
Boosting Grammatical Inference with Confidence Oracles

Jean-Christophe Janodet janodet@univ-st-etienne.fr

EURISE, Faculty of Sciences, 23 rue Paul Michelon, University of Jean Monnet, 42023 Saint-Etienne, FRANCE

Richard Nock Richard.Nock@martinique.univ-ag.fr

DSI, Université Antilles-Guyane, BP 7209, 97275 Schoelcher, FRANCE (Martinique)

Marc Sebban Marc.Sebban@univ-st-etienne.fr

EURISE, Faculty of Sciences, 23 rue Paul Michelon, University of Jean Monnet, 42023 Saint-Etienne, FRANCE

Henri-Maxime Suchier Henri.Maxime.Suchier@univ-st-etienne.fr

EURISE, Faculty of Sciences, 23 rue Paul Michelon, University of Jean Monnet, 42023 Saint-Etienne, FRANCE

Abstract

In this paper we focus on the adaptation of
boosting to grammatical inference. We aim
at improving the performances of state merg-
ing algorithms in the presence of noisy data
by using, in the update rule, additional infor-
mation provided by an oracle. This strategy
requires the construction of a new weighting
scheme that takes into account the confidence
in the labels of the examples. We prove that
our new framework preserves the theoretical
properties of boosting. Using the state merg-
ing algorithm rpni∗, we describe an experi-
mental study on various datasets, showing a
dramatic improvement of performances.

1. Introduction

Grammatical inference is a subtopic of machine learn-
ing whose aim consists in learning models of languages
(sets of words or sequences). Among them, determin-
istic finite automata (dfa) are finite state machines
which take words as input, and accept or reject them
according if they characterize or not the concept to
learn. In machine learning, a dfa can be seen as a
classifier which separates the set of all words in two
classes, a positive one (for the accepted words) and
a negative one (for the rejected words). A practical
reason which explains the efforts made to learn such
classifiers comes from the fact that many applications,

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

e.g. speech recognition, pattern matching, language
processing, etc., can take advantage of the structural
and semantic properties of dfa (de la Higuera, 2004).

Among the algorithms aiming at learning dfa, those
based on state merging have been widely studied dur-
ing the last decade, and particularly edsm (Lang et al.,
1998) and the well known rpni (Oncina & Garćıa,
1992). Both of them learn from a sample E = E+∪E−,
and try to infer, by state merging, a small dfa that
accepts all the words of E+ (called positive exam-
ples), and rejects all those of E− (called negative ones).
For instance, the dfa in Figure 1 was computed by
rpni with E+ = {b, abb, ab, bab, λ} and E− = {aa, ba},
where λ denotes the empty string. A word is accepted
if its parsing starts from the initial state 0, follows
transitions, and ends in a final state (always positive
and graphically described by a double circle). Notice
that this is the case for all the elements of E+ ending
in the unique final state 0. The negative words are
rejected, i.e. their parsing do not reach a final state.

b

a

b

0 1

Figure 1. A dfa with two states and three transitions.

rpni is an exact learning algorithm because it fits
the data. It is proven that if E contains some spe-
cial (characteristic) words, then rpni is able to in-
fer, in polynomial time, the dfa that produced the
data (Oncina & Garćıa, 1992), called the target dfa.
However, the specificities of modern databases, which

often contain noisy data, challenge these theoretical
properties. Since rpni is not immune to overfitting,
noisy data have dramatic effects, and penalize the dfa

in terms of number of states and error rate. Noise
tolerance in such algorithms is thus a crucial problem
studied in grammatical inference, confirming the same
trend as in the whole machine learning field.

The first attempt to limit the risk of overfitting in state
merging algorithms was proposed by Sebban and Jan-
odet (2003); they tried to relax the merging rule of
rpni without endangering the generalization error of
the dfa. They introduced the new algorithm rpni∗,
whose merging rule, based on statistical inference the-
ory, allows to tolerate the presence of noisy words.
From an experimental standpoint, this yields a signifi-
cant improvement over rpni’s performances. But their
approach is doubly limited: first, they provide theoret-
ical results showing difficulties to infer the target dfa

for noise levels over 10%. Second, due to its statistical
nature, the use of rpni∗ can result in a wrongly ac-
cepted merging. Actually, while rpni does not admit
any negative example in a final state, positive and neg-
ative words can share the same final state with rpni∗

due to the relaxation of the merging constraint. While
one hopes that such negative words are indeed noisy
data, one can be afraid of accepting truly negative
words, which would lead to serious problems.

