On State Merging in Grammatical Inference:
A Statistical Approach for Dealing with Noisy Data

Marc Sebban
Jean-Christophe Janodet

MARC.SEBBAN@QUNIV-ST-ETIENNE.FR
JANODET@QUNIV-ST-ETIENNE.FR

EURISE, Faculty of Sciences, 23 rue Paul Michelon, University of Jean Monnet, 42023 Saint-Etienne, FRANCE

Abstract

In front of modern databases, noise tolerance
has become today one of the most studied
topics in machine learning. Many algorithms
have been suggested for dealing with noisy
data in the case of numerical instances, ei-
ther by filtering them during a preprocess, or
by treating them during the induction. How-
ever, this research subject remains widely
open when one learns from unbounded sym-
bolic sequences, which is the aim in gram-
matical inference. In this paper, we propose
a statistical approach for dealing with noisy
data during the inference of automata, by
the state merging algorithm RPNI. Our ap-
proach is based on a proportion comparison
test, which relaxes the merging rule of RPNI
without endangering the generalization error.
Beyond this relevant framework, we provide
some useful theoretical properties about the
behavior of our new version of RPNI, called
RPNI*. Finally, we describe a large compara-
tive study on several datasets.

1. Introduction

Thanks to recent advances in data acquisition and
storage technologies, modern databases have the par-
ticularities of containing huge quantities of data, but
also of presenting a high level of noise. In order to
remain efficient, machine learning algorithms require
more and more often specific treatments to address
the problem of noisy data. Actually, the presence of
strongly (and even weakly) irrelevant data can have a
dramatic impact on classifier performances, not only in
terms of generalization error, but also in terms of com-
plexity. During the last decade, many data reduction
algorithms have been proposed, aiming either at reduc-
ing the representation dimension by feature selection
(Aha, 1992; John et al., 1994; Langley, 1994), or at

removing irrelevant instances by prototype selection
(Brodley & Friedl, 1996; Wilson & Martinez, 1997;
Sebban & Nock, 2000; Sebban et al., 2003). One can
surprisingly notice that the large majority of such data
reduction techniques are only devoted to deal with nu-
merical data, and not symbolic ones. Symbolic data
reduction becomes even much more marginal when
the learning data are unbounded symbolic sequences,
which is notably the case in grammatical inference.

Grammatical inference is a subtopic of machine learn-
ing whose aim is to learn models of sequences, usually
called words or strings, and made up of symbols, called
letters. In this paper, we focus on particular sets of
words, called regular languages. Roughly speaking, a
language is regular if there exists some machine, called
a deterministic finite automaton (DFA), which takes a
word as input, and accepts or rejects it if it belongs
or not to the language. A DFA is thus in a way a
classifier which separates the set of all words in two
classes, the positive one (for the accepted words) and
a negative one (for the rejected words). During the
last decades, many results in inductive learning the-
ory have brought to the fore the conditions for learn-
ing DFA from a training set (de la Higuera, 1997). A
practical reason which explains these efforts is that
many applications, such as speech recognition, pattern
matching, language processing, etc., can take advan-
tage of the interesting structural and semantic proper-
ties of the DFA. In this paper, we only consider algo-
rithms based on state merging mechanisms and in par-
ticular the one called RPNI (Oncina & Garcia, 1992).
Beyond this choice, note that all the results presented
in this paper are easily extendable to other variants,
such as EDSM (Lang et al., 1998).

Figure 1 describes a simple example of a DFA inferred
with RPNI. Let E, (resp. E_) be the set of positive
(resp. negative) learning examples, such that F, =
{b, ab, abb,bab} and E_ = {aa,ba}. A DFA accepts a
word if there exists a path, labeled with its letters,
which starts from the initial state 0 (with the ingoing

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

arrow), follows different transitions, and ends in the
final state 0 (with a double circle). That is the case
for all positive words of E. The negative example ba
is rejected because it ends in a non-final state, whereas
aa is rejected because there does not exist any path for
it.

Q==

Figure 1. An example of a DFA containing two states and
three state transitions.

