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Abstract. To study the problem of learning from noisy data, the com-
mon approach is to use a statistical model of noise. The influence of the
noise is then considered according to pragmatic or statistical criteria, by
using a paradigm taking into account a distribution of the data. In this
article, we study the noise as a nonstatistical phenomenon, by defining
the concept of systematic noise. We establish various ways of learning
(in the limit) from noisy data. The first is based on a technique of re-
duction between problems and consists in learning from the data which
one knows noisy, then in denoising the learned function. The second con-
sists in denoising on the fly the training examples, thus to identify in the
limit good examples, and then to learn from noncorrupted data. We give
in both cases sufficient conditions so that learning is possible and we
show through various examples (coming in particular from the field of
the grammatical inference) that our techniques are complementary.
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1 Introduction

Grammatical inference [1, 2] is a field that provides a lot of algorithms to learn
from sequential or structured data: words, trees,. . . Among the advantages of
these techniques, we can underline the comprehensibility of the learned models,
solid theories which allow in particular to avoid working with nonexplicit bias,
the power of the functions which define the concepts (automata and grammars),
the fact that the training data can be analyzed in their globality and not by
taking into account only pieces of information, etc. But these qualities have a
counterpart: they do not resist (or hardly) to noise [3, 4].

Noise appears in the data for several reasons. It can be due to the fact that
the bias is inadapted: if we try to learn a regular language from data that comes
from a context-free language, we can expect problems. It can also be due to
poor experimental conditions or to the fact that cleaning the data is either too
difficult or too expensive. This can occur in voice recognition, or when we wish
to learn from manually-built Html files .

The management of noise is a crucial and recurring problem in machine
learning in general. Concerning grammatical inference, we can quote the follow-
ing lines of research. Very theoretical work was undertaken, either within the
framework of inductive inference [5, 6] and following the track of old results [7],
or in that of approximate learning [8, 9]. Other works tried to use well-founded
ideas in existing algorithms to make them more robust to noise [10, 11]. In addi-
tion, nondeterministic automata are probably more resistant to the noise than
the deterministic ones [12]. More pragmatic works were undertaken to use tech-
niques of grammatical inference on naturally noisy time series [13]. We can also
note studies on approximated learning of languages, which are based on the rough
sets theory and brings algorithms intrinsically more resistant to noisy data [14].
The paradigm of learning by analogy was also the subject of a study under the
angle of its resistance to noisy data [15]. Lastly, a traditional approach is that
of learning stochastic automata. This approach aims at avoiding the problem by
imposing a different bias: the data come from a distribution, itself represented
by a stochastic automaton [16]. The question is then not that of learning a lan-
guage but a distribution. Results in this direction are both theoretical [17] and
algorithmic [18].

Let us note that in most of the theoretical approachess, the treatment of
noise is statistical. In this work, we explore the case of a systematic noise based
on the edit distance; we study the properties of this kind of noise in the context
of the identification in the limit [19, 20].

In this setting we propose various ways of learning (in the limit) from noisy
data. The first one is based on a technique of reduction between problems and
consists in learning from the data, knowing that it is noisy, then in denoising the
learned function. The second one consists in denoising on the fly the learning
examples, thus in identifying in the limit good examples, and in learning from
noncorrupted examples. In this second approach, we show that it is possible (and
sometimes recommended) to add additional noise to boost the training.
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We give for these two outlines sufficient conditions for the learning and we
show through various examples (and in particular examples coming from the
field of Grammatical Inference) that the techniques are complementary. The
definitions we tailor are general, and we use them within the framework of the
systematically noisy texts, but we believe they might be used in a broader way.

2 Preliminaries

An alphabet Σ is a non-empty finite set of symbols called letters. A word w is
a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of w. In
the following, letters will be indicated by a, b, c, . . ., words by u, v, . . . , z and the
empty word by λ. Let Σ∗ be the set of al finite words over alphabet Σ. We call
language any subset L ⊆ Σ∗.