In fact, the underlying problem of rpni∗ has to be
linked to a couple of recurrent questions in machine
learning: (i) is it possible to optimize the performances
of a learning algorithm (here a state merging one)? (ii)
is it possible to control this optimization even in the
presence of noisy data (that would avoid here to merge
“true” negative and positive examples in the same
state)? Indisputably, we think that both of these ques-
tions are a matter for boosting, despite the fact that
it has never been adapted to dfa inference. The strat-
egy of boosting, and its algorithm adaboost (Freund
& Schapire, 1996; Freund & Schapire, 1997) (see Al-
gorithm 1), consists in successively training T times a
learning algorithm wl on various probability distribu-
tions wt over the learning sample E, and in combining
the resulting classifiers ht (called weak hypotheses) in
an efficient single classifier HT . At each round, the
current distribution favors (exponentially) the weights
of examples misclassified by the previous hypothesis.

Some recent works tried to limit the risk of overfit-
ting of boosting in the presence of noise by answer-
ing the following question: when does a misclassified
example really deserve a weight increase? adaboost

tending (wrongly) to exponentially increase the weight
of the outliers, new approaches aim then at controlling

for all x ∈ E do w0(x) ←− 1/|E|;
for t = 0 to T do

ht ←− wl(E,wt);
εt ←−

P

{e∈E:y(x) 6=ht(x)} wt(x);

ct ←− (1/2) ln((1 − εt)/εt);
Zt ←−

P

e∈E
wt(x) exp(−cty(x)ht(x));

for all x ∈ E do

wt+1(x) ←− wt(x) exp(−cty(x)ht(x))/Zt ;

return HT such that HT (x) =
PT

t=0 ctht(x) ;

Algorithm 1: Pseudo-code of adaboost.

the update rule by using weighting functions smoother
than the original exponential one (Friedman et al.,
1998; Domingo & Watanabe, 2000; Freund, 2001).
Rather than using other functions, that may challenge
properties of convergence, we keep in this paper the ex-
ponential function, but we assume that we have access
to a helpful oracle. This oracle, that we will simulate
in practice, provides a real-valued confidence on the la-
bel of the learning words. A positive confidence means
that we can be sure about the word’s label, whereas a
negative confidence conveys a certain doubt about it.

It is crucial to precise that a negative confidence does
not mean that the word belongs to the other class, but
rather that we do not know what is the right class.
Intuitively, one could think that such words must be
removed from E, but following Blum and Mitchell
(1998), we claim that examples without label may in
fact be of significant help for learning, provided one
knows how to use the information carried out by their
description. In grammatical inference, words allow to
guess the structure (states and transitions) of a tar-
get dfa, whereas their labels determine if the states
are final or not. It is thus of significant interest to
take into account the examples with a suspicious la-
bel in boosting procedures. Nevertheless, the use of
the confidence oracle, for dealing with noisy data, re-
quires the modification of the standard update rule.
Actually, while adaboost is originally designed to in-
crease the weights of all the misclassified examples,
we only want here to raise the weights of noise free
misclassified ones. Although this strategy is useful for
improving any machine learning algorithm, we think
that it is particularly well suited to improve the per-
formances of state merging algorithms such as rpni∗.

This paper is organized as follows. After some details
about rpni∗ (Section 2), we provide a new theoretical
boosting scheme adapted to the use of an oracle (Sec-
tion 3). We modify the standard weighting rule of ad-

aboost, and we prove that our weighting scheme has
the boosting theoretical properties. Then, we propose

in Section 4 a strategy to simulate an efficient oracle
satisfying these properties. This strategy is based on
the construction of a k nearest neighbor graph (Cover
& Hart, 1967) over the set of words. In Section 5, we
show on various databases the interest of boosting to
optimize state merging algorithms, such as rpni∗.

2. The State Merging Algorithm rpni∗

We aim at giving a loose description of rpni∗ (see Al-
gorithm 2 and Sebban and Janodet (2003) for more
details). An alphabet Σ is a nonempty finite set of
letters and a word is any sequence x = l1l2 . . . ln of
letters. A deterministic finite automaton (dfa) is a
tuple A = 〈Q, δ, s0, F 〉 such that Q is a set of states,
δ : Q × Σ → Q is a transition function, s0 ∈ Q is
an initial state and F ⊆ Q is a set of final states. A
state s contains a word x iff δ(s0, x) = s. A word
x is accepted by A if δ(s0, x) ∈ F and rejected oth-
erwise. For instance, the dfa of Figure 1 is defined
by Q = {0, 1}, s0 = 0, F = {0}, δ(0, a) = 1 and
δ(0, b) = δ(1, b) = 0. The word abb is accepted since
δ(0, abb) = δ(1, bb) = δ(0, b) = 0 ∈ F . With the same
reasoning, ba is rejected because δ(0, ba) = 1 /∈ F .

b b
1 3 50

a b
2 4 6

b

a

Figure 2. An example of pta.

