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Abstract. We focus on the adaptation of boosting to representation spaces composed of different
subsets of features. Rather than imposing a single weak learner to handle data that could come from
different sources (e.g., images and texts and sounds), we suggest the decomposition of the learning
task into several dependent sub-problems of boosting, treated by different weak learners, that will
optimally collaborate during the weight update stage. To achieve this task, we introduce a new
weighting scheme for which we provide theoretical results.Experiments are carried out and show
that our method works significantly better than any combination of independent boosting procedures.
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1. Introduction

Ensemble methods aim to combine the predictions on a learning task of a set of classifiers in order to
improve the accuracy that would be obtained by a single hypothesis. As mentioned in [8], an ensemble
∗This work was supported in part by the IST Programme of the European Community, under the PASCAL 2 Network of
Excellence, IST-2006-216886.
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method will be efficient if it is able to generate some diversity in the learned hypotheses. On the one
hand, this can be achieved by combining homogeneous classifiers, i.e., built using a single learning al-
gorithm, from various probability distributions of the considered learning problem, as done inboosting
[10, 11], bagging[1], or random forests[2]. Another possible approach consists in learning heteroge-
neous hypotheses (e.g., decision trees, neural networks, nearest-neighbor-based classifiers, etc.) from a
single learning distribution and combining them in an efficient final classifier, as done instacking[23]
for instance.

Note that in this latter case, the notion ofheterogeneityonly characterizes the model nature and does
not concern the data themselves. In other words, what happens when each example in the learning set is
described by strongly heterogeneous features such as strings, pictures, symbolic values or trees? In fact,
in their original forms, ensemble methods become either inappropriate or insufficient.

Indeed, consider a dataset that would describe persons withthree features, their first name and their
height and weight, whereas the target to predict would be thegender. It is clearly insufficient to use only
the first name (and omit the other features) to achieve this task, in particular because many first names,
such as “Dana”, “Taylor”, “Jordan”, or “Claude” are shared by men and women. But on the other hand,
it would be unfortunate not to use the first name of the person and only learn the target from the two
numerical features, since this strategy would artificially(and unfortunately) increase the Bayesian error
of the problem.

Heterogeneous features often occur in real world applications. For instance, the databaseBIOMET

[13] describes people with their faces, voices, fingerprints, hand-shapes and online signatures. If the
objective is to predict whether a given person is a forger or not, then the information provided by each
feature is important. Another example is provided by the databases of on-line marketplaces such as
http://www.ebay.com where each article is described with a picture, a textual caption and a price.
To design an intelligent user interface, one could be interested in predicting the interest of a specific
consumer with respect to the features of the articles. Again, omitting one attribute would be problematic.

However, heterogeneous features cannot be easily handled by the same algorithm without taking
some risks to lose relevant information. For instance, the state of the art that allows one to learn from
strings (or trees) is often based onn-grams [14], Hidden Markov Models [9] or algorithms that areable
to model long-term dependencies. In the field of GrammaticalInference [15], new techniques based on
Multiplicity Automata [7] or Partially Observable Markov Models (POMM) [4] were recently proposed
and today constitute indisputable standards to learn from structured data. But all these techniques cannot
be adapted to learn from numerical values.

On the other hand, very powerful algorithms have been proposed to learn from those numerical
features. This is the case, for instance, of the Support Vector Machines (SVM ) [3]. During the past
few years, many kernels have been presented in the literature allowing the use of SVM on structured data
such as strings and trees. However, those kernels (e.g., spectrum kernel, mismatch kernel or subsequence
kernel [6]) require the transformation of the original datainto numerical feature vectors. Therefore, even
if, from a technical point of view, the use of SVM on heterogeneous features is possible, we claim that
such a manner to proceed leads to the loss of relevant information, such as sequentiality properties, long-
term dependencies or information on the tree structure. Forthis reason, we aim to keep the data in their
original representation space in this paper, even if this space is constituted of both structured or numerical
attributes.

More precisely, our objective is to use specific algorithms on each type of features and combine them
in an optimal way by an ensemble method. Note that such a strategy has already been used in machine
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learning. For instance, in [5], Cherkauer proposes to learnindependently an efficient classifier for each
type of features and use their predictions in a global hypothesis. However, the main drawback of such
an approach is the lack of interaction between the classifiers during the induction process. Another more
complex solution consists in using the so-called cascade generalization [12]. Level 0 of the cascade is
built using one set of attributes and a dedicated learner; then Level 1 combines another set of features
with the output of the first learner, and so on . . . In this case,there actually exists a collaboration between
the classifiers, but it is limited due to the fact that this interaction is bottom-up, thus only unilateral.

To allow a full interaction between the classifiers, we present in this paper an adaptation of boosting
to such a context of heterogeneous features. Let us recall the strategy of boosting and its well-known
algorithm ADABOOST [10] (see Algorithm 1). ADABOOST consists in successively trainingT times
a learning algorithmWL (for weak learner) on varying probability distributionswt over a learning set
LS composed ofm examples. The resulting base classifiersht are combined into an efficient single
classifierHT . At each new roundt + 1, the current distribution exponentially favors the weights of
examples misclassified by the previous classifierht.