RPNI is considered as an exact learning algorithm be-
cause it fits the data, i.e. a positive (resp. nega-
tive) example is always accepted (resp. rejected) by
the DFA. Moreover, if the learning sample contains
characteristic words, RPNI is theoretically able to in-
fer, in polynomial time, the minimal target automa-
ton (Oncina & Garcfa, 1992). However, despite these
interesting theoretical properties, as soon as one treats
real-world problems, one encounters two types of diffi-
culties: firstly, it is impossible to know if such charac-
teristic examples are present in the learning data, and
if the problem is learnable with a DFA. Secondly, since
RPNI achieves an exact learning, the presence of noisy
data has dramatic effects. Actually, without precis-
ing now the state merging rule used in RPNI (that is
the aim of the next section), we can easily think that
a mislabeled example (i.e. a positive example which
should belong to E_, or vice versa) will penalize the
DFA in terms of size and generalization accuracy. For
instance, consider the new negative example bbbb in the
learning sample. Figure 2 shows the new profoundly
modified DFA inferred by RPNI with this noisy instance.
This example expresses well the fact that RPNI is not
immune to overfitting.

Figure 2. The effect of noisy data on the DFA.

Despite the fact that many kinds of noise can be ob-
served in machine learning (noisy labels, noisy fea-
tures, fuzzy data, incomplete data, etc.), we only con-
sider in this paper the case where the labels can be
erroneous. To deal with noisy data in grammatical

inference, and extending the feature selection termi-
nology (John et al., 1994), one could distinguish two
approaches able to tackle this problem. The first
one, called filter, would aim at removing irrelevant se-
quences before the induction process. In this context,
we proposed a first solution in (Sebban et al., 2002)
based on an entropy minimization in a neighborhood
graph of sequences. We emphasized the difficulty of
defining a judicious distance function on symbolic se-
quences, whose use has a direct effect on the selected
prototypes. In order to avoid such bias, the second
strategy, called wrapper, would aim at detecting and
treating noisy data during the inference process. That
is the goal of this paper. As far as we know, it is the
first attempt to take into account noisy data directly
in the merging rule of the inference algorithm.

The rest of this paper is organized as follows. Section
2 describes the algorithm RPNI and its state merg-
ing mechanism. In Section 3, we present our statis-
tical framework for dealing with noisy data and the
new state merging rule used in an algorithm called
RPNI*. Then, Section 4 gives some theoretical proper-
ties about the behavior of DFA in the presence of noise,
before a large experimental study, in Section 5, and a
conclusion and some perspectives in Section 6.

2. The State Merging Algorithm RPNI

In this section we explain how RPNI works thanks to
its pseudo-code presented in Algorithm 1. We also de-
scribe its state merging mechanism on the toy example
already presented in the introduction (see (Oncina &
Garcia, 1992) for formal details). The first task RPNI
achieves is the construction of the prefix tree acceptor
(PTA) of the words of E, i.e. a tree-like DFA which
accepts only the words of E (see the upper DFA in
Figure 3). States are numbered according to standard
lexical ordering over prefixes (Oncina & Garcia, 1992).
RPNI then runs along these states following the order-
ing. When state ¢ is considered, RPNI tries to merge
it with states 0, ..., ¢ — 1, in order. Merging two
states means to collapse them to one new state, whose
number is the smallest of the two merged ones. This
state is considered as final if one of the merged states
was final. As for the outgoing transitions, they are
themselves merged together if they are labeled with
the same letter, and in such a case, the two pointed
states are recursively merged. In Figure 3, RPNI tries
to merge states 1 and 0 of the pTA. This creates a
loop labeled with a on state 0. Since states 1 and 0
have both an outgoing transition labeled with b, the
pointed states, namely states 3 and 2, must be merged
together. This leads to the middle DFA of Figure 3.

Algorithm 1 Pseudo-code of RPNI
Input: sets F, E_ of examples
Output: a DFA A
A — PTA(E+)
for i =1ton do
J«—0
while (j < i) and not_mergeable(i,j) do
Je—J+1
end while
if j < i then A «— merge(, j)
end for
return(A)

A merging succeeds if no example in E_ is accepted by
the resulting DFA. It fails otherwise. Here, the merg-
ing of states 1 and 0 fails since aa € E_ is accepted
by the resulting DFA. So RPNI abandons the merging
of 1 and 0 and tries to merge 2 and 0. This leads to
the lower DFA of Figure 3 that does not accept any ex-
ample of F_. So RPNI takes this new DFA and merges
3 and 0 with success, leading to the DFA of Figure 1,
that is the global result of RPNI on the data.

b

OO
OOOOE

&)

Figure 3. The upper DFA is the PTA of {b, ab, abb, bab}. The
middle DFA results of the merging of 1 and 0. The lower
results of the merging of 2 and 0.