The first task rpni∗ achieves is the construction of the
pta (prefix tree acceptor) of the words of E+, that is
the greatest trimmed dfa accepting only the words of
E+ (see Figure 2). Its states are numbered following
the hierarchical order over the prefixes of E+. Then
rpni∗ runs along these states following the ordering.
Merging two states means to collapse them into a new
one, whose number is the smallest of the two merged
ones. With rpni, two states are mergeable if no neg-
ative example is contained in a final state. rpni∗ re-
laxes this constraint in order to authorize the presence
of noisy words. A state is positive (or final) if it con-
tains strictly more positive words (of E+) than nega-
tive ones (of E−), and negative otherwise. A negative
(resp. positive) word is misclassified if it is contained
by a positive (resp. negative) state. Finally, a merging
is statistically acceptable if the proportion of misclas-
sified words in the whole dfa after the merging is not
significantly higher than the proportion of misclassi-
fied words computed before the merging. This way to
proceed allows to avoid overfitting phenomena.

A ←− pta(E+);
for i = 1 to N − 1 do

j ←− 0; continue ←− true;
while (j < i) and continue do

B ←− compute merging(A, i, j);
C ←− compute final states(B, E+, E−);
if statistically acceptable(C, E+, E−) then

A ←− C; continue ←− false;

j ←− j + 1;

return(A);

Algorithm 2: Pseudo-code of rpni∗.

0 1 5

a

b

a

4 3

b
b b

Figure 3. The effect of noisy data on the dfa.

In order to show the relevance of rpni∗, let us con-
sider that the noisy word bbbb is inserted in E− in the
example already described in introduction. According
to the target dfa (Figure 1), this word should be posi-
tive. Figure 3 shows the new profoundly modified dfa

inferred by rpni, expressing well the fact that it is not
immune to overfitting. Run on this problem, rpni∗ is
able to infer the target dfa, handling optimally the
noise. However, one hopes that misclassified examples
are really noisy, that is the case for bbbb on this simple
example. But due to its statistical nature, rpni∗ can
statistically infer a bad merging. Although one can
theoretically reduce this risk, it cannot be null, and
can have dramatic effects on rpni∗’s performances.

We aim here at collecting information about the con-
fidence in the label of each example, and using it in a
boosting procedure. Assuming that this information is
given by an oracle, we would be able to detect which
misclassified examples deserve to be learned or not.
In other words, we would be able to separate the mis-
classified examples that must be subject to a weight
increase, and those that deserve a weight drop. How-
ever, this requires the construction of a new optimal
weighting scheme. That is the aim of the next section.

3. Boosting using a Confidence Oracle

Let E be the set of |E| = m examples. Every x ∈ E
has a label y(x) that can be positive (+1) or negative
(−1). We assume that we have access to a confidence
oracle, which gives to every example x a non-null real-

valued confidence q(x) ∈ [−1, 1], q(x) 6= 0. q(x) does
not change throughout learning. A positive confidence
means that x belongs to the class it is assigned to in
E. A negative confidence means that we cannot be
confident in its label. We partition E into the following
sets: EN = {x ∈ E : q(x) < 0} and EN = E\EN .
Since we cannot be confident in the labels of EN , we
aim at minimizing by boosting the empirical error on
EN , such that ∀T > 0,

ε(EN ,HT)= (1/|EN |)
∑

x∈E
N

[[y(x) 6= HT (x)]], (1)

with [[π]] the indicator value in {0, 1} of the predicate

π, and HT (x) =
∑T

t=0 ctht(x) the whole combined hy-
pothesis (using the same notations as in Algorithm
1). Let Pm be the m-dimensional probability simplex,
and u ∈ Pm the uniform vector. We assume a discrete
probability vector wt ∈ Pm containing for each x ∈ E
its weight at time t, with w0 = u (as in adaboost).

We aim here at finding the new optimal update rule.
It is known since Kivinen and Warmuth (1999) that
standard boosting, as defined in Freund and Schapire
(1997); Schapire and Singer (1999), is a particular case
of the constrained optimization of a Bregman diver-
gence. Let us recast this problem in our setting. The
strategy is to repeatedly compute wt+1 from wt fol-
lowing the minimization of the information divergence,
1.i(wt+1,wt) =

∑

x∈E i(wt+1,wt)(x), with i(., .) the
vector whose component for some x ∈ E is:

i(wt+1,wt)(x)=

(

wt+1 ln
wt+1

wt

− wt+1 + wt

)

(x).