Algorithm 1 Pseudo-code of ADABOOST.
Require: A weak learnerWL,

a sampleLS = {(x1, y1), . . . , (xm, ym)} whereyi ∈ {−1,+1},
the maximum numberT of iterations

Ensure: The (strong) combined hypothesisHT

1: for i = 1 to m do
2: w1(xi)←− 1/m
3: end for
4: for t = 1 to T do
5: ht ←− WL(LS, wt)
6: γt ←−

∑m
i=1 wt(xi)yiht(xi)

7: ct ←− (1/2) ln((1 + γt)/(1 − γt))
8: Zt ←−

∑m
i=1 wt(xi) exp (−ctyiht(xi))

9: for i = 1 to m do
10: wt+1(xi)←− wt(xi) exp (−ctyiht(xi)) /Zt

11: end for
12: end for
13: return HT with HT (x) = sign

(

∑T
t=1 ctht(x)

)

A first boosting solution to deal with heterogeneous features would consist in selecting for each
feature a relevant algorithm and in optimizing its performance by using ADABOOST. At the end of all
the runs, one could combine the resulting hypotheses in someway into a global classifier. However, we
will experimentally show in this paper that this idea is not optimal. Indeed, boosting each weak learner
independently on the others does not allow us to take in account the relationships between the features.
So the main risk is to encounter an overfitting phenomenon. Moreover, from a theoretical standpoint, the
optimization of individual performances does not ensure anoptimization of the final classifier.

We think that a better way to proceed consists in learning classifiers in parallel at each step of boost-
ing, and so in taking into account all the information provided by these classifiers in the weight update
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rule. This strategy requires the construction of a new weighting scheme and the verification that it con-
serves the boosting convergence properties. Note that evenif this new boosting scheme is intrinsically
dedicated to deal with heterogeneous features, its potential use in a more standard framework, where
features come from an unique source, is not challenged. Indeed, we claim that our new model can
overcome algorithmic drawbacks by splitting high-dimensional machine learning problems into several
smaller subtasks, but strongly collaborating during the boosting process.

This article is organized as follows. As mentioned before, one of our main motivations is to enable
the joint use of algorithms that are known to be efficient either on structured data (strings or trees) or
numerical features. Therefore, in Section 2, we consider problems represented by two types of hetero-
geneous features. In this context, we present a new boostingprocedure, called 2-BOOST. In Sections
3 and 4, we prove that 2-BOOST is actually a boosting algorithm that leads to the decrease of both
the empirical error and the generalization error. Then we carry out experiments to show the interest of
our approach in Section 5; in particular, we show that our method to combine classifiers outperforms
independently-boosted classifiers. Moreover, we experimentally demonstrate that 2-BOOST remains ef-
ficient on homogeneous databases. We finally conclude the paper in Section 6. As boosting more than
two weak learners in parallel is an interesting issue, we have added an Appendix where we discuss the
problem.

2. The Algorithm 2-BOOST

Let LS = {(x1, y1), . . . , (xm, ym)} be a finite set ofm learning examples. Each instancexi belongs to
a domainX and is assigned to a boolean classyi ∈ {−1,+1}. We assume thatLS has been generated
according to some fixed but unknown distributionD overX × {−1,+1}.

Each example is described with strongly heterogeneous features. So we assume thatX is some
Cartesian productX1 × X2. For instance, in the first example given in Section 1,LS is a set of persons
described by their first name, their weight and their height,soX1 is a setΣ∗ of strings andX2 = R× R

covers both the weight and height features. Let us assume that we have two algorithms, denotedWL1 and
WL2, which will be used on their corresponding subset of features. Our new boosting algorithm, called
2-BOOST, is presented in Algorithm 2.

At each stept of 2-BOOST, a distributionwt is defined overLS. Then, each learnerWLj , j = 1, 2,
uses its own view of the data (that is to say, the features it can handle) and the distributionwt to produce
a hypothesishjt. Thenh1t andh2t are combined into a weighted classifier whose global response is
used to updatewt. Finally, the resulting hypothesisHT is a combination of all the weighted hypotheses
produced by 2-BOOST.

Concerning computation time issues, notice that 2-BOOSTcan be run in parallel. Therefore, by using
two different machines, the total amount of running time should not exceed that required by ADABOOST

on the worst algorithm amongWL1 andWL2 (assuming a small communication time between processors).

3. Theoretical Results on the Empirical Error of 2-BOOST

The empirical errorε(HT , LS) is the error ofHT computed on the learning sampleLS, that is, the
proportion of learning examples misclassified by the combined strong hypothesis. In this section, we are
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Algorithm 2 Pseudo-code of 2-BOOST.
Require: Two weak learnersWL1, WL2,

a sampleLS = {(x1, y1), . . . , (xm, ym)},
the maximum numberT of iterations

Ensure: The (strong) combined hypothesisHT

1: for i = 1 to m do
2: w1(xi)←− 1/m
3: end for
4: for t = 1 to T do
5: h1t ←− WL1(LS, wt)
6: h2t ←− WL2(LS, wt)
7: define functionZt(u1, u2) =

∑m
i=1 wt(xi) exp (−u1yih1t(xi)− u2yih2t(xi))

8: computec1t, c2t ∈ R that minimizes Zt(c1t, c2t)
9: let Zt = Zt(c1t, c2t)

10: for i = 1 to m do
11: wt+1(xi)←− wt(xi) exp (−c1tyih1t(xi)− c2tyih2t(xi)) /Zt

12: end for
13: end for
14: return HT with HT (x) = sign

(

∑T
t=1

∑2
j=1 cjthjt(x)

)

going to show thatε(HT , LS) can be bounded by a quantity that decreases with the number ofboosting
iterations.

3.1. Conditions of the Empirical Error Minimization

Let us define

ε(HT , LS) = (1/m)
m
∑

i=1

[[HT (xi) 6= yi]],

where[[π]] is 1 if predicateπ holds and 0 otherwise.
Running 2-BOOST, we obtain the following result:

Lemma 3.1. ε(HT , LS) ≤
(

∏T
t=1 Zt

)

, where

Zt =
m
∑

i=1

wt(xi) exp (−c1tyih1t(xi)− c2tyih2t(xi)) . (1)

Proof:
Let Ai = −∑T

t=1 (c1tyih1t(xi) + c2tyih2t(xi)). Unraveling the update rule of 2-BOOST, we get

wT+1(xi) = w1(xi) exp(Ai)/
(

∏T
t=1 Zt

)

. wT+1 is a distribution overLS andw1(xi) = (1/m), so

summingwT+1(xi) for all 1 ≤ i ≤ m yields
(

∏T
t=1 Zt

)

= (1/m)
∑m

i=1 exp(Ai). On the other hand,
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[[HT (xi) 6= yi]] = 1 iff HT (xi)yi = −1, that is to say,Ai ≥ 0. Therefore,exp(Ai) ≥ [[HT (xi) 6= yi]].