3. A Statistical Test to Deal with Noise

We describe here our statistical approach for treat-
ing noisy data. We slightly modify the merging rule of
RPNI in order to tolerate the presence of noise. Our ap-
proach is based on a proportion comparison test, which
verifies that the proportion of misclassified examples
does not significantly increase after a state merging.

3.1. Definitions and Notations

So far, two states were mergeable in RPNI if no nega-
tive example was accepted by the current DFA. Stated

differently, it means that all the states of the DFA are
used either to accept only positive examples, or to re-
ject only negative examples. However, in the presence
of noise, the parsing of some positive and negative ex-
amples may lead to the same state. In this case, RPNI
would systematically reject such merging whereas it
should have been accepted in the absence of noise. So,
we aim here at relaxing the merging constraint by au-
thorizing the presence of some misclassified examples
in the final DFA.

We say that an example w is within a state s if its
parsing by the DFA terminates to s. We say that a
state is positive if it contains more positive words (of
E.) than negative ones (of E_). We say that it is neg-
ative otherwise. A negative (resp. positive) example
within a state s is misclassified if s is positive (resp.
negative). We now modify the merging rule as follows:
a merging is statistically acceptable if and only if the
proportion po of misclassified examples in the whole
DFA after the merging is not significantly higher than
the proportion p; computed before the merging.

This way to proceed allows us to avoid overfitting phe-
nomena, due to the presence of noise, and resulting in
the construction of large DFA. We accept then to re-
duce, by state merging, the DFA size if it does not
result in a significant increase of the error. Since the
sampling fluctuations on the learning set can have an
influence on a given merging decision, a simple com-
parison between p; and py would not be relevant. A
judicious statistical rule would require in fact the use
of a comparison test with confidence intervals.

3.2. Test of Proportion Comparison

Let Hy be the null hypothesis of this test, which ex-
presses the idea that a given merging does not statisti-
cally increase the proportion of misclassified examples
in the learning set, i.e. without reasonably endanger-
ing further classification tasks. In such a context, we
test the following null hypothesis Hy : p1 = p2, versus
the alternative one H, : ps > p;. Note that it is a
one-tailed test, where only a sufficiently large value of
our statistic (here py — p1) will lead to rejection of the
hypothesis tested. Actually, a small value of the statis-
tic (and of course a negative one) does not challenge
the quality of the merging. The quantities p; and ps
are unknown, because they correspond to the theoret-
ical errors of the current DFA respectively before and
after the merging. They can only be assessed by the
empirical errors p; = % and po = % computed from
the learning set, where Ny (resp. Na) is the number
of misclassified learning examples before (resp. after)
the merging, and N is the learning set size. p; and
po are independent random variables and are unbiased

estimators of p; and ps. In our test, we are interested
in the difference ps — p1 which has the following mean
and variance under the null hypothesis Hy:

E(ps —p1) =p2—p1 =0

R . 1- 1- 2
Var(ps — p1) = pa(= p2) +P1(5 p1) _ %

where p = p1 = py under Hy and ¢ = 1 — p. p is
usually estimated by the mean of the two proportions
of misclassified examples before and after the merging:

.1 N1+ Ny
p=5(—x)

If the constraints Np > 5 and Ngq > 5 are verified!,
the approximation conditions to the normal distribu-
tion are satisfied, and then the variable T' = ps — py
\/%). We have to
determine the threshold Z,, called the critical value
at the risk «, which defines the bound of the rejection
of Hy, and which corresponds to the (1 — «)-percentile
of the distribution of T' under Hy. It means that:

follows the normal law N (ps — p1,

P(T > Za) :p(T—(P2 —p) _ Za- (pQ_pl))

N N
CcT ZO(
=P(T" >)
254
N
2pq

P(T>Z,) =aiff Zo, =Us | —
(T>Zs)=a iff U, ~

where T°" is the centered and reduced variable and U,
is the (1 — «)-percentile of the normal law N(0,1). If
T > Z, we reject Hy with a risk of a%. On the con-
trary, if T' < Z,, the merging is statistically validated,
and then accepted. We use this new statistical merging
rule in a slightly modified algorithm, called RPNT*. We
do not present here the pseudo-code of RPNI* which is
the same as RPNI except for the merging rule.