The information divergence is convex in wt+1. One
wishes to minimize 1.i(wt+1,wt) subject to two con-
straints. The first one is straightforward: it expresses
the fact that wt+1 is a distribution (wt+1 ∈ Pm):

1.wt+1 − 1 = 0. (2)

In our case, this constraint remains the same. The
second one integrates the loss function for each exam-
ple in E. In classical boosting, it expresses that the
last hypothesis found, ht, is in one sense the worst
on the new distribution, since it performs on average
like random guessing:

∑

x∈E (wt+1yht)(x) = 0. This
constraint, together with a so-called weak learning as-
sumption (Kearns & Vazirani, 1994), ensures that the
new hypothesis ht+1 built on wt+1 is significantly dif-
ferent from ht, thereby learning something ”new” over
E. In our case, this constraint is a bit different:

wt+1.at = 0, (3)

∀x ∈ EN : at(x) = q(x)(yht)(x),

∀x ∈ EN : at(x) = −q(x).

Comparing it with boosting’s second con-
straint, (3) says that

∑

x∈E
N

(wt+1qyht)(x) =
∑

x∈EN
(wt+1q)(x). Since ∀x ∈ EN , q(x) < 0, the

right member is strictly negative, which makes ht,
the last hypothesis built, particularly bad on EN

with a distribution depending on both wt+1 and q.
These are clearly differences with classical boosting,
which would yield an average (random) performance,
on wt+1 alone and over E. The minimization of the
information divergence under constraints (2) and (3)
is obtained as the solution to (∀x ∈ E):

∂wt+1
i(wt+1,wt)(x) (4)

+
[

bt∂wt+1
(1.wt+1 − 1) + ct∂wt+1

(wt+1.at)
]

(x) = 0

with bt and ct Lagrange multipliers. Solving (4) for
wt+1 brings ∀x ∈ E:

(

ln
wt+1

wt

+ bt1 + ctat

)

(x)=0

⇔ wt+1(x) = wt(x) exp(−ctat(x)) / exp(bt).

Constraint (2) yields:

bt =ln
∑

x∈E

wt(x) exp(−ctat(x)), (5)

The term inside the “ln” is the normalization coeffi-
cient for wt+1:

Zt =
∑

x∈E

wt(x) exp(−ctat(x)). (6)

We shall see hereafter that ct is in fact > 0 (Lemma 2).
Since the oracle is confident in the label of any x ∈ EN

(q(x) > 0), and since for any such example,

wt+1(x)=wt(x) exp(−ctq(x)(yht)(x))/Zt,

it comes that the weight of any x ∈ EN increases in the
next distribution iff it is misclassified by the current
hypothesis ((yht)(x) = −1), and it decreases other-
wise. On the other hand, the weight of all suspicious
examples x ∈ EN (q(x) < 0) will ineluctably decrease:

wt+1(x)=wt(x) exp(ctq(x))/Zt.

We will see in the next section that such an update
rule improves rpni∗’s behavior. The last unknown, ct,
is obtained from constraint (3) as the solution to:

∑

x∈E

(wtat)(x) exp(−ctat(x)) = 0. (7)

Notice that this is also stating (∂Zt/∂ct) = 0. Since
Zt is a convex function of ct, solving (4) ultimately
returns to the problem of minimizing Zt. To see why
solving (4) is so important, let us temporarily shift to
the error committed by HT .

Lemma 1 ε(EN ,HT) ≤ (m/|EN |)
∏

t≤T Zt.

Proof: Because ∀x ∈ EN , q(x) > 0, we
have for any such example [[HT (x) 6= y(x)]] ≤
exp(−q(x)y(x)

∑

t≤T ctht(x)). On the other hand,
wT+1(x) = wT (x) exp(−q(x)y(x)cT hT (x))/ZT . Un-
raveling the update rule, we get ∀x ∈ EN : wT+1(x) =
w0(x) exp(−q(x)y(x)

∑

t≤T ctht(x))/(
∏

t≤T Zt),
hence [[HT (x) 6= y(x)]] ≤ mwT+1(x)(

∏

t≤T Zt).
Summing over all x ∈ EN , we get ε(EN ,HT) ≤
(m/|EN |)(

∏

t≤T Zt)(
∑

x∈E
N

wT+1(x)). Using the fact

that
∑

x∈E
N

wT+1(x) ≤ 1, we get the Lemma.

