
String distances and uniformities

David W. Pearson and Jean-Christophe Janodet

University of Saint-Etienne, 18 r. Pr. Lauras, F-42000 St-Etienne
{david.pearson,janodet}@univ-st-etienne.fr

Abstract. The Levenstein or edit distance was developed as a metric for calculat-
ing distances between character strings. We are looking at weighting the different
edit operations (insertion, deletion, substitution) to obtain different types of clas-
sifications of sets of strings. As a more general and less constrained approach we
introduce topological notions and in particular uniformities.
Keywords: edit distance, classification, topology, uniformities.

1 Introduction

The Levenstein (or edit) distance was introduced in the paper [1]. It has been used in
various applications concerning textual data. One particular application is linked with
linguistics and natural language processing where we want to find words that are in
some way ”close” to a given word or sets of words. This is the initial motivation for our
research. We decided to use the Levenstein metric as a starting point for our work, with
the understanding that it would not satisfy all of our needs. In particular, we believe that
trying to place a metric structure on a natural language may be too strong a condition.
This meant that we needed to look for a structure that is less rigid and rigourous than a
metric. This paper is the result of our preliminary investigations.

Metric spaces are nice to work with because the idea of distance between objects is
well defined, straight forward and in most cases easy to compute. However, sometimes
a metric is too strong a condition to require for certain problems. At the other end of the
scale we have topological spaces, where the only thing that you can say about points in
the space is that they are neighbours of each other. So, a topological space can be too
general for certain problems.

A uniform space (or a uniformity) lies somewhere between the two [2–5]. In a uni-
formity we have a notion of closeness rather than distance and we can make statements
like point a is as close to point b as point c is to point d. We believe that uniformities
present potentially interesting properties for text processing and, in particular, we would
like to define a uniformity for strings for classification purposes.

For our initial investigations we have used the edit distance to define our uniformi-
ties. Also called the Levenshtein distance, this distance measures the minimum number
of deletion, insertion and substitution operations needed to transform one string into
another [1, 6, 7]. This distance, and its variants where each operation has a weight, has
been used in many fields including Computational Biology [8, 9], Language Modelling
[10, 11], Pattern Recognition [12, 13] and Machine Learning [14, 15].

We think of a classification problem of strings as defining a topology (and unifor-
mity) for the strings, i.e., strings in the same class are neighbours. We must add at this

point that we refer to classification in a somewhat unrigourous fashion in that the re-
sulting classes may overlap due to the uniform structure. A true classification would
result in disjoint classes. Therefore we consider that the weights of the edit distance pa-
rameterize the uniformity. When we change the weights the uniformity may or may not
change. We are interested in finding the critical parameter values where the uniformity
changes.

This paper is composed of three main sections. In the following section we present
the relevant theoretical background on uniformities. Then, in the next section we show
how we can define uniformities for sets of strings. An example is developed in the last
section before finally concluding.

2 Covering Uniformities

There are at least two ways of defining a uniformity: entourage uniformities and cov-
ering uniformities. It can be shown that they provide equivalent structures and that the
choice of entourage or covering is governed by the application. The entourage approach
is very popular nowadays [2, 3], but we have found the covering approach to be better
adapted to our needs [4, 5].

Let X be any fixed space. A covering for X is a collection C of sets Ci ⊆ X such
that

⋃
i Ci = X , for Ci ∈ C. Given two coverings U and V , U is said to refine V ,

denoted U < V , if for all Ui ∈ U , there exists Vj ∈ V such that Ui ⊆ Vj .
For a covering C and a subset A ⊆ X , the star of A is defined as follows:

∗(A, C) =
⋃
{Ci ∈ C : Ci ∩A 6= ∅}.

Given two coverings U and V , we say that U star refines V , denoted U <∗ V , if for all
U ∈ U , there exists V ∈ V such that ∗(U,U) ⊆ V . In this case, the sets in V can be
thought of as twice as big as those of U [5].

We now introduce the following definition for a covering uniformity. A family µ of
coverings is called a uniformity if it satisfies the following conditions:

1. if U ,V ∈ µ, then there exists W ∈ µ such that W < U and W < V ,
2. if U ∈ µ and U < V then V ∈ µ and
3. every element of µ has a star refinement in µ.

Some texts refer to this definition as a preuniformity or a non-separating uniformity, we
shall simply use the term uniformity. A separation condition can be added and some au-
thors refer to that as a uniformity, but other authors refer to it as a Hausdorff uniformity.
The separation condition is not necessary in our case.

The notion of a normal sequence of coverings in a uniformity is simply a sequence
Un such that · · · Un+1 <∗ Un <∗ Un−1 · · · .

If U ∈ µ and y ∈ X then a point x ∈ X is said to be U-close to y, denoted
|y − x| < U , if there exists U ∈ U such that {x, y} ⊆ U .

Finally, let d be a distance over X . For any x ∈ X , we define the ε-sphere around
x as S(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Clearly, if S(x, ε) ⊆ U ∈ µ, then every
y ∈ S(x, ε) is U -close to x.