So we deduce thatε(HT , LS) ≤ (1/m)
∑m

i=1 exp(Ai) =
(

∏T
t=1 Zt

)

. ⊓⊔

As a consequence of Lemma 3.1, the smallerZ1, . . . , ZT , the smaller the empirical error. Therefore,
as for ADABOOST, 2-BOOSTaims to compute, at each round, the values ofc1t andc2t that minimizeZt.
To solve this problem, we first establish a technical result:

Lemma 3.2. Zt is a convex function.

Proof:
The convexity of functionZt can be established by showing that its Hessian matrix is positive semi-
definite (see [21, Appendix A]). Below, we provide a direct proof by using the definition of a convex
function. Letu = (u1, u2), v = (v1, v2) ∈ R

2 and0 ≤ θ ≤ 1.

Zt (θu + (1− θ)v) = Zt (θu1 + (1− θ)v1, θu2 + (1− θ)v2)

=

m
∑

i=1

wt(xi) exp(−
2
∑

j=1

(θuj + (1− θ)vj) yihjt(xi))

=
m
∑

i=1

wt(xi) exp (θU(x) + (1− θ)V (x)) (2)

with

{

U(x) = −∑2
j=1 ujyihjt(xi)

V (x) = −∑2
j=1 vjyihjt(xi)

Since exp is a convex function, we have

exp (θU(x) + (1− θ)V (x)) ≤ θ exp(U(x)) + (1− θ) exp(V (x)).

Combining this inequality with Equation (2) yields

Zt (θu + (1− θ)v) ≤ θZt(u) + (1− θ)Zt(v),

that is the statement of the Lemma. ⊓⊔

Therefore, by Lemma 3.1, reducing the empirical error consists in minimizingZt, and thanks to
Lemma 3.2, the minimization consists in findingc1t andc2t that zero the two first-order derivatives of
Zt:

(

∂Zt

∂c1t

)

=

(

∂Zt

∂c2t

)

= 0. (3)

Let us investigate this problem.
We first decomposeZt by separating the elements of the sum with respect to the positive and negative

values ofyih1t(xi) andyih2t(xi). So we define the sets:

Et(++) = {1 ≤ i ≤ m : (yih1t(xi) = +1) ∧ (yih2t(xi) = +1)},
Et(+−) = {1 ≤ i ≤ m : (yih1t(xi) = +1) ∧ (yih2t(xi) = −1)},
Et(−+) = {1 ≤ i ≤ m : (yih1t(xi) = −1) ∧ (yih2t(xi) = +1)},
Et(−−) = {1 ≤ i ≤ m : (yih1t(xi) = −1) ∧ (yih2t(xi) = −1)}.
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For instance,Et(++) denotes the set of examples(xi, yi) which are correctly classified by bothh1t and
h2t, whereasEt(+−) is the set of examples correctly classified byh1t and misclassified byh2t. We also
introduce the corresponding weights:

Wt(++) =
∑

i∈Et(++)

wt(xi),

and weightsWt(+−) andWt(−+) andWt(−−) similarly.
These weights allow us to rewrite Equation (1) and compute the first order derivatives ofZt with

respect toc1t andc2t:

Zt(c1t, c2t) = Wt(++)e−c1t−c2t + Wt(+−)e−c1t+c2t

+ Wt(−+)ec1t−c2t + Wt(−−)ec1t+c2t , (4)

(∂Zt/∂c1t) = −Wt(++)e−c1t−c2t −Wt(+−)e−c1t+c2t

+ Wt(−+)ec1t−c2t + Wt(−−)ec1t+c2t = 0, (5)

(∂Zt/∂c2t) = −Wt(++)e−c1t−c2t + Wt(+−)e−c1t+c2t

− Wt(−+)ec1t−c2t + Wt(−−)ec1t+c2t = 0. (6)

In order to solve Equation (3), we add and substract Equations (5) and (6), that yield:

c1t + c2t =
1

2
ln

(

Wt(++)

Wt(−−)

)

, (7)

c1t − c2t =
1

2
ln

(

Wt(+−)

Wt(−+)

)

. (8)

So we finally deduce the following result:

Theorem 3.1. The empirical error of 2-BOOST is minimal when for all1 ≤ t ≤ T :

c1t =
1

4
ln

(

Wt(++)Wt(+−)

Wt(−−)Wt(−+)

)

, (9)

c2t =
1

4
ln

(

Wt(++)Wt(−+)

Wt(−−)Wt(+−)

)

. (10)

Moreover, the minimal value ofZt is:

2
√

Wt(++)Wt(−−) + 2
√

Wt(+−)Wt(−+). (11)

Note that Equations (9) and (10) are meaningful only ifWt(++) 6= 0 and Wt(+−) 6= 0 and
Wt(−+) 6= 0 andWt(−−) 6= 0. We assume these relations in the following but they may not hold in
practice. In this case,2-BOOSTwill have to stop and returnHt−1, as ADABOOSTdoes whenWt(+) = 0
or Wt(−) = 0, that is, when the current hypothesisht produced by the learner perfectly classifies (or
miclassifies) the learning examples [19].
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3.2. The Characteristic Parameters of 2-BOOST

It is well-known that the empirical error of ADABOOST exponentially converges towards 0 with the
number of iterationsT [20]. The usual way to prove it consists in showing that eachZt is significantly<
1 for all t ≥ 1. In this case, the product ofZt’s gets closer and closer to 0, at each round of ADABOOST,
thus the empirical error gets closer and closer to 0 too, by Lemma 3.1.