Since the term factoring the product of the normaliza-
tion coefficients is constant given E and EN , Lemma
1 means that in order to drive down the error on EN

to zero, we should concentrate on minimizing each Zt.
This makes us kill two birds in one shot: solving (7)
yields both the solution to (4), and (hopefully) the
minimization of the error on EN according to Lemma
1. Let us concentrate on the solution to (7), under the
assumption: ∀t ≥ 0,∃γt > 0 a constant such that:

∑

x∈E
N

(wtqyht)(x) /
∑

x∈E
N

(wtq)(x) = γt. (8)

Following boosting, we refer to (8) as a weak learn-
ing assumption (WLA), in particular since if ht were
random, we would have γt = 0. In other words, (8) tra-
duces the fact that ht must outperform random guess-
ing by only a small amount for being considered as a
weak hypothesis. Our WLA has two differences with
classical boosting (Kearns & Vazirani, 1994). First,
it is local: it puts emphasis on a subset of E. Sec-
ond, it relies on a distribution which is not exactly wt,
but a distribution wq,t ∈ Pm which is leveraged by
q, as follows: ∀x ∈ E,wq,t(x) = |q(x)|wt(x)/Qt, with
Qt =

∑

x∈E |q(x)|wt(x) the normalization coefficient.
Notice that ∀wt ∈ Pm, Qt 6= 0 because every exam-
ple has q(.) 6= 0. We extend this definition to that of
Wq,t(E

′) =
∑

x∈E′ wq,t(x) for all E′ ⊆ E.
To complete our discussion on constraint (3), define
E+

N,t
= {x ∈ EN : (yht)(x) = +1} and E−

N,t
= {x ∈

EN : (yht)(x) = −1}. The WLA is equivalent to:

Wq,t(E
+

N,t
) − Wq,t(E

−

N,t
) = γtWq,t(EN). (9)

So we cannot choose ht+1 = ht under
the WLA, since otherwise (3) would imply
Wq,t+1(E

+

N,t
) − Wq,t+1(E

−

N,t
) < 0, while (9) would

imply Wq,t+1(E
+

N,t
) − Wq,t+1(E

−

N,t
) > 0. Thus the

WLA enforces ht+1 to learn something ”new”.

Lemma 2 The solution to (7) is unique and strictly
positive, as it satisfies:

1

2q
ln

1 − Wq,t(E
−

N,t
)

Wq,t(E
−

N,t
)

≤ ct ≤
1

2q
ln

1 − Wq,t(E
−

N,t
)

Wq,t(E
−

N,t
)

,

with q = minx∈E |q(x)| and q = maxx∈E |q(x)|.

Proof: We define

g(c) =
∑

x∈E

(wtat)(x) exp(−cat(x)). (10)

g′(c) = −
∑

x∈E (wta
2
t)(x) exp(−cat(x)) < 0. Thus,

g(c) is strictly decreasing on R. Since limc→+∞ g(c) =
−∞ (provided some x ∈ E has at(x) < 0) and
limc→−∞ g(c) = +∞ (provided some x ∈ E has
at(x) > 0), eq. (7) has a single solution. We have:

g(0)

Qt

= Wq,t(E
+

N,t
) − Wq,t(E

−

N,t
) + Wq,t(EN)

= γtWq,t(EN) + Wq,t(EN)

= γt + (1 − γt)Wq,t(EN). (11)

We obtain g(0) > 0, which yields ct > 0 in eq. (7).
Moreover,

g(ct)

Qt

= 0 =
∑

x∈E
+

N,t
∪EN

wq,t(x) exp (−ct|q(x)|)

−
∑

x∈E
−

N,t

wq,t(x) exp (ct|q(x)|).

As q ≤ |q(x)| ≤ q for all x ∈ E, we get

Wq,t(E
+

N,t
∪ EN)e−ctq − Wq,t(E

−

N,t
)ectq ≤ 0 and

Wq,t(E
+

N,t
∪ EN)e−ctq − Wq,t(E

−

N,t
)ectq ≥ 0.

Solving for ct yields the inequalities we claimed.

Thus ct = r ln((1 − Wq,t(E
−

N,t
))/Wq,t(E

−
N,t)) is solu-

tion to eq. (7), for some r ∈ [1/2q, 1/2q]. This bound
is tighter than the one of Schapire and Singer (1999)
(for whom ct ∈ R), and yields a very-fast dichotomic
approximation to ct. Suppose we want an approxima-
tion ĉt such that |ĉt − ct|/|ct| < ε for some 0 < ε ≤ 1.
Then, it is is enough to make O(ln(q/q) + ln(1/ε)) di-
chotomic rounds. It is very convenient, given that the
computation of ĉt is repeated T times.

Lemma 3 ∀t ≥ 0,

Zt ≤

√

1 −

(

qγt

q

)2

< exp

(

−
1

2

(

qγt

q

)2
)

.