3 Strings and Uniformities

An alphabet Σ is a finite nonempty set of symbols called letters. For the sake of clarity,
we shall use Σ = {a, b} as a fixed alphabet throughout the rest of this paper. A string
w = x1 . . . xn is any finite sequence of letters. We write Σ∗ for the set of all strings
over Σ. Let |w| denote the length of w and λ the empty string.

Following [1], we consider three sorts of edit operations:

– a pair (x : y) ∈ Σ ×Σ is called a substitution of letter x by letter y,
– a pair (x : λ) with x ∈ Σ is called a deletion of letter x, and
– a pair (λ : y) with y ∈ Σ is called an insertion of letter y.

Moreover, we assume that a matrix C assignes a weight to every operation. E.g.,

C λ a b
λ 0 1 2
a 1 0 1.5
b 2 1.5 0

The edit distance between two strings w1 and w2, denoted d(w1, w2), is the mini-
mum weight of every sequence of substitutions, deletions and insertions that allows one
to transform w1 into w2. More formally, d is recursively defined as follows:

d(w1, w2) = min





0 if w1 = w2 = λ
C(x : λ) + d(w′1, w2) if w1 = xw′1
C(λ : y) + d(w1, w

′
2) if w2 = yw′2

C(x : y) + d(w′1, w
′
2) if w1 = xw′1, w2 = yw′2

It is well-known [7] that if C defines a metric over (Σ ∪ {λ}), then d(w1, w2) can
be efficiently computed in time O (|w1| · |w2|) by means of dynamic programming [6].
Assuming that C defines a metric means that the matrix C has a null diagonal, is posi-
tive, symmetric and for all x, y, z ∈ Σ ∪ {λ},

C(x : y) ≤ C(x : z) + C(z : y). (1)

In such a case, the edit distance is determined by only three weights: C(a : b),

C(a : λ) and C(b : λ). We group these values together into a vector p =




C(a : b)
C(a : λ)
C(b : λ)


.

Thus, using any fixed p that satifies Eq.(1), we can compute the edit distance between
any two strings.

Our main interest is in string classification and so we assume that we have a set of
strings, W of cardinality m, and some idea of which strings are together in classes. Let
us consider for any w ∈ W , the ε-sphere around w: S(w, ε) = {w′ ∈ W : d(w,w′) ≤
ε}. Using the edit distance and the ε-spheres, we can now calculate uniformities for sets
of strings.

To begin with, we compute the distances between all the strings in W using the edit
distance with some fixed value of the parameter vector p. If we list all the strings in W

in some order horizontally and vertically then the result is simply a symmetric m ×m
matrix D with zeros along the diagonal. We take all the elements above the diagonal of
this matrix and list them in lexicographical order. Thus if

D =




0 d12 d13 · · · d1m

d21 0 d23 · · · d2m

...
... · · · . . .

...
dm1 dm2 · · · · · · 0




where dij = d(wi, wj), then we define the vector

x =




d12

d13

...
dij

...
dm−1m




We want to adjust the parameter vector p to give the required classification. As the
vector x above is dependent on p, we indicate this by x(p) and thus consider x to be a
mapping x : R3 → Rn where n = m2−m

2 is the number of elements of D above the
diagonal. Due to the condition on the values of the three parameters, p is restricted to
certain areas of R3. The standard edit distance uses p =

[
1 1 1

]T and so we will define

the admissible values of p based on this point. Define the following vectors p0 =




1
1
1


,

p1 =




0.5
1
1


, p2 =




1
0.5
1


 and p3 =




1
1

0.5


. Then, for our purposes, we can say that the

admissible values of p can be defined by the simplex P = t0p0 + t1p1 + t2p2 + t3p3

where ti ≥ 0 and
∑3

i=0 ti = 1.

Once a value of p has been chosen, the uniformity is defined by varying x and ε in
S(x, ε). Clearly different uniformities can be defined for the same value of p, depending
on the chosen values of x and ε. Another point to mention is that certain choices of x
and ε will not lead to correct uniformities simply because of the star refinement property
that is required. These points are best illustrated by an example, which we present in
the following section.

4 Example

Let the set of strings be the following W = {aaab, abab, bba, baba, bbaab}. Applying
the classical edit distance we have the following table:

W aaab abab bba baba bbaab
aaab 0 1 3 3 2
abab 1 0 2 2 2
bba 3 2 0 1 2
baba 3 2 1 0 3
bbaab 2 2 2 3 0

We can find 3 coverings from this. First of all S(aaab, 1), S(bba, 1) and S(bbaab, 1)
supply us with

U2 = {aaab, abab}, {bba, baba}, {bbaab},
then S(aaab, 2) and S(bba, 2) give us

U1 = {aaab, abab, bbaab}, {abab, bba, baba, bbaab},

then finally S(aaab, 3) gives us

U0 = {aaab, abab, bba, baba, bbaab}.

