatZt is dramatically smaller
than 1 whatever the value ofρt, which ensures convergence ofε(HT , LS) towards 0.
Of course, we tested many configurations ofγ1t andγ2t and that the behavior ofZt

remained the same.
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Figure 1:Zt in function ofρt whenγ1t = 0.2 andγ2t = 0.7.

Under theWLA and using Maple 9.5c©, we can formally confirm the previous re-
marks. Indeed, starting with Eq.(12), we get:(i) when0 < γ1t ≤ γ2t < 1, Zt reaches

a maximum,
√

1 − γ2
2t, in ρt = γ1t

γ2t

√

1−γ2
2t

1−γ2
1t

, and(ii) when0 < γ2t < γ1t < 1, Zt

reaches a maximum,
√

1 − γ2
1t, in ρt = γ2t

γ1t

√

1−γ2
1t

1−γ2
2t

. In other words, we get:

Zt ≤
√

1 − max(γ1t, γ2t)2. (13)

Amazingly,ρt does not appear in this bound,i.e., the empirical error of 2-BOOST is not
influenced by the correlation betweenh1t andh2t, but that will not be the case for the
generalization error. LetΓ0 = max(Γ1,Γ2). We deduce:

Zt ≤
√

1 − Γ2
0 < exp

(

−Γ2
0

2

)

< 1.
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Therefore, by Lemma 1, we can conclude:

Proposition 2
Under theWLA , ε(HT , LS) < exp

(

−T
Γ2

0

2

)

, whereΓ0 = max(Γ1,Γ2). So, the em-

pirical error of 2-BOOSTconverges→ 0 whenT → +∞.

Also notice that Def.1 specifies a weak learnerWL with respect toall distributionsd
that may be used overLS. Basically, we could only focus on the distributionswt. In fact,
this definition allows to compare the convergence speed ofADABOOST and2-BOOST:
Let ε1T (resp.ε2T ) be the empirical error of the classifier produced byADABOOST

when run onLS with WL1 (resp.WL2). It is standard to show thatε1T < exp(−TΓ2
1/2)

andε2T < exp(−TΓ2
2/2). As ε(HT , LS) < exp(−TΓ2

0/2) with Γ0 = max(Γ1,Γ2),
we conclude that:

Proposition 3
The convergence speed of2-BOOST, run with bothWL1 and WL2, cannot be worse than
the worst convergence speed ofADABOOST, run with WL1 and WL2 independently.

However, in practice, we have observed that the behavior of2-BOOSTwas often closer
to the average of that ofADABOOST onWL1 andWL2 rather than the worst among them.

4 Convergence of the Generalization Error

The generalization error of the final classifier produced byADABOOST is often ob-
served to decrease with the numberT of iterations. (Schapireet al., 1998) explained
this phenomenon by relating the generalization error and the margins of the learning
examples. More sophisticated but realistic bounds were recently proposed in order to
provide quantitative explanations (Koltchinskii & Panchenko, 2002). In this section,
we recall these results and extend them to 2-BOOST.

4.1 Decomposition of the Generalization Error

LetH be a class of binary classifiers of VC-dimensiondH. Let co(H) denote the convex
hull of H, i.e., the set of all (finite) linear combinations of hypotheses: co(H) = {f =
∑

i αihi : ∀i, αi ≥ 0 and
∑

i αi = 1}. Given a particularf ∈ co(H) and an instance
x, f(x) =

∑

i αihi(x) is a real in[−1,+1]; Its sign,+1 or −1, determines the class
assigned byf to x; Themargin|f(x)| is a measure of the confidence thatf gives on its
prediction of the class ofx.

It was proved in (Koltchinskii & Panchenko, 2002) that, given a sampleLS =
{(x1, y1), . . . , (xm, ym)} of m learning examples, drawn independently from some dis-
tributionD overX × {−1,+1}, and with probability at least1 − δ, for all f ∈ co(H)
andθ > 0, thegeneralization errorof f is smaller than:

εθ(f, LS) + O
(

1

θ

√

dH
m

)

+ O
(

√

log(1/δ)

m

)

. (14)
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The first term above,εθ(f, LS), is theempirical margin-errorof f on LS; it denotes
the proportion of learning examples that are either misclassified, or correctly classified
but with a small marginθ:

εθ(f, LS) =
1

m

m
∑

i=1

[[yif(xi) ≤ θ]].

The remainder of Ineq.(14) is a complexity penalty term. Thebound by (Koltchinskii
& Panchenko, 2002) improves that given in (Schapireet al., 1998) by removing a factor√

log m. It is rather clear that iff is able to achieve large margins onLS, thenθ andδ
can be chosen large, so the right-hand side of Ineq.(14), thus the generalization error of
f itself, is small.