Proof: We have ∀x ∈ [−1, 1],∀η ∈ R:

exp(−ηx)≤
1 + x

2
exp(−η) +

1 − x

2
exp(η), (12)

since function x 7→ exp(−ηx) is convex and the right-
hand side is the equation of the line crossing the two
points (−1, exp(η)) and (1, exp(−η)). Plugging η =
ctq and x = at(x)/q,∀x ∈ E, yields

exp(−ctat(x)) ≤

q + at(x)

2q
exp(−ctq) +

q − at(x)

2q
exp(ctq). (13)

Let us name `(x, ct) the right-hand side of ineq. (13).
We have

Zt ≤ inf
c∈R

∑

x∈E

wt(x)`(x, c). (14)

The real c minimizing the right-hand side of (14) is

c =
1

2q
ln

q +
∑

x∈E (wtat)(x)

q −
∑

x∈E (wtat)(x)
,

from which we get

Zt ≤

√

1 −

(

g(0)

q

)2

, (15)

with g(.) defined as in eq. (10). Using the fact that
g(0) ≥ γtQt (from eq. (11)), and Qt ≥ q, we obtain
the statement of the Lemma.

Provided q and q are constants (it shall be the case
in our experiments), the maximal value of Zt is also a
constant < 1 under the WLA, thus yielding the expo-
nential convergence of ε(EN ,HT) towards 0.

4. An Oracle Simulation

We describe in this section an empirical approach
for simulating an oracle, which must satisfy at best
the theoretical behavior previously mentioned. The
main objective is to ensure that a positive confi-
dence given by the oracle means that the example is
(very probably) correctly labeled. We provide here a
neighborhood-based strategy allowing to geometrically
distinguish suspicious words from the others.

4.1. Neighborhood-based Confidence

We think that the k nearest neighbor graph (kNN)
(Cover & Hart, 1967) is suitable for treating such a
problem. kNN’s classification rule assesses the class
of an unknown example x by computing the majority

class among the k examples of E that are the closest to
x. This method, beyond the fact that its limit error is
bounded by twice the Bayesian error, is very tolerant
to the presence of noisy data. Actually, an isolated
outlier can only have a limited impact in the classi-
fication rule. The dual property, that we can deduce
from the previous remark, is that a noisy data can be
probably detected by analyzing its neighborhood. Let
us define the margin function m(x) of an example x of
class y(x), computable from a kNN graph:

m(x) = (Ny(x) − Ny(x))/(Ny(x) + Ny(x)),

where Ny(x) (resp. Ny(x)) denotes the number of ex-
amples among x’s k nearest neighbors from the same
class y(x) (resp. the opposite class y(x)). Hence an
example with only neighbors from the opposite class
(resp. from the same class) will receive −1 (resp. 1)
as margin. Even if m(x) seems to assess in a way
the confidence value q(x) used in the previous sec-
tion, setting exactly q(x) = m(x) would not be ju-
dicious. Actually, the kNN classifier allows “only” to
ensure that the limit error will be bounded by twice
the Bayesian error, that is not in fact our main con-
cern. We aim here at providing a relevant measure of
confidence, ensuring that a positive q(x) means that
x has a correct label in (100-ε) percent of cases (with
ε small). If m(x) is slightly higher than 0, this con-
dition is far from being satisfied. To overcome this
drawback, we fix a parameter β ∈ [0, 1[and com-
pute q(x) as follows: q(x) = (m(x) − β)/(1 − β)
∀ x such that β ≤ m(x) ≤ 1 (thus, q(x) > 0 iff
m(x) > β); q(x) = (m(x) − β)/(1 + β) ∀ x such that
−1 ≤ m(x) ≤ β. Roughly speaking, high confidences
are only given to examples having a large majority of
neighbors from the same class. While some examples
are probably (weakly) relevant, i.e. having a margin
just slightly higher than 0, they will receive a negative
confidence. This choice will be useful in grammatical
inference, where reducing the impact of relevant data
is better than inferring a dfa from noisy words.

4.2. A Probability-Based Distance Function

Before computing confidence values, we must use a
relevant distance function between words. In this con-
text, various distances have been studied, and the
most popular one is probably the edit distance. How-
ever, we observed in preliminary experiments that we
could obtain better results by using “data-oriented”
distances, built after a transformation of the represen-
tation space. We decided to use bigram language mod-
els for describing words as vectors. Bigrams are a well-
structured knowledge representation that has proven
useful in the recognition of textual documents. This

Table 1. Error rates obtained on 11 datasets with 5, 10, 15 and 20% of noise.