3.3. RPNI" is a generalization of RPNI

Our approach is able not only to deal with noisy data
but also to remain relevant in noise-free situations.
Actually, RPNT* is tested with different values of the
parameter a. We keep the optimal value for which
the best DFA, in terms of error and number of states,
is inferred. Nevertheless, RPNI* is strictly equivalent
to RPNI when data is noise-free. Indeed, RPNI must

!Otherwise, a Fisher exact test could be used.

not accept misclassified examples in order to infer the
target DFA. This situation is possible with RPNI* if
U, =0, i.e. when o = 0.5. In this case, the merging
is refused if T' > 0, i.e if po > p;. When data is noise-
free, p; = 0 at the first step of the algorithm. This case
represents a merging for which ps > 0 would always
be refused, that is strictly the merging rule of RPNI. In
conclusion, RPNI* does generalize RPNI to noisy data.

4. Theoretical Results with Noisy Data

In this section, we provide some theoretical results
about the behavior of procedures which would treat
noise in grammatical inference such as RPNI*. Before
presenting specific experimental results with RPNI*, we
aim at studying until which level of noise such proce-
dures are able to work. In our context, RPNI* will
achieve perfectly its task if it finds the target DFA, de-
spite the presence of noisy data. Since RPNI* reduces
the merging constraints of RPNI, a given state can now
contain not only negative but also positive examples.
The label of this state is then given by a majority rule.
We can intuitively think that the probability to have a
mislabeled state (i.e. a positive (resp. negative) state
which should be negative (resp. positive) in the ab-
sence of noise increases with the level of noise. Such
increase should have a direct consequence on the DFA
performances. We can also think that even an optimal
procedure will slightly diverge in terms of error with
the increase of noise. Proving these phenomena would
allow us not only to justify the small divergence of
RPNI* (that we will note in the experimental section),
but also to provide an estimation of this deviation.
That is the goal of the following sections.

4.1. Probability of a State Mislabeling

We only study here the situation of a negative state
which should be positive. We aim at computing the
probability that this state is in fact mislabeled because
of noise. The reasoning remains the same for the op-
posite situation.

Let s be a state with n; positive and ns negative ex-
amples. We assume without loss of generalization that
ng > n1, so that s is labeled negatively. Among the n
positive examples, let n4 be the number of instances
mislabeled because of noise (they should be negative).
Among the ny negative examples, let n_ be the num-
ber of mislabeled instances. Assuming that the noise
is uniformly distributed on the learning set, the state s
will be mislabeled if and only if: (i) n_ is higher than
ny. If n_ < ng, we could not actually have a different
label for s because we assume ny > ny. Then, s could
not be mislabeled; (i) n_ is high enough not only to

compensate for the ny positive mislabeled examples,
but also to change the label of s from '+’ to ’-’.

Theorem 4.1 The probability Ps(y,n1,n2) of having
a mislabeled state s because of the presence of a noise
rate v is equal to:

ni n2
Z <n1>’yn+'__yn1—n+ Z (:2>7”7y"2_"

n
ny =0 + no—mni
+ n_>ni+—25

where ¥ =1 — .

Proof

Let X be the random variable of the number of mis-
labeled examples among the n, positive ones. X; cor-
responds to the number of successes in nq independent
trials with a probability . Then X; follows the Bino-
mial law B(n,~) whose probability function is:

ni

ny 1_ nl—n+'
m)v (1-7)

P(Xl = TL+) = (
With the same reasoning, let X5 be the number of mis-
labeled examples among the no negative ones. Then,

n2
n_

P(Xp=n_)= <)’Y"(l —)T

We can now finish the construction of Py(v,ni,n2).
While there is no constraint on ny whose values can
vary from 0 to mp, the quantity n_ is conditional to
ny (we saw that n_ > ny). So, given a value for n,,
the only condition for having a mislabeled state s is:

ng — Ny

ni+n_ >ne—n_ iff n. > 5

From this fact, we deduce that:

n2

PS(’y?nhn?) = Z P(Xl :TL+) Z

n+:0 n7>n++712;711

4.2. Theoretical Divergence of Py(v,ny,ns)

Theorem 4.2 The probability Ps(v,n1,n2) is an in-
creasing function of the noise .