4.2 The Case of 2-BOOST

The result above holds for all voting methods, thus also for 2-BOOST1:

fT (x) =

∑T
t=1 (c1th1t(x) + c2th2t(x))

∑T
t=1 (c1t + c2t)

. (15)

However, 2-BOOST has remarkable properties. On the one hand, it uses a special
spaceH of hypotheses, that is the union ofH1 andH2, the respective spaces ex-
plored byWL1 and WL2. From the definition of the VC-dim, we deduce thatdH =
min(dH1

, dH2
). So, up to constants, the penalty term in Ineq.(14) is the same as that of

the best run ofADABOOST on WL1 andWL2.
On the other hand, we claim that the empirical margin-error decreases with the num-

ber of iterations. Indeed, we get:

Lemma 2
εθ(fT , LS) ≤

(

∏T
t=1 Zθ,t

)

, whereZθ,t = ZtWt(++)θ/2Wt(−−)−θ/2.

Proof: Let Ai = −∑T
t=1 (c1tyih1t(xi) + c2tyih2t(xi)) andB = θ

∑T
t=1(c1t + c2t).

From Eq.(15), we deduce that[[yifT (xi) ≤ θ]] = 1 iff Ai + B ≥ 0, which brings
exp (Ai + B) ≥ [[yifT (xi) ≤ θ]]. Therefore,εθ(fT , LS) ≤ (1/m)

∑m
i=1 exp(Ai + B)

= exp(B)
(

∏T
t=1 Zt

)

, by the proof of Lemma 1. Finally, sincec1t + c2t = (1/2)

ln(Wt(++)/Wt(−−)), we getexp(B) =
(

∏T
t=1 Wt(++)θ/2Wt(−−)−θ/2

)

, that al-

lows us to conclude. 2

Let us assume for the moment that the hypothesesh1t andh2t are independent (ρt '
0). Such an assumption is often formulated in order to prove the efficiency of ensemble

1SinceHT (x) = sign(fT (x)). Notce that Eq.(15) is sound,i.e., c1t + c2t > 0, ∀t ≥ 1. Indeed,
c1t + c2t = (1/2) ln(Wt(++)/Wt(−−)) andWt(++) − Wt(−−) = (γ1t + γ2t)/2 by Eq.(11), so
Wt(++) > Wt(−−) > 0 under theWLA .
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methods (Dietterich, 2000). In such a case, by Eq.(11) and (12), we have:










Zt '
√

(1 − γ2
1t)(1 − γ2

2t),

Wt(++) ' (1+γ1t)(1+γ2t)
4 ,

Wt(−−) ' (1−γ1t)(1−γ2t)
4 .

So by Lemma 2, we get:

Zθ,t ' (1 + γ1t)
1+θ

2 (1 − γ1t)
1−θ

2 (1 + γ2t)
1+θ

2 (1 − γ2t)
1−θ

2 .

It can be shown (Schapireet al., 1998) that ifθ < γ1t/2, then (1 + γ1t)
1+θ

2 (1 −
γ1t)

1−θ

2 < 1 (and the same forγ2t). So we conclude:

Proposition 4
Given a fixed marginθ, if at each iteration of 2-BOOST, the hypotheses produced are
(i) independent (ρt ' 0) and (ii) their respective edgesγ1t andγ2t are> 2θ, then
Zθ,t < 1. So the empirical-margin errorεθ(fT , LS) of 2-BOOST converges towards 0
with the number of iterations (by Lemma 2).

The generalization error offT will thus decrease with the number of iterations, by
Ineq.(14), that will be confirmed from an experimental standpoint in Section 5.

4.3 Discussion on the Independence Assumption

By assuming the independence of the hypotheses at each roundof 2-BOOST, we have
shown thatZθ,t < 1, and we have deduced thatεθ(fT , LS) converged towards 0. This
independence assumption could be perceived as being too strong from a practical point
of view. Nevertheless, we are going to show that it could be discarded without chal-
lenging the convergence of the generalization error.

In Figure 2, we show the shape ofZθ,t in function of the correlation coefficientρt for
fixed values ofγ1t, γ2t andθ. Note here again that we tested several values confirming
a similar behavior as the one observed in Figure 2.

From this chart, we can make the following remarks:

1. It is rather clear that whenρt is around 0, as we assumed in Prop. 4,Zθ,t < 1.

2. Moreover, we can notice that 2-BOOST will also behave well on new data ifρt

is often strongly positive. Indeed, in such a case,h1t andh2t agree on the label
of almost all the learning examples, so these classifiers will probably have the
same behavior in the presence of new examples. However, the relevance of using
2-BOOST is limited in this case, since it has the same behavior asADABOOST

working with eitherWL1 or WL2.