5% 10%

Dataset size knn rpni rpni∗ boost perf knn rpni rpni∗ boost perf

Agaricus 5644 0.0% 7.2% 7.2% 4.3% 0.0% 0.0% 14.0% 10.0% 6.9% 0.0%

TicTacToe 809 9.2% 39.5% 34.5% 28.3% 4.9% 16.0% 41.9% 40.7% 34.5% 10.5%

USF 1871 16.5% 33.6% 31.2% 26.1% 26.4% 16.8% 35.7% 33.0% 31.2% 31.7%

WF 1887 16.4% 29.3% 25.3% 21.4% 20.6% 19.3% 29.8% 31.2% 22.7% 26.1%

Base1 2540 24.8% 46.4% 41.5% 41.1% 35.6% 27.8% 52.1% 44.8% 43.7% 36.2%

Base2 1505 9.6% 48.9% 21.9% 19.9% 14.3% 9.6% 39.2% 13.6% 30.5% 12.3%

Base3 1532 10.4% 43.9% 27.0% 26.7% 13.0% 11.0% 39.0% 39.0% 12.7% 12.7%

Base4 2969 0.5% 39.7% 2.0% 10.0% 0.0% 1.0% 45.7% 29.2% 23.4% 0.0%

Base5 2179 0.9% 36.7% 36.7% 22.2% 19.2% 1.3% 45.9% 18.6% 25.0% 16.2%

Base6 2004 17.7% 42.9% 7.0% 13.0% 2.0% 21.6% 45.9% 42.9% 25.6% 1.2%

Base7 10000 23.0% 46.1% 39.7% 37.2% 39.7% 25.1% 49.4% 42.7% 43.7% 39.4%

Average 2994.5 11.7% 37.7 % 24.9% 22.7% 16.0% 13.6% 39.9% 31.4 % 27.3% 16.9%

15% 20%

Agaricus 5644 1.0% 14.0% 10.0% 6.1% 0.0% 2.0% 23.2% 18.2% 11.9% 0.0%

TicTacToe 809 15.4% 44.0% 40.7% 40.7% 9.8% 17.9% 40.1% 40.1% 38.8% 11.7%

USF 1871 20.5% 34.9% 32.0% 27.7% 27.7% 23.7% 48.8% 32.2% 30.6% 28.8%

WF 1887 20.4% 32.5% 36.2% 24.6% 24.6% 22.2% 35.4% 32.0% 31.7% 22.7%

Base1 2540 28.2% 47.0% 42.9% 42.3% 38.5% 31.1% 51.2% 45.7% 45.2% 35.2%

Base2 1505 12.9% 39.8% 39.8% 37.5% 10.6% 16.9% 46.8% 46.8% 45.1% 12.6%

Base3 1532 12.7% 47.0% 39.4% 35.5% 14.9% 18.5% 49.5% 49.5% 41.6% 20.5%

Base4 2969 1.5% 44.2% 16.0% 26.9% 0.0% 3.3% 43.4% 35.0% 30.4% 0.0%

Base5 2179 2.0% 44.5% 43.8% 31.4% 15.1% 2.2% 41.0% 39.4% 34.6% 9.4%

Base6 2004 24.9% 50.6% 42.9% 33.1% 1.7% 28.9% 46.6% 41.9% 39.2% 1.0%

Base7 10000 27.1% 48.0% 40.7% 43.2% 40.7% 29.2% 48.0% 44.3% 41.8% 40.5%

Average 2994.5 15.1% 40.6% 34.9% 31.7% 16.7% 17.8% 43.1% 38.6% 35.5% 16.6%

makes it possible to apply geometric, and other math-
ematical techniques, which are well defined for vectors,
but not for words in general. The probability of a letter
of a word depends only on the identity of the preced-
ing letter. Given a word with n letters x = l1l2l3 . . . ln,
p(x) =

∏n

i=1 p(li/li−1). To make p(l1/l0) meaningful,
a distinguished token <bow> (for beginning of the
word) is added and we take l0 as <bow>. Here, we
aim at computing an euclidean distance from a two-
dimension numerical representation of words. Let us
define P+(x) and P−(x), Pb(x) denoting the probabil-
ity of x relatively to the subset Eb. To allow com-
parisons between words of different lengths, we nor-
malized each probability using the geometric mean, as
follows: P ′

b(x) = n+1
√

Pb(x). Given P ′
+(x) and P ′

−(x),
we can now (i) see x as a point in an euclidean space
with coordinates P ′

+(x) and P ′
−(x), (ii) compute the

euclidean distance, and (iii) so build the kNN graph.

5. Experiments and Results

The motivation of our experiments was not only to
validate our theoretical results but also to assess the
performances of the kNN graph as a good candidate for
simulating an oracle. To achieve these tasks, we used
three types of datasets. The first one concerns well
known benchmarks of the uci repository: agaricus

and TicTacToe. The second represents real-world
datasets: a first one (USF) comes from the US Social
Security Administration and takes the census of the
first thousand first names the more frequently given in

the USA in 2002; a second one (WF) contains all the
worldwide first names that begin with the letter “a”.
For both of them, the concept to learn is the gender
of the individuals. The last type of datasets concerns
artificial ones. We generated 7 synthetic databases
(Base1,. . .,Base7) made of random words with vari-
able length and labeled according if they contain a
priori fixed patterns or not. To test our method on
a large dataset, Base7 contains 10000 words. For all
the 11 databases, we introduced noise, by switching
the class of a given percentage of words and we as-
sessed the error rate using a noise-free test set.