The identification in the limit paradigm has been introduced by Gold [19].
We give it here in the formalism of [21] which allows to study reductions be-
tween identification problems (section 4). Let L be a class of languages and
R(L) a class of representations for L (e.g. the class of regular languages and
that of deterministic automata). Let LL : R(L) → L be the function that for
every representation returns the corresponding language. This function is sur-
jective: every language can be represented. But it does not have to be injective.
Indeed, two different functions can represent the same language. We suppose
that the following word problem is decidable: “given w ∈ Σ∗ and G ∈ R(L),
w ∈ LL(G)?”.

Definition 1 (Presentation). A presentation of L ∈ L is a function f : N →
X where X is a set. Let Pres(L) be the set of all presentations. Since a presen-
tation denotes a language of L, there exists a function yield : Pres(L) → L. I.e.,
if L = yield(f) then f is a presentation of L, or f ∈ Pres(L). Let fn denote
the set {f(j) : j < n}.

With this definition, the notion of presentations is very large: they are sequences
of information of any type that inform us on the language. Indeed, X can be Σ∗

in the case of positive examples only. If in addition, yield(f) = f(N), then such
presentations are called texts. In the case of an informant, which is a presentation
with both negative and positive examples, X = Σ∗ × {0, 1}.

If two languages share one presentationt,then they cannot be distinguished,
so L will not be learnable from Pres(L). Therefore, we will suppose that if two
presentations f and g are such that f(N) = g(N), then yield(f) = yield(g).

A learning algorithm alg is a program taking as input the first n elements of
a presentation and returning a representation:

alg :
⋃

f∈Pres(L),i∈N

{fi} → R(L)

The next definition is adapted from [20]:
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Definition 2. We say that L is learnable in the limit from Pres(L) in terms
of R(L) if there exists a learning algorithm alg such that for any L ∈ L and for
any presentation f ∈ Pres(L), there exists a rank n such that for all m ≥ n,

LL(alg(fm)) = L.

Usual classes of languages (defined by automata, grammars, . . .) are not ap-
propriate in the case of noise. The essential problem is that in a quasi systematic
way, the modification of a symbol in a word swaps it from the language to its
complementary. To use an image coming from a field in which the noise was
better analysed, it is like if, by drawing on a screen the words of a language,
no shape was perceptible: all the languages would look like uniform grey. We
thus introduce distance and simple topological objects, the balls, which do not
present this problem.

The edit distance between two words was defined by Levenshtein in 1965 [22].
It consists in counting the minimal number of symbol operations needed to
rewrite the former into the latter, where the operations are the insertion, the
substitution and the deletion. More formally, let w and w′ be two words in Σ∗,
we rewrite w into w′ in one step if one of the following condition is true:

– w = uav,w′ = uv and u, v ∈ Σ*, a ∈ Σ (deletion),
– w = uv,w′ = uav and u, v ∈ Σ*, a ∈ Σ (insertion),
– w = uav,w′ = ubv and u, v ∈ Σ*, a, b ∈ Σ (substitution).

We consider the reflexive and transitive closure of this relation and we note
w

k
−→ w′ iff w can be rewritten into w′ by means of k operations. Then the

Levenshtein distance between w and w′, noted d edit(w,w′), is the smallest k

such that w
k
−→ w′. For instance, d edit(abaa, aab) = 2 since abaa → aaa → aab.

Notice that the edit distance between two words is computed by dynamic
programming [23]. Moreover several variants have been studied and the distance
has been adapted to the case of circular words and trees. The weight of the edit
operations can also differ from 1. We have chosen in this work to study only the
standard case.

Definition 3 (Balls). The ball of centre u ∈ Σ∗ and radius r ∈ N is defined
by Br(u) = {w ∈ Σ∗ : d(w, u) ≤ r}. A representation of the ball Br(u) will then
be the couple (u, r). Let BΣ denote the set of all the balls: BΣ = {Bk(u) : K ∈
N, U ∈ Σ∗}.