3. Finally, the only case which challenges our framework occurs whenρt is strongly
negative. Actually, in such a context, we can observe thatZθ,t À 1. This is not
surprising, sinceρt ' −1 means that the hypothesesh1t andh2t disagree on the
class of almost all learning examples. If this often happensduring the iterations of
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Figure 2: Zθ,t in function of ρt whenγ1t = 0.05, γ2t = 0.07 andθ = 0.02; Zθ,t

becomes infinite when the correlation coefficientρt becomes negative enough.

2-BOOST, then the global hypothesisfT , that results of the combination of allh1t

andh2t, will certainly perform randomly on any new data. However, in practice,
we never faced a so strongly negative correlation between the hypotheses.

5 Experimental Results

We present in this section the experiments we carried out in order to assess the gen-
eralization abilities of2-BOOST. In particular, we aim at showing that the global hy-
pothesis produced by2-BOOST from 2 learning algorithmsWL1 andWL2 is better on
average than any combination of hypotheses produced byADABOOST from WL1 and
WL2 independently run. To achieve this task, we will test 2 combination methods:

Method A: Both weak learners are boosted individually withADABOOST; let fT (x) =

(
∑T

t=1 ctht(x))/(
∑T

t=1 ct) andf ′
T (x) = (

∑T
t=1 c′th

′
t(x))/(

∑T
t=1 c′t) be the re-

sulting classifiers; Method A consists in returning the signof fT (x) + f ′
T (x).

Method B: The same as Method A, except that the voting method returns the sign of
the weighted combination(

∑T
t=1 ct)fT (x) + (

∑T
t=1 c′t)f

′
T (x)).

5.1 Results on a Simulated Database

The aim of this section is to show the relevance of our approach in the presence of
data described with strongly heterogeneous features. Due to the lack of unpreprocessed
datasets on the web, we have decided to build a database such that any single attribute
is not informative enough to learn the whole concept.

We started with a base containing 1877 first names and their associated gender: +1
for female first names and -1 for male first names. It is clearlyimpossible to learn the
gender of a person by using only his first name, due to the overlap between both classes.
Then we added a new feature, a favorite sport that could be Dance, Tennis or Soccer,
by assuming that Dance was often preferred by women, Soccer by men and Tennis by
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both genders. In consequence, this new feature does not allow us to deduce the gender
of any person again.

Then the task consists in verifying if it is possible to builda classification model
predicting the gender (+1 or -1) of a person in function of hisfirst name and favorite
sport. We consider 2 weak learners. The discrete feature (favorite sport) is investigated
with a decision stump. Concerning the first names, that are strings, we designed a weak
learner based on bigrams (Goodman, 2001). Roughly speaking, 2 bigrams are built, 1
per class (+1 and−1), that allows us to assess the probability of any string relatively to
each gender. The label of any new string is then assigned by the bigram that maximizes
this probability. Although the principle is rather simple,notice that we adapted this
algorithm to also take into account the current distribution wt and so to be a weak
learner.

Figure 3 presents the results we obtained (with a 5 fold cross-validation procedure)
over 50 iterations with(i) 2-BOOST, (ii) the 2 single boosted weak learners, and(iii)
their combinations by Methods A and B. We can make the following remarks. First,
we note that both Methods A and B outperform each single boosted algorithm, not
only in terms of generalization accuracy but also of empirical accuracy, that means that
each feature is useful to learn a specific part of the target concept. Moreover,2-BOOST

outperforms both Methods A and B, that proves the relevance of our boosting scheme
with respect to combining independently-run algorithms. Its advantage is statistically
significant using a Student paired t-test.
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2-boost 
Boosted bigram
Boosted stump

Method A
Method B

Algo Empirical Accuracy Generalization Accuracy
2-BOOST 97.73 85.10

Boosted stump 66.11 64.10
Boosted bigram 90.20 79.22

Method A 90.26 81.57
Method B 92.12 80.87

Figure 3: The curves represent the evolution over 50 iterations of the generalization
accuracy using2-BOOST, a Boosted stump, a Boosted bigram, Method AandMethod
B. The table shows the average results after 50 iterations of the empirical accuracy and
the generalization accuracy.
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5.2 A Comparison from Feature Subsets

In a second series of experiments, we verified that the behavior observed in the previous
section was not an artifact due to the database. Therefore, we have used 13 databases
coming from the UCI Repository2. Since most of them are homogeneous, we have
simulated heterogeneity by randomly splitting the set of features into 2 disjoint sub-
spaces (X1, X2) of equal size. We have run2-BOOSTwith 2 weak learners: A decision
stump algorithm and a naive bayesian learner (John & Langley, 1995). Table 1 (column
Expe. 5.2) shows the results we get in this setting.