Showing thatZt < 1 is usually done by introducing a characteristic parameter of A DABOOST,
denotedγt and called theedgeof the hypothesisht [19]. Parameterγt plays a central role in theweak
learning assumption[16] that is used to prove the convergence of ADABOOST. Note that in Algorithm 1,
we gave the pseudo-code of ADABOOST using parameterγt, rather than the historical parameter called
ǫt [11]; both are of course related (that is,γt = 1− 2ǫt).

The aim of this section is to display the proper characteristic parameters of 2-BOOST. Let X1 and
X2 be two random variables that specify the correctness of hypothesesh1t andh2t respectively.X1 takes
two values, either+1 whenh1t correctly classifies an example (that is,yih1t(xi) = +1), or−1 when
h1t makes an error (that is,yih1t(xi) = −1). Similarly, X2 takes either+1 whenh2t correctly classifies
an example, or−1 whenh2t makes an error.

In this context, the sets of weightsWt describe the joint distribution ofX1 andX2:

Wt(++) = P[X1 = +1 ∧X2 = +1]

Wt(+−) = P[X1 = +1 ∧X2 = −1]

Wt(−+) = P[X1 = −1 ∧X2 = +1]

Wt(−−) = P[X1 = −1 ∧X2 = −1].

Now let us focus onZt. By Equation (4), we get:

Zt(c1t, c2t) = E[e−c1tX1−c2tX2 ], (12)

soZt is theLaplace transformof the random pair(X1,X2). DevelopingZt in power series yields:

Zt(c1t, c2t) =
∑

p,q∈N

∂p+qZt

∂pc1t∂qc2t
(0, 0)

cp
1tc

q
2t

(p + q)!

and for such a transform, it is known that for allp, q ∈ N,

∂p+qZt

∂cp
1t∂cq

2t

(0, 0) = (−1)p+q
E[Xp

1Xq
2 ], (13)

whereE[Xp
1Xq

2 ] is a joint moment ofX1 andX2.
In other words,Zt is a moment-generating function that determines completely and uniquely the

distribution of(X1,X2). Let us use Equation (4) to compute the different derivatives ofZt in (0, 0) and
plug the results into Equation (13). We get, for allp, q ≥ 0:

E[X2p
1 X2q

2 ] = E[1] = 1,

E[X2p+1
1 X2q

2 ] = E[X1],

E[X2p
1 X2q+1

2 ] = E[X2],

E[X2p+1
1 X2q+1

2 ] = E[X1X2].
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In consequence,Zt can be totally described with only three parameters:E[X1], E[X2] andE[X1X2]
(plusE[1] = 1), since every higher-order moment of(X1,X2) is equal to one of these values.

In terms of boosting,E[X1] andE[X2], that we shall now denoteγ1t andγ2t, are the edges of the
hypothesesh1t andh2t. They quantify the relevance of both classifiersh1t andh2t with respect to the
class of examples. Indeed,γ1t andγ2t are the expected values of the correctness of the answers ofh1t

andh2t, thus real numbers in[−1,+1] that measure the difference between the proportions of correctly
classified and misclassified examples:

γ1t = E[X1] =

m
∑

i=1

wt(xi)yih1t(xi), (14)

γ2t = E[X2] =
m
∑

i=1

wt(xi)yih2t(xi). (15)

ConcerningE[X1X2], we transform it into more natural quantities: thecovarianceδt of X1 andX2

and thecorrelation coefficientρt of X1 andX2:

δt = Cov[X1,X2]

= E[X1X2]− E[X1]E[X2]

=

m
∑

i=1

wt(xi)h1t(xi)h2t(xi)− γ1tγ2t, (16)

ρt =
Cov[X1,X2]

√

Var[X1]
√

Var[X2]

=
δt

√

1− γ2
1t

√

1− γ2
2t

. (17)

Since the classifiersh1t and h2t collaborate for updatingwt, it is not surprising to findρt as an
important parameter of 2-BOOST: It denotes the level of independence betweenX1 and X2. Other
measures of independence could be used, for instance the interclass correlation coefficient ofX2 with
respect toX1, or theχ2-distance betweenX1 andX2, but these measures are basically related toρt, due
to the fact thatX1 andX2 take only+1 and−1 as values.

Hence,Zt is totally determined byγ1t, γ2t andδt (or equivalentlyρt). So let us rewrite the minimal
value ofZt, given by Equation (11), in function of these parameters. Equations (4) and (13) yields:























Wt(++) + Wt(+−) + Wt(−+) + Wt(−−) = 1,

Wt(++) + Wt(+−)−Wt(−+)−Wt(−−) = γ1t,

Wt(++)−Wt(+−) + Wt(−+)−Wt(−−) = γ2t,

Wt(++)−Wt(+−)−Wt(−+) + Wt(−−) = δt + γ1tγ2t,

⇐⇒























Wt(++) = (δt + (1 + γ1t)(1 + γ2t))/4,

Wt(+−) = (−δt + (1 + γ1t)(1− γ2t))/4,

Wt(−+) = (−δt + (1− γ1t)(1 + γ2t))/4,

Wt(−−) = (δt + (1− γ1t)(1 − γ2t))/4,

(18)
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Finally, plugging Equations (18) and (17) in Equation (11) yields:

Zt =
1

2

√

δ2
t + 2δt(1 + γ1tγ2t) + (1− γ2

1t)(1− γ2
2t)

+
1

2

√

δ2
t − 2δt(1− γ1tγ2t) + (1− γ2

1t)(1− γ2
2t),

whereδt = ρt

√

1− γ2
1t

√

1− γ2
2t. (19)

3.3. Convergence of the Empirical Error

The aim of this section is to provide a bound ofZt, that allows us to show the exponential convergence
of the empirical error of 2-BOOST towards 0. We first establish aweak learning assumption[16, 19],
that is to say, conditions under which bothWL1 andWL2 areweak learners:

Definition 3.1. Let LS = {(x1, y1), . . . , (xm, ym)} be a finite set ofm learning examples. An algorithm
WL is aweak learnerwith respect toLS iff there exists a constantΓ > 0 such that for all distributionsd
overLS and all hypothesesh = WL(LS, d),

m
∑

i=1

d(xi)yih(xi) ≥ Γ.