Table 1 compares rpni, rpni∗ and our boosting ap-
proach (boost) after 200 iterations for the different
levels of noise. Two other columns have been added
in this Table. The first one (knn) describes the per-
formances of the kNN graph as a single classifier (i.e.
without boosting, without dfa). The interest of these
results is not only to show how well a kNN graph sim-
ulates the oracle, but also to estimate the gain ob-
tainable using it in a boosting procedure. The second
column (perf) presents the results obtained from a
perfect oracle, i.e. one that always knows if a data
is noisy or not. The goal of this column is to estab-
lish the optimal (but unobtainable) error rate for each
database. This experimental study was achieved with
5, 10, 15 and 20% of noise. We tried different values
of k (for the kNN graph) and kept the optimal value
(assessed by cross-validation) for each database.

The following remarks can be made. First of all, the

excellent results obtained in the column kNN justify
the use of the kNN graph as a simulated oracle. While
rpni∗ constituted a first efficient solution for improv-
ing rpni (32.5% versus 40.3% on average on all the
noise levels), our new oracle-based boosting proce-
dure results in a dramatic improvement of the per-
formances. Actually, the additional information pro-
vided by the kNN graph, and used in our boosting
method, permits to significantly decrease rpni∗’s er-
ror rate (29.3% versus 32.5% on average). This differ-
ence is statistically significant using a Student paired-
t test. Another interesting remark is that the use of
our simulated oracle results in final hypotheses whose
performances are not so far, after 200 iterations, from
the ones issued from the perfect oracle (29.3% versus
16.5% on average). Finally, note that the previously
described behaviors remain almost the same even with
the increase of the noise level.

In order to show the exponential convergence of the
generalization error all along the iterations, Figure 4
describes the behavior of the algorithm on 4 charac-
teristic databases (for 5% of noise). It brings to the
fore the rapid effect of boosting on the performances
(often before the 20th iteration).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200

E
rr

or

T

Agaricus
WF

USF
Base7

Figure 4. Generalization error in function of iterations.

6. Conclusion

We introduced a new boosting scheme that allowed to
improve the performances of a grammatical inference
algorithm in the presence of noisy data. As far as we
know, our approach on using a real-valued confidence
oracle for boosting is new, even outside grammatical
inference, and deserves to be applied with other weak
learners. Moreover, we proposed a heuristic based on
neighborhoods for efficiently building this oracle. The
study of other types of oracles, such as hidden Markov
models, also deserves further investigations.

References

Blum, A., & Mitchell, T. (1998). Combining labeled
and unlabeled data with co-training. 12th Int. Conf.
on Computational Learning Theory (pp. 92–100).

Cover, T., & Hart, P. (1967). Nearest neighbor pattern
classification. IEEE Trans. on Information Theory,
13, 21–27.

de la Higuera, C. (2004). A bibliographic survey on
grammatical inference. Pattern Recognition. To ap-
pear.

Domingo, C., & Watanabe, O. (2000). Madaboost: a
modification of adaboost. Third Annual Conf. on
Computational Learning Theory (pp. 180–189).

Freund, Y. (2001). An adaptive version of the boost by
majority algorithm. Machine Learning, 43, 293–318.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithms. Thirteenth Int.
Conf. on Machine Learning (pp. 148–156).

Freund, Y., & Schapire, R. E. (1997). A Decision-
Theoretic generalization of on-line learning and an
application to Boosting. Journal of Computer and
System Sciences, 55, 119–139.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Ad-
ditive logistic regression: a statistical view of boost-
ing (Technical Report).

Kearns, M. J., & Vazirani, U. V. (1994). An Intro-
duction to Computational Learning Theory. M.I.T.
Press.

Kivinen, J., & Warmuth, M. (1999). Boosting as en-
tropy projection. Twelfth Int. Conf. on Computa-
tional Learning Theory (pp. 134–144).

Lang, K., Pearlmutter, B., & Price, R. (1998). Re-
sults of the abbadingo one dfa learning competition.
Fourth Int. Colloquium on Grammatical Inference
(pp. 1–12).

Oncina, J., & Garćıa, P. (1992). Inferring regular lan-
guages in polynomial update time, vol. 1 of Machine
Perception and Artificial Intelligence, 49–61. World
Scientific.

Schapire, R. E., & Singer, Y. (1999). Improved boost-
ing algorithms using confidence-rated predictions.
Machine Learning, 37, 297–336.

Sebban, M., & Janodet, J. (2003). On state merging
in grammatical: a statistical approach for dealing
with noisy data. Twentieth Int. Conf. on Machine
Learning (pp. 688–695).