Proof
We have already shown that
ng

3 P(Xo =mn_)

no—nj
2

mni
Ps(v,n1,m2) = » P(X1=ng)

n+:0 n7>n++
ni

= > P(X1=ny)P(Xa>ng+
ni=o0

ng — Ny n2 —ni
)= POz - X1 > 2T

P(X2 = n,).

Since the probability density function of a Binomial
law is difficult to manipulate, we use here its con-
vergence properties to the Normal law. In such a
context, X7 and X, follow asymptotically the stan-
dard normal distribution X; ~ N(niv,/n17y) and

X2 ~ N(NQ’Y, Vv 7’)‘27,7)

Since X; and X, are independent variables following
the normal law, the difference Xo — X3 also follows a
normal distribution with parameters:

E(Xy — X1) = E(Xz) — E(X1) = (n2 —m)y

V(X2 — X1) = V(X2) + V(X1) = (n1 +n2)(77)

We deduce that:

ng — N1

Ps(’y,’l’b1,n2) = P(XQ - X1 >

) =

nom_ B(X, — X))
V(X2 — X1)

P(N(0,1) >) =P(N(0,1) > u(y))

where u(y) = 2:}%% It is easy to show that:

8u_ ng — N1 -1

6_’7 N 4v/n1 + no (Wﬁ)% '

Since ny > nj, we deduce that g—: < 0, thus that

u(y) decreases on [0,1]. Therefore Py(y,n1,n2) is an
increasing function of ~. O

We have seen that Ps(7,n1,n2) corresponds to the
probability of having a mislabeled state s. What is the
consequence of its increase on the state performances?
Since each state is, in a way, a sub-classifier of the final
DFA, answering this question would allow to assess the
effect of noise on the behavior of the DFA.

4.3. Margin Expression in Terms of P(vy,n1,n9)

When an example w stops on a state s, it inherits the
label of s (positive or negative). Since Ps(7y,n1,ns2)
measures the risk to have a mislabeling on s, the quan-
tity [1 — Ps(7,n1,n2)] expresses the confidence in this
classification. Actually, w is correctly classified with
a probability [1 — Ps(7,n1,n2)] and misclassified with
a probability Ps(vy,n1,n2). According to the margin
theory used in support vector machines or in boosting
(Schapire et al., 1998), the classification margin for an
example is defined as the difference between the weight
assigned to the correct label and the maximal weight
assigned to any single incorrect label. Schapire et al.

(1998) proved that an improvement in this measure of
confidence on the learning set guarantees an improve-
ment in the upper bound on the generalization error.
In our case, we can take into account Ps(y,n1,n2) in
the definition of the margin of each learning exam-
ple w. Consider that there are npq. (resp. Mumin)
examples of the majority (resp. minority) class in s.
For the n,,q, examples the weight assigned to the cor-
rect (resp. incorrect) label is equal to 1 — Ps(vy, n1, no)
(resp. Ps(y,n1,n2)), and then the margin is:

m(w) =1 — 2P,(y,n1,n2).

Note that the margin is a number in the range [—1, +1]
and that an example is classified correctly iff its margin
is positive. Moreover, a large positive margin can be
interpreted as a “confident” correct classification. The
margin is equal to 1 when ~, and then Py(v, ni,n2), is
null. For the n,,;, examples, the margin is:

m(w) = 2P;(y,n1,m2) — 1.

This margin is negative for a value of Ps(y,n1,ns)
smaller than 0.5. Beyond 0.5, the margin becomes
positive, that means that, despite its belonging to the
minority class, the label of w is in fact the true one.
More generally, when the noise increases, we proved in
the previous section that Ps(y,mn1,n2) increases too,
resulting in a drop of the margin for the n,,,, examples
and an increase for the n,,;, ones. Since Nyae > Nanin,
the mean of the margins decreases on each state, re-
sulting in an increase of the generalization error ac-
cording to Schapire’s margin theory.