Assuming thatWL1 andWL2 are both weak learners implies that there exist two constants Γ1,Γ2 such
that for allt ≥ 1, γ1t ≥ Γ1 > 0 andγ2t ≥ Γ2 > 0.

Let us now study the conditions of convergence of the empirical error. To achieve this goal, we use
Equation (19) and studyZt as a function ofρt assuming thatγ1t andγ2t are constants. Omitting the
technicalities, we can show that:

1. when0 < γ1t ≤ γ2t < 1, Zt reaches a maximum,
√

1− γ2
2t, in ρt = γ1t

γ2t

√

1−γ2
2t

1−γ2
1t

and

2. when0 < γ2t < γ1t < 1, Zt reaches a maximum,
√

1− γ2
1t, in ρt = γ2t

γ1t

√

1−γ2
1t

1−γ2
2t

.

In other words, we get:

Zt ≤
√

1−max(γ1t, γ2t)2. (20)

Note thatρt does not appear in this bound: The empirical error of 2-BOOST is not influenced by the
correlation betweenh1t andh2t (that will not be the case of the generalization error).

We now assume thatWL1 and WL2 are both weak learners. Therefore, there exist two constants
Γ1,Γ2 such that for allt ≥ 1, γ1t ≥ Γ1 > 0 andγ2t ≥ Γ2 > 0. Let Γ0 = max(Γ1,Γ2). We deduce that:

Zt ≤
√

1− Γ2
0 < exp

(

−Γ2
0

2

)

< 1.

Therefore, by Lemma 3.1, we can conclude that:
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Theorem 3.2. Under the weak learning assumption,ε(HT , LS) < exp
(

−TΓ2
0/2
)

. So, the empirical
error of 2-BOOST converges to 0 whenT → +∞.

Note that Definition 3.1 specifies a weak learnerWL with respect toall the distributionsd that may
be defined overLS. Basically, one should only be interested in the distributionswt. In fact, this definition
allows us to compare the convergence speed of ADABOOST and 2-BOOST. Indeed, letε1T (resp.ε2T )
be the empirical error of the classifier produced by ADABOOST when run onLS with WL1 (resp.WL2).
It is easy to show thatε1T < exp(−TΓ2

1/2) andε2T < exp(−TΓ2
2/2). As ε(HT , LS) < exp(−TΓ2

0/2)
with Γ0 = max(Γ1,Γ2), we conclude that:

Theorem 3.3. The convergence speed of 2-BOOST, run with bothWL1 andWL2, cannot be worse than
the worst convergence speed of ADABOOST, run with WL1 andWL2 independently.

4. Convergence of the Generalization Error

The generalization error of any learnt classifierf is the probability thatf misclassifies any new example.
Concerning ADABOOST, one often observes that the generalization error of the final classifier decreases
with the numberT of iterations. In [20], the authors explained this phenomenon by relating the gener-
alization error and the margins of the learning examples. More sophisticated but realistic bounds were
proposed in order to provide quantitative explanations [18]. In this section, we recall these results and
extend them to 2-BOOST.

4.1. Decomposition of the Generalization Error

LetH = {h1, h2, . . .} be a class of binary classifiers of VC-dimensiondH. Let co(H) denote the convex
hull ofH, that is, the set of all finite convex combinations of hypotheses:

co(H) = {f =
∑

i

αihi : αi ≥ 0 and
∑

i

αi = 1}.

Notice that given a particularf ∈ co(H) and an instancex, f(x) =
∑

i αihi(x) is a real number in
[−1,+1]. Its sign,+1 or−1, determines the class assigned byf to x. Themargin |f(x)| is a measure
of the confidence thatf gives on its prediction of the class ofx.

It was proved in [18] that, given a sampleLS = {(x1, y1), . . . , (xm, ym)} of m learning examples,
drawn independently from some distributionD overX × {−1,+1}, and with probability at least1− δ,
for all f ∈ co(H) andθ > 0, thegeneralization errorof f , that is,PD[f(x) 6= y], is smaller than:

εθ(f, LS) +O
(

1

θ

√

dH
m

)

+O
(
√

log(1/δ)

m

)

. (21)

The first term above,εθ(f, LS), is theempirical margin-errorof f on LS. It denotes the proportion
of learning examples that are either misclassified, or correctly classified but with a small marginθ:

εθ(f, LS) =
1

m

m
∑

i=1

[[yif(xi) ≤ θ]].
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The remainder of Expression (21) is a complexity penalty term. The bound presented in [18] im-
proves that given in [20] by removing a factor

√
log m. It is rather clear that iff is able to achieve large

margins onLS, thenθ andδ can be chosen large, so that Expression (21), thus the generalization error of
f itself, is small.

4.2. The Case of 2-BOOST

The previous result holds for all voting methods, thus also for 2-BOOST. Indeed, the global hypothesis
returned by 2-BOOST is HT (x) = sign(fT (x)) with

fT (x) =

∑T
t=1 (c1th1t(x) + c2th2t(x))

∑T
t=1 (c1t + c2t)

, (22)

thusHT = sign(fT ) for somefT ∈ co(H).
However, 2-BOOST has remarkable properties. On the one hand, it uses a specialspaceH of hy-

potheses, that is the union ofH1 andH2, the respective spaces from whomWL1 andWL2 select their
hypotheses. By the definition of the VC-dimension [22], we deduce thatdH = min(dH1

, dH2
). So, up

to constants, the penalty term in Expression (21) is the sameas that of the best run of ADABOOST on
WL1 andWL2.