Note that if the alphabet Σ contains only one letter, the same ball can be repre-
sented in several ways (B2(a) = B3(λ)), but this characteristic is not a problem:
many classes of representations have this property (automata, grammars).

3 Identification in the limit from noisy data

In this paper, we propose a model of noise that we call systematic: noise will
be added to a data in all the possible ways up to a certain distance. This idea
can be illustrated by considering spots of painting on a paper sheet: putting an
object on the sheet makes the points become blurs.
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Definition 4 (Noise of a language). Let L be a language on Σ∗. The k-noise
of L is Nk(L) = {w : ∃x ∈ L, d(x,w) ≤ k}.

Let us first notice that once noise is added, if two languages of the class are
not distinguishable one from the other, then the class itself is not resistant to
systematic noise. In particular, this is the case of the class of rational languages,
and in a broader way for any class defined by rewriting systems. The possibility
to represent in these classes parity functions is susceptible to convince us of the
low resistance to the noise of these languages [4]. This justifies our interest in
classes of languages defined differently than through grammars.

It is reasonable to study systematic noise in the paradigm of the identification
in the limit, due to the absence of distribution on the data. To this purpose, we
introduce the following new notion of presentation:

Definition 5 (Noisy presentation). A noisy presentation is a presentation
f : N → X for which there exists an (unknown) function isnoise : X → {0, 1}
that is able to distinguish noisy elements and pure ones.

This definition allows to model a variety of situations, for instance:

Definition 6 (k-noisy presentation). Let L be a language. A k-noisy presen-
tation of L is a presentation of Nk(L). The function isnoise is then equal to 0
on the elements of L and to 1 on those of Nk(L) \ L.

We now tackle the problem of learning in presence of noisy data. Two solu-
tions seem relevant as shown by the following diagram:

Pres(L) −−−−→ L’




y





y

Pres(L) −−−−→ L

In this diagram the problem is to learn a language L from a noisy presentation of
Pres(L). First, we can try to learn instead a language from another class which
would incorporate the noise (the class L’) and then try to deduce the original
language. On the other hand, we can try to denoise the data in order to obtain
a nonnoisy presentation in Pres(L) and then learn from this one. In this second
strategy, it is thus the function isnoise that we want to identify.

4 Reduction

A technique implemented in many fields of computer science and mathematics is
that of reductions. They make are used to obtain negative results (such problem
is at least as difficult as such other, known as being too hard) but also to use
algorithms that are valid in a case for another case. Here, we consider the latter
technique: following the arguments of [21], we show that the balls are identifiable
from noisy data. Beyond this result, we think that the reductions are an effective
way to learn from noisy data.
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We recall that a situation of identification is defined by the class of languages,
that of the representations and the type of allowed presentations. Let L and L’
be the two classes of languages represented respectively by R(L) and R(L’). We
denote by LL (resp. LL’) the surjective mapping R(L) → L (resp. LL’ : R(L’) →
L’).

Given a surjective mapping φ : L → L’, we denote by ψ a surjective mapping
R(L) → R(L’) for which the diagram commutes (φ ◦ LL = LL’ ◦ ψ):

R(L)
ψ

−−−−→ R(L’)

LL





y





y

LL’

L
φ

−−−−→ L’

Given a surjective mapping φ : L → L’, we denote ξ a surjective mapping
Pres(L) → Pres(L’) for which the following diagram commutes (φ ◦ yieldL =
yieldL’ ◦ ξ):

L
φ

−−−−→ L’

yieldL

x





x





yieldL’

Pres(L)
ξ

−−−−→ Pres(L’)

As a presentation may not be a computable function, describing the compu-
tation aspects of function ξ is as follows:

Definition 7. Let L be a class of languages represented in R(L) with presen-
tations in Pres(L) : N → X and let L’ be a class of languages represented in
R(L’) with presentations in Pres(L’) : N → Y . A reduction between presenta-
tions ξ : Pres(L) → Pres(L’) such that ξ(f) = g is computable if and only if
there exists a computable function ξ : X → 2Y such that

⋃

i∈N
ξ(f(i)) = g(N).