Expressing the margin in terms of Ps(7y, n1,ng) allows
us to make the following remarks. Firstly, as we will
see in the experimental section, small values of v of-
ten lead to a null value of Ps(v,n1,n2), resulting in a
margin equal to 1. It means that despite the presence
of misclassified examples during the learning step, we
can theoretically learn the target function, and then
infer the DFA guaranteeing a null generalization error.
Secondly, the more 7 increases, the more Ps(y,n1,n2)
differs from 0, justifying, even for an optimal algo-
rithm, a slight divergence of the generalization error
using the DFA. Despite this, we will see in the next
section that RPNI* is much better than RPNI, and is
thus a relevant way to deal with noisy data.

5. Experimental Results

In this section, we assess the efficiency of RPNI* accord-
ing to the two following performance measures: gen-
eralization accuracy and number of states. To achieve
this task, we carried out three types of test. The first
one aims at studying RPNI*’s behavior on a specific

database according to different levels of noise. This
way to proceed will be useful to experimentally con-
firm the remarks we expressed in the previous section.
With the second series of experiments, we will com-
pare, for a given level of noise, RPNI* and RPNI on two
types of datasets: (i) 8 synthetic databases artificially
generated using the simulator Gowachin?, and (ii) 3
databases of the UCI database repository 3. We also
test the algorithms on a French first name database.
Finally, we will study RPNI*’s tolerance to different
levels of noise and on different databases. In these last
experiments, v will evolve from 0 to 20%.

During all the experiments, we used a cross-validation
procedure (with 10 folds) to estimate the generaliza-
tion error. To verify if the target DFA has been cor-
rectly inferred, only the learning set (i.e. a set of 9
folds at each step) was built from noisy data, the val-
idation set remaining noise-free. Then, for the 8 syn-
thetic databases, we aimed at obtaining a null error.

5.1. Validation of the Theoretical Properties

We aim here at experimentally verifying the remarks
we expressed in the previous section. To achieve this
task, we used a given dataset, called BASEL, that we
simulated via Gowachin. The 2000 instances are origi-
nally noise free, and using RPNI on BASE1 we are then
able to infer the target DFA, with 9 states, and guaran-
teeing a 100% generalization accuracy. We improved
the noise rate v from 0 to 20% and compared RPNI and
RPNI* in terms of accuracy and number of states.

100 ===

90

80

70

60

50

40 |

30

Figure 4. Results on the dataset BASEl: acc_RPNI® (resp.
acc_RPNI) represents RPNI*’s accuracy (resp. RPNI’s accu-
racy) estimated by cross-validation and states_RPNI™ (resp.
states_RPNI) represents the number of states of the DFA
inferred using RPNI* (resp. RPNI).

From the results described in Figure 4, we can note
that until 6%, RPNI* is able to totally tolerate noisy

*http://www.irisa.fr/Gowachin
3http:/ /www.ics.uci.edu/ mlearn/MLRepository.html

data. It means that RPNI* infers, for the 10 folds of
the cross-validation procedure, the target DFA with 9
states and guaranteeing a 100% generalization accu-
racy. It confirms that for small noise values, margins
are equal to 1 despite the presence of misclassified ex-
amples on some states. From 6% to 10%, RPNI* still
allows us to have a null generalization error, despite
slightly larger DFA (10 states on average). Beyond
10%, the level of noise is too important to be totally
tolerated, resulting in a little divergence of the per-
formances in terms of accuracy and number of states.
That confirms the theoretical results presented in the
previous section, even if this degradation is relative,
authorizing an efficient behavior (an accuracy about
93% and 11 states on average for 20% of noise). Con-
cerning RPNI, the acknowledgment of failure is glaring.
As soon as the noise appears, the degradation of the
performances is perceptible. Not only the generaliza-
tion accuracy regularly drops, but also the DFA size
increases conveying an overfitting phenomenon.