It can be verified that U2 <∗ U1 <∗ U0. So, with this choice of p all the strings
are U0-close, {aaab, abab, bbaab} and {abab, bba, baba, bbaab} are U1-close and finally
{aaab, abab}, {bba, baba} and {bbaab} are U2-close.

To see how the uniformity changes when p changes we carry out the same exercise
but with p = p1 as described above. With this value for p the distances are the following

W aaab abab bba baba bbaab
aaab 0 0.5 2 1.5 1.5
abab 0.5 0 1.5 2 1.5
bba 2 1.5 0 1 2
baba 1.5 2 1 0 2
bbaab 1.5 1.5 2 2 0

Using these distances we can now define the following covers:

V3 = S(aaab, 0.5), S(bba, 0.5), S(baba, 0.5), S(bbaab, 0.5)
= {aaab, abab}, {bba}, {baba}, {bbaab}

V2 = S(aaab, 1), S(bba, 1), S(bbaab, 1)
= {aaab, abab}, {bba, baba}, {bbaab}

V1 = S(bbaab, 1.5), S(bba, 1.5)
= {aaab, abab, bbaab}, {abab, bba, baba}

V0 = S(aaab, 2)
= {aaab, abab, bba, baba, bbaab}

and it can be verified that V3 <∗ V2 <∗ V1 <∗ V0. Here we see that U0 = V0, but
the other sets in the different levels are not the same and so the U-uniformity and the
V-uniformity are not the same.

Changing p once again and using p = p2 as defined above, leaving the details out
we have the following uniformity

W3 = {aaab}, {abab}, {bba, baba}, {bbaab}
W2 = {aaab, abab}, {bba, baba, bbaab}
W1 = {aaab, abab, bbaab}, {abab, bba, baba, bbaab}
W0 = {aaab, abab, bba, baba, bbaab}

with W3 <∗ W2 <∗ W1 <∗ W0.
These three uniformities are clearly different. To see how the changes occur we

traced out the vector x at various points between p1 and p2 by setting p = (1−t)p1+tp2

with t ranging from 0 to 1 in increments of 0.1. The individual components of the vector
x can be seen in figure 1. The uniformity actually changes between the values t = 0.5

and t = 0.6, i.e., for values of p between p =




0.75
0.75
1


 and p =




0.8
0.7
1


.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5
d

12
d

13
d

14
d

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5
d

23
d

24
d

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5
d

34
d

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5
d

45

Fig. 1. The distances for the strings aaab (top left), abab (top right), bba (bottom left) and baba
(bottom right).

We notice that with the V-uniformity the two strings aaab and abab are always to-
gether but bba and baba are separated in the V3-uniformity. Whilst for theW-uniformity
bba and baba remain together but aaab and abab get separated in W3.

5 Conclusion

We have introduced an approach to string classification based on uniformities. We be-
lieve that this approach has potential because it falls between one which is too general
based on a topology and one which is too rigorous based on a metric.

We are fully aware of the fact that we need a metric to actually calculate the ε-
spheres and thus the uniformity, but we wanted to test our ideas in the first instance and
so we used the Levenstein distance to advance more quickly. We believe that the results
obtained so far are promising and so we are continuing along these lines. Our work is
now concentrating on how to define a uniformity and carry out calculations without the
need of a metric.

References

1. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Doklady Akademii Nauk SSSR 163(4) (1965) 845–848

2. Kelley, J.L.: General Topology. D. Van Nostrand (1955)
3. James, I.M.: Topologies and Uniformities. Springer-Verlag (1999)
4. Howes, N.R.: Modern Analysis and Topology. Springer-Verlag (1995)
5. Willard, S.: General Topology. Adison-Wesley (1970)
6. Wagner, R., Fisher, M.: The string-to-string correction problem. Journal of the ACM 21

(1974) 168–178
7. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University

Press (2007)
8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Compu-

tational Biology. Cambridge University Press (1997)
9. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cambridge

University Press (1998)
10. Amengual, J.C., Sanchis, A., Vidal, E., Benedı́, J.M.: Language simplification through error-

correcting and grammatical inference techniques. Machine Learning Journal 44(1-2) (2001)
143–159

11. Amengual, J.C., Dupont, P.: Smoothing probabilistic automata: An error-correcting ap-
proach. In: Proc. of the 5th International Colloquium in Grammatical Inference (ICGI’00),
LNAI 1891 (2000) 51–64

12. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1)
(2001) 31–88

13. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroquı́n, J.L.: Searching in metric spaces.
ACM Computing Surveys 33(3) (2001) 273–321

14. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of strings
from edit corrections. Journal of Machine Learning Research 9 (2008) 1823–1852

15. Delhay, A., Miclet, L.: Analogical equations in sequences: Definition and resolution. In:
Proc. 7th International Colloquium in Grammatical Inference (ICGI’04), LNAI 3264 (2004)
127–138