ξ is the description of the function ξ in all its points. We suppose here that
∀i ∈ N, ξ(f(i)) is a finite set.

By combining the two previous diagrams we obtain:

R(L)
ψ

−−−−→ R(L’)

LL





y





y

LL’

L
φ

−−−−→ L’

yieldL

x





x





yieldL’

Pres(L)
ξ,ξ

−−−−→ Pres(L’)

Theorem 1. If (i) L’ is learnable in terms of R(L’) from Pres(L’), (ii) there
exists a computable function χ : R(L’) → R(L) and a computable function
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ψ : R(L) → R(L’) such that ψ ◦ χ = Id and (iii) ξ is a computable reduction,
then L is learnable in terms of R(L) from Pres(L).

R(L)
χ

←−−−− R(L’)

LL





y





y

LL’

L
φ

−−−−→ L’

yieldL

x





x





yieldL’

Pres(L)
ξ,ξ

−−−−→ Pres(L’)

Proof. Let alg2 be a learning algorithm that identifies L’. Consider algorithm
alg1 below, that takes a presentation f by its n first items (fn) and then executes:

gm ←− ξ(fn)

GL’ ←− alg2(gm)

GL ←− χ(GL’)

return GL

GL and GL’ are grammars of R(L) and R(L’). As ξ is computable, gm can
effectively be built.

As a consequence of Theo. 1, we can prove known results like the identification
of even linear grammars [24], by reduction from deterministic finite automata.
In the context of noisy data, we get:

Theorem 2. BΣ is learnable in the limit from k-noisy text.

We first establish that the k-noise of a ball is a ball:

Lemma 1. Nk(Bk′(u)) = Bk+k′(u)

Proof. (⊆) Let x ∈ Nk(Bk′(u)). Then ∃y ∈ Bk′(u) : d(y, x) ≤ k, so d(u, y) ≤
k′ ∧ d(y, x) ≤ k, therefore d(u, x) ≤ k′ + k.
(⊇) Let x ∈ Bk+k′(u) so d(u, x) ≤ k + k′. Let d(u, x) > k′. The fact that
k′ < d(u, x) ≤ k + k′ means that u can be changed in x by the mean of k + k′

operations of edition. Let y be the word obtained after the first k′ operations.
Then d(u, y) = k′ and d(y, x) ≤ k ; thus y ∈ Bk′(u) and x ∈ Nk(Bk′(u)).

We also get the following result:

Lemma 2. BΣ is identifiable in the limit from text.

Proof. By saturation, when all the points have appeared, the ball can be com-
puted. If only some points are given, the problem is NP-hard [25], but, with all
the points, it is easy: let Bmax be the set of the longuest words. The centre u is
the only word such that aku and bku are in Bmax, where k is the greatest integer
such that ak and bk are left factors of Bmax. The ball is then Bk(u).
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From Lemmas 1 and 2 we deduce:

Proof (of Theo. 2). Taking χ=if the radius of the ball is at least k, then deduct
k from the radius, if not identity, we obtain the following diagram:

BΣ
χ

←−−−− BΣ

LL





y





y

LL’

BΣ
Id

−−−−→ BΣ

yieldL

x





x





yieldL’

k-noisy text
Id,Id

−−−−→ Text

So we deduce the result from Theo. 1.