5.2. RPNI*’s Behavior on 12 Datasets

We carried out a large comparative study on 12
datasets between RPNI* and RPNI for a level of noise
~v = 4%. The goal is to provide significant results
about RPNI*’s efficiency on a large panel of datasets,
described in Table 1. Note that for the eight simu-
lated databases BASEL, ..., BASES, we a priori know
the target DFA, and RPNI is able to infer it in the ab-
sence of noise (v = 0). That is not the case for the 4
other datasets, called AGARICUS, BADGES, PROMOT-
ERS and FIRSTNAME, for which we do not know the
target DFA.

Each value in Table 1 represents the mean computed
from the 10 cross-validation results. Many interesting
remarks can be made. Firstly, the difference between
RPNI* and RPNI is significant for 10 datasets using a
Student paired ¢-test over accuracies. Only AGARICUS
and BASEG do not satisfy the statistical constraint.
However, we can note that RPNI is never better than
RPNI*, not only in terms of accuracy but also concern-
ing the DFA size. Moreover, the difference is highly
significant over the global means of accuracies (88.1 vs
82.9). The remark is similar concerning the DFA size.
Actually, over the 12 datasets, while the number of
states does not dramatically increase with RPNT* (25.6
states on average), the mean with RPNI (95.6) con-
veys the difficulties to infer the target DFA resulting to
an overfitting phenomenon. Finally, note that despite
4% of noise, RPNI* is able to infer the target DFA for
3 datasets (BASEl, BASE6 and BASES), and allows
a 100% generalization accuracy for a fourth dataset
(BASET).

Table 1. Results of RPNI* and RPNI on 12 datasets. Means
and standard deviations are computed from the cross-
validation results. The number of states of the target DFA
is indicated between brackets for the simulated datasets.

RPNI™ RPNI

DATASET ACCURACY NBSTATES ACCURACY NBSTATES
Basel (9) 100 £ 0 9+ 0 98.0 £ 1.15 27.3 £ 5.3
Base2 (9) 94.8 £+ 8.0 14.1 + 2.2 86.3 + 4.5 39.8 £ 2.6
Base3 (21) 94.1 £+ 4.0 29.2 £ 2.8 86.5 + 3.2 192.7 + 5.5
Base4 (38) 99.7 £ 0.4 59.5 + 4.5 92.2 £ 1.1 252.5 £ 10.7
BaseS (38) 89.5 £ 5.8 52.2 £ 4.9 85.2 + 2.5 284.6 £ 9.5
Base6 (10) 100 £ 0 10£0 99.8 £+ 0.2 174 £ 5.5
BASET (12) 100 £ 0 16.5 & 0.5 95.8 £ 1.1 131.4 + 10.7
Base8 (15) 100 £+ 0 15+ 0 98.9 + 2.5 77T £ 9.5
AGARICUS 88.9 £ 1.7 82.7 + 3.3 88.9 + 1.7 82.7 + 3.3
BADGES 72.1 £ 7.6 2.3+ 04 55.4 £ 10.5 8.7+ 0.9
PROMOTERS 51.9 £ 15.7 53+ 0.5 48.8 £+ 21.7 23.1 £ 0.9
FIRSTNAME 66.5 + 8.8 3.5+ 0.5 59.5 + 9.1 10.0 + 0.6
AVERAGE 88.1 25.6 82.9 95.6

Another concise way to display the results is proposed
in Figure 5. Each dataset is plotted according to 2
coordinates: x which corresponds to RPNI’s accuracy
and y which represents RPNI*’s accuracy. We can note
that all the dots are over the bisecting line y = =z
expressing that RPNI* is always better than RPNI.

Basel

Base7 Base3
100 BBS;‘ hd Base6
Base2 @ pacey
90 —+—) ® Base5
Agaricus @
80 —T—
* ® Badges
£ 0 4
First Name
60 —T—
Promoters
L]
50 |
40 | | | | |
[[[[[
40 50 60 70 80 90 100

Figure 5. Scatter plot on 12 datasets.