On the other hand, we claim that the empirical margin-error decreases with the number of iterations.
Indeed, we get:

Lemma 4.1. εθ(fT , LS) ≤
(

∏T
t=1 Zθ,t

)

, whereZθ,t = ZtWt(++)θ/2Wt(−−)−θ/2.

Proof:
Let Ai = −∑T

t=1 (c1tyih1t(xi) + c2tyih2t(xi)) andB = θ
∑T

t=1(c1t + c2t). From Equation (22), we
deduce that[[yifT (xi) ≤ θ]] = 1 if and only if Ai + B ≥ 0, that bringsexp (Ai + B) ≥ [[yifT (xi) ≤
θ]]. Therefore,εθ(fT , LS) ≤ (1/m)

∑m
i=1 exp(Ai) exp(B) = exp(B)

(

∏T
t=1 Zt

)

, by the proof of

Lemma 3.1. Finally, sincec1t + c2t = (1/2) ln(Wt(++)/Wt(−−)), we deduce thatexp(B) =
(

∏T
t=1 Wt(++)θ/2Wt(−−)−θ/2

)

, that yields the result. ⊓⊔

Let us assume for the moment that the hypothesesh1t andh2t are independent (ρt ≃ 0). Such an
assumption is often formulated in order to prove the efficiency of ensemble methods [8]. In such a case,
by Equations (18) and (19), we have:











Zt ≃
√

(1− γ2
1t)(1− γ2

2t),

Wt(++) ≃ (1 + γ1t)(1 + γ2t)/4,

Wt(−−) ≃ (1− γ1t)(1− γ2t)/4.

So by Lemma 4.1, we get:

Zθ,t ≃ (1 + γ1t)
1+θ

2 (1− γ1t)
1−θ

2 (1 + γ2t)
1+θ

2 (1− γ2t)
1−θ

2 .

It can be shown [20] that ifθ < γ1t/2, then(1 + γ1t)
1+θ

2 (1 − γ1t)
1−θ

2 < 1 (and the same forγ2t). So
using Lemme 4.1, we conclude:
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Theorem 4.1. Given a fixed marginθ > 0, if at each iteration of 2-BOOST, the hypotheses produced
are (1) independent (ρt ≃ 0) and (2) their respective edgesγ1t andγ2t are> 2θ, thenZθ,t < 1. So the
empirical-margin errorεθ(fT , LS) of 2-BOOST converges towards 0 with the number of iterations.

The generalization error offT will thus decrease with the number of iterations, by Expression (21),
that will be confirmed from an experimental standpoint in Section 5.

4.3. Discussion on the Independence Assumption

By assuming the independence of the hypotheses at each roundof 2-BOOST, we have shown thatZθ,t <
1, and we have deduced thatεθ(fT , LS) converged towards 0. This independence assumption could be
perceived as being too strong from a practical point of view.In this section, we justify that it can be
discarded without challenging the convergence of the generalization error.

In Figure 1, we show the shape ofZθ,t as a function of the correlation coefficientρt for fixed values of
γ1t, γ2t andθ. Note here that we tested several values confirming a similarbehavior as the one observed
in Figure 1.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Figure 1. Zθ,t as a function ofρt whenγ1t = 0.05, γ2t = 0.07 andθ = 0.02; notice thatZθ,t becomes infinite
when the correlation coefficientρt is strongly negative.

We can make the following remarks. Firstly, it is rather clear that whenρt is around 0, as we assumed
in Theorem 4.1,Zθ,t is smaller than 1. Moreover, we can notice that 2-BOOST will also behave well on
new data ifρt is often strongly positive. Indeed, in such a case,h1t andh2t agree on the label of almost
all the learning examples, so these classifiers will probably have the same behavior in the presence of
new examples. However, the interest of using 2-BOOST is limited in this case, since it has the same
behavior as ADABOOSTworking with eitherWL1 or WL2.
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The only case which challenges our framework occurs whenρt is strongly negative. Actually, in
such a context, we can observe thatZθ,t ≫ 1. This is not surprising, sinceρt ≃ −1 means that the
hypothesesh1t and h2t disagree on the class of almost all learning examples. If this often happens
during the iterations of 2-BOOST, then the global hypothesisfT , that results of the combination of all
h1t andh2t, will certainly perform randomly on any new data. However, notice that in practice, we never
faced a so strongly negative correlation between the hypotheses.

5. Experimental Results

We present in this section the experiments we carried out in order to assess the generalization abilities
of 2-BOOST. In particular, we aim to show that the global hypothesis produced by 2-BOOST from two
learning algorithmsWL1 andWL2 is better on average than any combination of hypotheses produced by
ADABOOST from WL1 andWL2 independently run. To achieve this task, we will test two combination
methods:

Method A: Both weak learners are boosted individually with ADABOOST. We consider the resulting
classifiersfT (x) = (

∑T
t=1 ctht(x))/(

∑T
t=1 ct) andf ′

T (x) = (
∑T

t=1 c′th
′
t(x))/(

∑T
t=1 c′t). Method

A consists in returning the sign offT (x) + f ′
T (x).

Method B: The same as Method A, except that the voting method returns the sign of the weighted
combination(

∑T
t=1 ct)fT (x) + (

∑T
t=1 c′t)f

′
T (x)).

Note that, of course, many other combinaisons of classifierscould be studied, methods A and B being
the most natural.

5.1. Results on theSTUDENTS Database

The aim of this section is to show the relevance of our approach in the presence of data described with
strongly heterogeneous features. To achieve this task, we run 2-BOOSTon the database STUDENTS, that
contains the marks obtained by 1877 students during sport events. Each instance is described by:

• astring that is the first name of the student,

• anominal attribute that encodes the selected sport (Dance, Tennis orSoccer) by the student,

• anordinal feature that represents the obtained mark and

• abooleanvalue that encodes the gender of the individual (+1 for females,−1 for males).