5 Denoising in the limit

Another way to learn from noisy data is to denoise the data on the fly, then
to learn the language from these pure data. In order to denoise the data, we
will see that it can even be useful to add more noise as a preliminary. The data
processing sequence is then the following one:

Pres(L)
add noise
−−−−−−→ Pres(L)

remove noise
−−−−−−−−→ Pres(L)

where Pres(L) and Pres(L) are noisy presentations and Pres(L) is a presen-
tation of pure data. Once the presentation is denoised, we can then learn in the
limit a language L′ and use it to deduce the language L which interests us. Note
that if we strictly denoise a presentation, i.e. if we remove all the noise and only
the noise, we will then obtain directly L′ = L.

Definition 8 (Denoisable in the limit). Let Pres(L) be a class of k-noisy
presentations. If there exists an algorithm θ : X ×

⋃

f∈PresL,i∈N
{fi} → {0, 1}

such that : ∀x ∈ X,∀f ∈ Pres(L),∃nx such that ∀m ≥ nx θ(x, fm) = θ(x, fnx
) =

isnoise(x) = if x ∈ Nk(L) \ L then 1 else 0, then we say that the presentations
of Pres(L) are denoisable in the limit.

Note that the identification of the noise is not monotonic: we can have identified
some data as pure and cannot guess for others. Moreover, denoising in the limit
is not identification in the limit: the function isnoise is learned point-to-point
but never in its globality.

In the following, we consider only learning from k-noisy text. In this case,
θk(x, fm) = 1 indicates the fact that at the rank m the algorithm estimates that
x is a noisy piece of data and therefore is not in L.

To denoise the data, we must thus know if the data belong to the target
language or not, i.e. we must be able to decide if a data is noise. For that, we
will need to know the relations of proximity of the data compared one to the
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other, and in particular compared to those which belong indeed to the language.
This concept of “neighbourhood” naturally leads to topology.

However, for our problem, traditional topology with its numerous axioms is
too constraining. We thus will use pretopologic spaces which aim at defining
“topologies with less axioms”. For sake of clarity, we point out the definitions of
the pretopologies and their properties in appendix.

Let Ik and Ek define the function allowing the deletion and the addition of
noise: Ik(L) = {w ∈ Σ∗ : Nk({w}) ⊆ L} and Ek(L) = {w ∈ Σ∗ : Nk({w})∩L 6=
∅}

Definition 9. A language L is said to be closed for the pretopologic space Ej =
(Σ∗, Ek ◦ Ik, Ik ◦Ek) if and only if Ij(Ej(L)) = L and a language class is closed
if all its elements are closed.

We can show that:

L closed ⇒ (∀x ∈ Σ∗Nk(x) ⊆ Ek(L) ⇒ x ∈ L) (1)

The function Ik enables us to implement a way to denoise data:

Theorem 3. Let k be the level of noise and Ek be a pretopologic space. If L is
closed (for Ek) then Pres(L) is k-denoisable in the limit.

Proof. We consider the following algorithm θk: let f be a k-noisy presentation
of a language L and x ∈ Nk(L); θk(x, fp) = 0 if x ∈ Ik(fp) and 1 if Bk(x) 6⊆ fp.

Let f be a k-noisy presentation of a language L and x ∈ Nk(L). If isnoise(x) =
0 then x ∈ L thus Bk(x) ⊆ Nk(L) and as f(N) = Nk(L), there is a rank nx such
that Bk(x) ⊆ fnx

and thus x ∈ Ik(Bk(x)) ⊆ Ik(fnx
). Consequently θk(X, fnx

) =
0 = isnoise(x). Conversely, if isnoise(x) = 1, then x 6∈ L and as L is closed
for Ek then Bk(x) 6⊆ Nk(L) (cf equation 1) and thus ∀p ∈ N, Bk(x) 6⊆ fp.
Consequently, ∀p ∈ N, θ(x, fp) = 1 = isnoise(x).

Example 1. Let BΣ be the set defined by BΣ =
{

Bk(u) : k ∈ N, u ∈ Σ∗

}

where

Bk(u) = Σ∗ \ Bk(u). Presentations of BΣ are denoisable in the limit. Indeed,
we can show that balls are open and that the complementary of an open set is a
closed set, thus the class BΣ is closed.