5.3. RPNI*’s Tolerance to Noise

We aim here at studying RPNI*’s tolerance to differ-
ent levels of noise. In these last experiments, v will
evolve from 0 to 20%. Results are displayed in Figure
6. Note that each point of the curves represents the
mean over the 12 datasets. Globally, the difference
between RPNI and RPNI*, of course in favor of the lat-
ter, increases with the level of noise. Not only it means
that RPN is always less efficient than RPNT*, but also it
expresses that RPNI’s degradation is larger. Concern-
ing the generalization accuracy, we logically note that

the performances of both algorithms decrease with the
level of noise, that confirms once again the theoretical
divergence properties. While RPNI* seems to be able
to effectively control the size of the DFA (from 18 to
30 states on average), RPNI seems to suffer from the
increase of noise. Actually, it infers on average a DFA
with 160 states when the level of noise is of 20%. That
strengthens the idea that RPNI is not immune to over-
fitting.

180 T

states_RPNI* ——

states_RPN| -------
acc_RPNI* o]

160 - . --—acTRPNI™ 1

140

120

100

80 |- S [

60

40

20 f

0 L L L
0 5 10 15 20

Figure 6. Accuracy and number of states w.r.t. different
levels of noise.

6. Conclusion and Future Research

In this paper, we proposed a statistical approach for
dealing with noisy data in grammatical inference. So
far, our strategy has just been applied on RPNI, whose
merging rule is relatively simple. However, other al-
gorithms propose more sophisticated rules, such as
EDSM (Lang et al., 1998). An extended adaptation
of our approach deserves then further investigations.
Moreover, we saw that RPNI* presents a good noise tol-
erance until a certain quantity of noise (about 10% for
the artificial datasets). We think that we can improve
this threshold by studying the nature of the misclas-
sified examples before achieving any merging. In fact,
the classification errors on the learning set can be the
result of two phenomena. The first one is directly due
to the presence of noise. The second one is a bad effect
of the less restricting merging rule of RPNI*, which can
(wrongly) accept some true counter-examples. So far,
we did not differentiate these two types of misclassi-
fied examples. However, while the first category (the
noisy data) should not be in theory opposed to the
merging, the second one (the counter-examples) must
not be merged with examples of the concept for fear of
problems to learn the target DFA. Finally, we assumed
in this paper that the noise only affects the label of a
sequence. While this assumption is not too strong for

treating a large panel of real world problems, we are
thinking of adapting our method to cases where some
letters of the sequences are also noisy.

References

Aha, D. (1992). Tolerating noisy, irrelevant and novel
attributes in instance-based learning algorithms.
Int. Journal Man-Machine Studies, 267-287.

Brodley, C., & Friedl, M. (1996). Identifying and elim-
inating mislabeled training instances. Thirteenth
National Conference on Artificial Intelligence (pp.
799-805).

de la Higuera, C. (1997). Characteristic sets for poly-
nomial grammatical inference. Journal of Machine
Learning, 27, 125-138.

John, G., Kohavi, R., & Pfleger, K. (1994). Irrelevant
features and the subset selection problem. FEleventh
Int. Conference on Machine Learning (pp. 121-129).

Lang, K., Pearlmutter, B., & Price, R. (1998). Re-
sults of the abbadingo one DFA learning competition
and a new evidence-driven state merging algorithm.
Fourth Int. Colloguium on Grammatical Inference

(pp. 1-12).

Langley, P. (1994). Selection of relevant features in
machine learning. AAAI Fall Symp. on Relevance.

Oncina, J., & Garcia, P. (1992). Inferring regular lan-
guages in polynomial update time, vol. 1 of Machine
Perception and Artificial Intelligence, 49-61. World
Scientific.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W.
(1998). Boosting the margin: a new explanation
for the effectiveness of voting methods. The Annals
of Statistics, 26, 1651-1686.

Sebban, M., Janodet, J.-C.; & Yahiaoui, A. (2002).
Removing noisy data in grammatical inference (in
french). Seventh National Conference on Clustering
(pp. 311-314).

Sebban, M., & Nock, R. (2000). Instance pruning as
an information preserving problem. Seventeenth Int.
Conference on Machine Learning (pp. 855-862).

Sebban, M., Nock, R., & Lallich, S. (2003). Stopping
criterion for boosting-based data reduction tech-
niques: from binary to multiclass problems. Int.
Journal of Machine Learning Research, 3, 863—885.

Wilson, D., & Martinez, T. (1997). Instance pruning
techniques. Fourteenth Int. Conference on Machine
Learning (pp. 404-411).