The learning task consists in building a classification model predicting the gender of a person in func-
tion of his first name, selected sport and mark. Some of these features seem to be partially discriminative
to learn the target concept. Indeed, it is well-known that Soccer is often chosen by boys while Dance is
usually selected by girls. However, Tennis can be equally chosen by both genders. On the other hand,
the boys are often more interested in the practice of sports,and we can wonder if there is a statistical
dependence with the obtained mark. Finally, the first names clearly give a lot of information about the
gender of the individuals. However, this is insufficient to perfectly discriminate the two classes, due to
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the overlap of the two considered distributions, as we explained in the introduction of this paper. So, this
database is clearly interesting to test the ability of 2-BOOST to deal with heterogeneous features.

We consider two weak learners in this experimental study. The discrete features (selected sport and
mark) are tackled with a decision stump. Concerning the firstnames, we used a bigram-based learner
[14]. Roughly speaking, two bigrams are built, one per class(+1 and−1), that allows us to assess the
probability of any string relatively to each gender. The label of any new string is then assigned by the
bigram that maximizes this probability.

Figure 2 presents the results we obtained (with a 5 fold cross-validation procedure [17]) over 50
iterations with (i) 2-BOOST, (ii) the two single boosted weak learners, and (iii) their combinations by
Methods A and B. We can make the following remarks. First, we note that both Methods A and B
outperform each single boosted algorithm, not only in termsof generalization accuracy but also of em-
pirical accuracy, that means that each type of features is useful to learn a subpart of the target concept.
Moreover, 2-BOOSToutperforms both Methods A and B, that proves the interest ofour boosting scheme
with respect to combining independently-run algorithms. Its advantage is statistically significant using a
Student paired t-test.

5.2. Results on UCI Repository Databases

In a second series of experiments, we verified that the behavior observed in the previous section was not
an artefact due to the specificity of the database. Therefore, we used 13 databases coming from the UCI
Repository1. Since most of them are homogeneous (i.e., composed of features of the same type), we
have simulated heterogeneity by randomly splitting the setof features into two disjoint subspaces (X1,
X2) of equal size. We have run2-BOOST with 2 weak learners: A decision stump algorithm and a naive
Bayesian learner.

Table 1 shows the results we get in this setting. For each database, we present its size|LS|, its number
of original features #Feat, and the generalization accuracy (by 5 fold cross-validation) we obtained for 2-
BOOST, Method A and Method B. Moreover, we indicate in underlined font, the method which reached
the best result. From this table we can make the following remarks.

First, for 9 databases (over 13), our boosting procedure hasthe best behavior, versus 4 times for
Method B and none for A. Moreover, we have computed the average accuracy, by weighting each indi-
vidual accuracy by the learning set size. 2-BOOST reaches a rate of82.70%, that is much higher than
75.97% of Method A (+6.73 pourcentage points in favor of 2-BOOST) and significantly higher (using a
Student paired t-test) than81.19% of Method B (+1.51 points).

By analyzing the results according to the learning set size,we can also remark that the advantage
of 2-BOOST in comparison with Method B (which is the closest) seems to behigher on average for
small databases. Actually, the average accuracy for databases containing less than 2000 instances is
about77.8% for 2-BOOST and75.6% for Method B (+2.20 points), while this difference is only of
+1.30 points for databases with more than 2000 instances. This result brings to the fore the necessity,
particularly on small datasets, of a collaboration betweenboth classifiers.

1http://www.ics.uci.edu/∼mlearn
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Algo Empirical Accuracy Generalization Accuracy

2-BOOST 97.73% 85.10%

Boosted stump 66.11% 64.10%

Boosted bigram 90.20% 79.22%

Method A 90.26% 81.57%

Method B 92.12% 80.87%

Figure 2. The curves represent the evolution over 50 iterations of the generalization accuracy using 2-BOOST, a
Boosted stump, aBoosted bigram, Method AandMethod B. The table shows the average results after 50 iterations
of the empirical accuracy and the generalization accuracy.

5.3. Behavior of 2-BOOST on Homogeneous Databases

In this last series of experiments, we wanted to verify if 2-BOOSTremains efficient, relatively to Methods
A and B, in the case ofhomogeneousdata. In other words, what happens when the whole set of features
is used by both learning algorithms? Is it still relevant to use 2-BOOST?

Table 2 shows the results we obtained by 5 fold cross-validation, using the same format as that of
Table 1. First of all, we can note that the difference, in favor of our approach, between 2-BOOST and
Methods A and B is considerably reduced. This behavior is notsurprising since the three methods have
now access to the entire database, thus to more information.The advantage of collaborating during the
learning is reduced. However, despite this, note that the difference remains statistically significant using
a Student paired t-test between 2-BOOSTand methods A and B.

Moreover, these results confirm the relevance and the stability of our method since 10 times over 13
it obtains the best result. Finally, as we did before, we computed the average accuracy according to the
size of the databases. The previously mentionned behavior remains the same. Actually, despite the fact
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Table 1. Comparison of2-BOOSTwith Methods A and B on 13 databases. Each weak learning algorithm is run
from a subset of the original features.

Base |LS| #Feat 2-BOOST Method A Method B

Austral 2756 15 86.97 73.00 86.39

Balance 2496 5 92.05 71.39 89.51

Bigpole 1996 5 67.59 62.32 63.48

Breast 2792 10 96.24 95.88 96.67

German 1004 25 73.10 73.30 73.60

Glass 167 10 74.40 72.81 72.61

Heart 274 14 79.19 79.17 79.91

Horse 1468 23 79.90 73.50 78.68

Ionosphere 736 35 98.91 92.67 93.08

Pima 3068 9 73.01 72.62 72.62

TicTacToe 2396 10 78.96 71.62 74.96

WhiteHouse 439 17 96.89 95.80 95.05

xd6 604 11 74.83 70.86 75.33

Average 1728 14 82.70 75.97 81.19

that the differences are slightly reduced, the average of 2-BOOST is higher (+0.59 points) for datasets
containing less than 2000 instances, while its advantage isonly of +0.28 points when there are more
than 2000 examples.