To add noise, however, can seem strange; nevertheless, it makes it possible to
obtain the following result:

Theorem 4. Let k be the level of noise and Ej be a pretopologic space. If L is
closed and if j ≥ k then L is k-denoisable in the limit.

Proof. Consider the algorithm θk(x, fp) = 0 if x ∈ Ik(Ej−k(fp)) and 1 if not.
Then take again the proof of Theo. 3. More intuitively, let f be a k-noisy pre-
sentation of L. For all p we define gp = Ej−k(fp). As f is a presentation of
Nk(L), g is a presentation of Nj(L). Moreover L is closed for Ej thus according
to Theo. 3, g is j-denoisable in the limit and thus f is k-denoisable in the limit
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k=1 k=2

r |Br(λ)| | f | j=0 j=1 j=2 j=3 | f | j=0 j=1 j=2 j=3

1 3 6 0.183 1.774 1.876 1.876 12 0.004 1.338 1.761 1.765
2 7 14 0.278 4.711 5.462 5.473 28 0.026 3.818 5.126 5.330
3 15 30 0.420 11.017 12.929 13.157 60 0.030 9.112 12.453 13.000
4 31 62 0.422 21.755 29.213 29.592 124 0.041 22.831 27.690 29.244

Table 1. Addition of noise can be useful

However, the addition of noise will not allow the identification of new classes
which were not learnable without noise. On the other hand, it can allow to learn
more quickly.

Table 1 shows for different balls centred on λ, the size of the ball (the target)
and for two level of noise (k), the size of the randomly generated k-noisy pre-
sentation of Br(λ) (| f |), and the number of remaining elements after adding a
level of noise of j and (k + j)-denoising the noisy presentation. We can easily
see that once noise is added, we can validate data faster.

Lastly, the majority of the languages are naturally not totally denoisable in the
limit. Nevertheless, it is possible to deduce the class L from a class of language
L’ by combining addition and deletion of noise.

Example 2. Let BΣ be the class of balls. We recall that this class is not closed.
Let L = Br(u). Then Ij+k(Ej(Nk(L))) = Ij+k(Ej+k(L)) which contains an
approximation of L, i.e., L plus possibly some words (for example bbbaaa ∈
I1(E1(B4(aabb))) but bbbaaa 6∈ B4(aabb)). However in Ij+k(Ej+k(L)), there ex-
ists a couple (anv, bnv) which are respectively the smallest and the greatest word
of the longest words of L. These words enable us to deduce r = n and u = v, thus
to identify L = Br(u). Consequently, there is an algorithm allowing to identify
indirectly BΣ after an approximate denoising of the data.

6 Conclusion

We introduced two techniques allowing to learn languages in presence of sys-
tematic noise. One of them is based on a theorem of reduction. The other uses
the idea of the on the fly denoising of the data (denoising whose correction is
obtained only in the limit). We also established the fact that this process could ad-
vantageously be accompanied by an over-noising of the data in order to accelerate
the identification.

Several problems remain open: we did not tackle the questions of complexity.
It is obvious, for example, that the over-noising should not be explicit since too
expensive. Techniques simulating it must be introduced. The systematic noise is
also a strong assumption: a more realistic model could be based on the fact that
only a part (the majority?) of the noisy examples appears in the presentation.
In the same way, we chose here to use a strict denoising: as long as all the ele-
ments of the noise of x did not appear, x is regarded as noise. Other strategies are
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possible and deserve to be analyzed. Finally, balls are a first candidate of topo-
logically robust languages. But other classes of languages, defined by topological
properties, can be richer and maintain the necessary robustness.
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Appendix

We recall here some definitions of pretopology [26], then we define a pretopologic
space adapted to the study of Σ∗ and we study its properties within the framework
of denoising in the limit.