For each database, we present its size|LS|, its number of original features #Feat,
and the generalization accuracy (by 5 fold cross-validation) we obtained for2-BOOST,
Method A and Method B. Moreover, we indicated in underlined font, the method which
reached the best result. From this table we can make the following remarks. First, for
9 databases (over 13), our boosting procedure has the best behavior, versus 4 times for
Method B and none for A. Moreover, we computed the average accuracy, by weighting
each individual accuracy by the learning set size.2-BOOST reaches a rate of82.70%,
that is much higher than75.97% of the Method A (+6.73 in favor of2-BOOST) and
significantly higher (using a Student paired t-test) than81.19% of the Method B (+1.51).

By analyzing the results according to the learning set size,we can also make the in-
teresting following remark. The advantage of2-BOOST in comparison with the Method
B (which is the closest) seems to be higher on average for small databases. Actually,
the average accuracy for databases containing less than 2000 instances is about77.8%
for 2-BOOSTand75.6% for the Method B (+2.2), while this difference is only of +1.3
for databases with more than 2000 instances. This result brings to the fore the necessity,
above all with few examples, of a collaboration throughout the learning between both
classifiers.

Expe. 5.2 Expe. 5.3
Base |LS| #Feat 2-BOOST Method A Method B 2-BOOST Method A Method B

Bigpole 1996 5 67.59 62.32 63.48 68.04 67.53 67.48
Horse 1468 23 79.90 73.50 78.68 85.35 76.63 84.60
Austral 2756 15 86.97 73.00 86.39 87.26 87.84 87.45
Balance 2496 5 92.05 71.39 89.51 98.10 97.14 97.46
Breast 2792 10 96.24 95.88 96.67 97.39 96.10 96.45

German 1004 25 73.10 73.30 73.60 73.10 73.30 73.60
Glass 167 10 74.40 72.81 72.61 81.65 79.95 81.03
Heart 274 14 79.19 79.17 79.91 81.02 81.02 78.81

Ionosphere 736 35 98.91 92.67 93.08 92.26 91.03 91.03
Pima 3068 9 73.01 72.62 72.62 73.01 72.62 72.62

TicTacToe 2396 10 78.96 71.62 74.96 91.95 90.19 92.41
WhiteHouse 439 17 96.89 95.80 95.05 98.30 97.12 97.41

xd6 604 11 74.83 70.86 75.33 75.82 75.49 75.49
Average 1728 14 82.70 75.97 81.19 85.60 84.34 85.22

Table 1: Comparison of2-BOOSTwith Methods A and B on 14 databases. In Expe. 5.2,
each weak learning algorithm is run from a subset of the original features. In Expe. 5.3,
each weak algorithm is run with the entire set of features.

2http://www.ics.uci.edu/∼mlearn
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5.3 Results from the Entire Feature Set

In this last series of experiments, we wanted to verify if 2-BOOST remains efficient,
relatively to Methods A and B, in the case ofhomogeneousdata. In other words, what
happens when the whole set of features was used by both learning algorithms? Is it still
relevant to use 2-BOOST? Table 1 (column Expe. 5.3) shows the results we obtained by
5 fold cross-validation.

First of all, we can note that the difference, in favor of our approach, between 2-
BOOSTand Methods A and B is considerably reduced. This behavior isnot surprising
since the 3 methods have now access to the entire database, then to more information.
However, despite this, note that the difference remains statistically significant using a
Student paired t-test between 2-BOOSTand Methods A and B. Moreover, these results
confirm the relevance and the stability of our method since 10times over 13 it obtains
the best result.

6 Discussion and Future Work

As far as we know, 2-BOOST is the first boosting procedure able to deal with heteroge-
neous features, so our results are encouraging. Nevertheless, a piece of work remains
to be done whenk ≥ 3, particularly for proving theoretical convergence properties.
A first problem is the computation of the optimal valuesc1t, . . . , ckt that minimizeZt

that can only beapproximatedby using a standard Newton-Raphson method. As for
the probabilistic interpretation ofZt as a Laplace transform, it reveals that2k − 1 basic
moments are required to describeZt. That makes things hard to prove, but we think
that both the empirical and the generalization error ofk-BOOST should also decrease
exponentially with the number of iterations.
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