6. Conclusion

As far as we know,2-BOOST is the first boosting procedure able to deal with heterogeneous features. We
provided exact theoretical results in the case of 2-BOOST and the experiments confirmed that it allows
dramatic improvements in terms of accuracy with respect to any basic combinaison of the two learned
classifiers.

Even if we think that 2-BOOST is sufficient to tackle a large range of machine learning problems, the
case ofk > 2 weak learners remain to be studied. In Appendix (see below),we show that the convergence
proofs require the call of complex approximation methods toassess the confidence parameters used in
final linear combination of the hypotheses.

Why so many efforts to prove the convergence ofk-BOOST? In fact, while several numerical vectors
can be actually concatenated into a single vector, the picture is less clear as soon as one considers several
strings and trees. Hence,k-BOOSTcould be able to approach any problem with heterogeneous features.
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Table 2. Comparison of2-BOOSTwith Methods A and B on 13 databases. Each weak algorithm is run with the
entire set of features.

Base |LS| #Feat 2-BOOST Method A Method B

Austral 2756 15 87.26 87.84 87.45

Balance 2496 5 98.10 97.14 97.46

Bigpole 1996 5 68.04 67.53 67.48

Breast 2792 10 97.39 96.10 96.45

German 1004 25 73.10 73.30 73.60

Glass 167 10 81.65 79.95 81.03

Heart 274 14 81.02 81.02 78.81

Horse 1468 23 85.35 76.63 84.60

Ionosphere 736 35 92.26 91.03 91.03

Pima 3068 9 73.01 72.62 72.62

TicTacToe 2396 10 91.95 90.19 92.41

WhiteHouse 439 17 98.30 97.12 97.41

xd6 604 11 75.82 75.49 75.49

Average 1728 14 85.60 84.34 85.22

Appendix: From 2-BOOST to k-BOOST

All the results we have established above aim at boosting twoweak learners in parallel. Recall that the
advantage of our approach is that learners collaborate and contribute to the definition of the reweighting
rule, at each step. We have shown in the experiments that suchan approach was more relevant than
any combinaison, computeda posteriori, of strong hypotheses resulting of two independent (thus blind)
boosting procedures.

In this section, we investigate the problem of boostingk weak learners in parallel rather that “only”
two. Basically, this leads us to study Algorithm 3 below. As before, we consider a sampleLS =
{(x1, y1), . . . , (xm, ym)} drawn from a fixed but unknown distributionD over X × {−1,+1}. We
assume that each example is described with strongly heterogeneous features, soX is some Cartesian
productX1 × X2 × . . . × Xk and we assume that we havek algorithms, denotedWL1, . . . , WLk, which
will be used to learn from on their specific subset of features.

As ADABOOSTand 2-BOOST, k-BOOSTaims at minimizing the empirical error of the final (strong)
hypothesis:

ε(HT , LS) = (1/m)
m
∑

i=1

[[HT (xi) 6= yi]].

It is not difficult to show that minimizing this error consists in minimizing theZt function. Indeed,
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Algorithm 3 Pseudo-code ofk-BOOST.
Require: A set of weak learnersWL1, . . . ,WLk,

a sampleLS = {(x1, y1), . . . , (xm, ym)},
the maximum numberT of iterations

Ensure: The (strong) combined hypothesisHT

1: for i = 1 to m do
2: w1(xi)←− 1/m
3: end for
4: for t = 1 to T do
5: for j = 1 to k do
6: hjt ←− WLj(LS, wt)
7: end for
8: define functionZt(u1, . . . , uk) =

∑m
i=1 wt(xi) exp

(

−
∑k

j=1 ujyihjt(xi)
)

9: computec1t, . . . , ckt ∈ R that minimizes Zt(c1t, . . . , ckt)
10: let Zt = Zt(c1t, . . . , ckt)
11: for i = 1 to m do
12: wt+1(xi)←− wt(xi) exp

(

−∑k
j=1 cjtyihjt(xi)

)

/Zt

13: end for
14: end for
15: return HT with HT (x) = sign

(

∑T
t=1

∑k
j=1 cjthjt(x)

)

extending Lemma 3.1, we get:

ε(HT , LS) ≤
(

T
∏

t=1

Zt

)

, whereZt =

m
∑

i=1

wt(xi) exp





k
∑

j=1

−cjtyihjt(xi)



 .

Moreover, a global minimum ofZt exists, because Lemma 3.2 generalizes, that is,Zt is still a convex
function. However, contrary to what happens in the casek = 2, an analytic expression of the optimal
coefficientsc1t, . . . , ckt that minimizeZt cannot be found. They can only be approximated by using a
standard Newton-Raphson method, for instance.

The probabilistic interpretation ofZt as a Laplace transform (see Section 3.2) also generalizes:

Zt(c1t, . . . , ckt) = E



exp





k
∑

j=1

−cjtXj







 ,

and

∂p1+...+pkZt

∂cp1

1t . . . ∂cpk

kt

(0, . . . , 0) = (−1)p1+...+pkE[Xp1

1 . . . Xpk

k ],

Once computed, the derivatives ofZt and the previous relations show that2k−1 momentsE[Xp1

1 . . . Xpk

k ]
are necessary to describeZt. So proving thatZt < 1 under the standard weak learning assumption is
clearly intricate, although probably correct.

At last, concerning the generalization error, the analysisof the penalty term still holds, but of course,
showing that the margin-error is< 1 is impossible using Schapire & Freund’s standard technique[10].
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