Definition 10 (c-duality). We note c the complementary: let U be a set,
∀A ∈ P(U), c(A) = U \ A = Ā. Two applications e and i from P(U) to P(U)
are c-duals if and only if i = c ◦ e ◦ c or e = c ◦ i ◦ c.

Definition 11 (Pretopologic space). (U, i, e) defines a pretopologic space, if
and only if:(1.) i are e c-duals, (2.) i(U) = U , (3.) ∀L ∈ P(U), i(L) ⊂ L.

The concept of topology is thus a particular case of pretopology. It is a pre-
topologic space such as ∀A,B ∈ P(U), e(A ∪ B) = e(A) ∪ e(B) and e(e(A)) =
e(A). With the tools of the pretopology, we can model processes of extension
L = e0(L) ⊂ e(L) ⊂ e[e(L)] ⊂ . . . ⊂ en(L) ⊂ . . . ⊂ U and erosion L = i0(L) ⊃
i(L) ⊃ i[i(L)] ⊃ . . . ⊃ in(L) ⊃ . . . ⊃ ∅, what is not the case in topology because
of the idempotence of the applications e and i.
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Definition 12 (Closed and open sets). Let (U, i, e) be a pretopologic space.
K is a closed set of U if and only if e(K) = K and L is an open set of U if and
only if i(L) = L. A class of languages L is closed if and only if ∀L ∈ L, L is a
closed set and is open if and only if ∀L ∈ L, L is an open set.

Below, we define functions i and e thanks to which we will build the pretopologic
spaces adapted to our study. We recall that the distance used (and in particular
for the function of noise N) is the edit distance.

Definition 13 (Interior et exterior). We call the k-interior of L the function
defined by Ik(L) = {w ∈ Σ∗ : Nk({w}) ⊆ L} and the k-exterior of L the function
defined by Ek(L) = {w ∈ Σ∗ : Nk({w}) ∩ L 6= ∅}.

These concepts are similar to those of lower and upper approximation of a set
in the framework of Rough Sets [27, 28]

A first naive idea would consist in choosing i = Ik and e = Ek as functions of
interior and exterior. However, defined as this, the extension and erosion are too
important to find interesting closed and open sets. We will then take i = Ek ◦ Ik

and e = Ik ◦ Ek. We now showthat these two functions fulfil the properties.

Lemma 3. Ik◦Ek and Ek◦Ik are c-duals in Σ∗, i.e., ∀L ∈ P(Σ∗), Ik(Ek(L)) =

Ek(Ik(L)).

Proof. Ik and Ek are c-duals: Ik(L) = {w ∈ Σ∗ : Nk({w}) ⊆ L} = {w ∈ Σ∗ :

Nk({w}) ∩ L = ∅} = Ek(L). So Ek(Ik(L)) = Ik(Ik(L)) = Ik(Ek(L)).

Theorem 5. Ek = (Σ∗, Ek ◦ Ik, Ik ◦ Ek) defines a pretopologic space, and then
verifies: (1.) Ik ◦ Ek and Ek ◦ Ik are c-duals, (2.) Ek(Ik(U)) = U and (3.)
∀L ∈ P(U), Ik(Ek(L)) ⊂ L

Proof. (1.) By Lemma 3. (2.) straightforward. (3.) If x ∈ Ek(Ik(L)) then Nk({x})∩
Ik(L) 6= ∅, so ∃y ∈ Ik(L) : d(x, y) ≤ k. Since (d(x, y) ≤ k ⇒ x ∈ Nk({y})) and
(y ∈ Ik(L) ⇒ Nk({y}) ⊆ L),we deduce x ∈ L and Ek(Ik(L)) ⊆ L.

The function Ek, respectively Ik, allows to add noise to L, respectively to remove
some noise. We can then use them within our framework of denoising in the
limit. Note that Ek 6= I−1

k since E1(B1(aa)) = B2(aa) but I1(B2(aa)) = B1(aa)∪
{λ, b}


