
BLUE∗: a Blue-Fringe Procedure for Learning DFA with Noisy Data

Marc Sebban Marc.Sebban@univ-st-etienne.fr
Jean-Christophe Janodet janodet@univ-st-etienne.fr
Frédéric Tantini Frederic.Tantini@c2m.univ-st-etienne.fr

EURISE, Faculty of Sciences, 23 rue Paul Michelon, University of Jean Monnet, 42023 Saint-Etienne, FRANCE

Grammatical Inference is a subtopic of machine learn-
ing whose aim consists in learning models of languages
such as grammars, deterministic finite automata (dfa)
or stochastic automata. Among the algorithms aim-
ing at learning dfa, those based on state merging
are widely studied, and particularly rpni (Oncina &
Garćıa, 1992) and edsm (Lang et al., 1998). Both of
them learn from a sample E = E+ ∪ E−, and try to
infer, by state merging, a small dfa that accepts all
the strings of E+ (called the positive examples), and
rejects all those of E− (called the negative ones). rpni
and edsm are exact learning algorithms because they
fit the data: it is proven that if E contains some special
(characteristic) strings, then these algorithms are able
to infer, in polynomial time, the dfa that produced the
data (Oncina & Garćıa, 1992), called the target dfa.
However, the presence of noisy data challenges these
theoretical properties. Since they are not immune to
overfitting, noisy data penalize the dfa they produce
in terms of number of states and error rate.

In (Sebban & Janodet, 2003), we described a first ap-
proach that aimed at limiting the risk of overfitting.
We relaxed the merging rule of rpni and introduced
a new algorithm, called rpni∗. The first task rpni∗

achieves is the construction of the pta (prefix tree
acceptor) of the strings of E+, that is the greatest
trimmed dfa accepting only the strings of E+. Its
states are numbered following the hierarchical order
over the prefixes of E+ (Oncina & Garćıa, 1992) (see
the upper dfa in Fig.1). A state is positive (or final) if
it contains strictly more positive strings (of E+) than
negative ones (of E−), and negative otherwise. Then
rpni∗ runs along these states following the ordering.
When state i is considered, rpni∗ tries to merge it with
states 0, . . . , i−1, in order. Merging two states means
to collapse them into one new state, whose number is
the smallest of the two merged ones. As for the outgo-
ing transitions, they are themselves merged together
if they are labeled with the same letter, and in such a
case, the two pointed states are recursively merged.

Data : a sample E+, E−
Result : a dfa A
A←− pta(E+)
for i = 1 to N − 1 do

j ←− 0; continue←− true
while (j < i) and continue do

B ←− compute merging(A, i, j)
C ←− compute final states(B,E+, E−)
if statistically acceptable(C,E+, E−) then

A←− C; continue←− false

j ←− j + 1

return(A)

Algorithm 1: Pseudo-code of rpni∗.

b b
1 3 50

a

a b
2 4 6

b

4 6
b

a

0 2
b a

5
b

Figure 1. We assume here that E+ = {λ, b, ab, abb, bab}
and E− = {aa, ba} (λ denotes the string with no letter).
The upper dfa is the pta of E+. The lower dfa results of
the merging of states 1 and 0.

A merging can be acceptable or not. More precisely,
we say that a negative (resp. positive) string is mis-
classified if it is contained by a positive (resp. neg-
ative) state. A merging is statistically acceptable if
the proportion p2 of misclassified strings in the whole
dfa after the merging is not significantly higher than
the proportion p1 of misclassified strings computed be-
fore the merging. Statistically speaking, we test the
null hypothesis H0 : p1 = p2, vs the alternative one
Ha : p2 > p1. This test is one-tailed since only a suf-
ficiently large value of the statistic p2 − p1 must lead

to rejection of the tested hypothesis. Actually, a small
value of the statistic (and of course a negative one)
does not challenge the quality of the merging. The
quantities p1 and p2 are unknown, because they corre-
spond to the theoretical errors of the current dfa re-
spectively before and after the merging. They can only
be assessed by the empirical errors p̂1 = N1/N and
p̂2 = N2/N computed from the learning set, where N1

(resp. N2) is the total number of misclassified learn-
ing examples before (resp. after) the merging, and N
is the learning set size (i.e. the number of words in
E+ ∪ E−). p̂1 and p̂2 are independent random vari-
ables and are unbiased estimators of p1 and p2.

In our test, we are interested in the difference p̂2 − p̂1

whose mean and variance are E(p̂2− p̂1) = p2−p1 = 0
and V ar(p̂2 − p̂1) = (p2(1 − p2) + p1(1 − p1))/N =
2pq/N , with p = p1 = p2 and q = 1 − p under the
null hypothesis H0. p is estimated by the mean of the
two proportions of misclassified examples before and
after the merging: p̂ = (p̂1 + p̂2)/2. If Np > 5 and
Nq > 5, the approximation conditions to the normal
distribution are satisfied, so the variable T = p̂2 − p̂1

follows the normal law N (p2− p1,
√

2p̂q̂/N). We need
to determine the threshold Zα, called critical value at
the risk α, which defines the bound of the rejection of
H0 and corresponds to the (1 − α)-percentile of the
distribution N (p2 − p1,

√
2p̂q̂/N):

P (T > Zα) = P (T cr > Zα/
√

2p̂q̂/N),

where T cr is the centered and reduced variable. So

P (T > Zα) = α iff Zα = Uα
√

2p̂q̂/N,

where Uα is the (1 − α)-percentile of the normal law
N (0, 1). If T > Zα, we reject the hypothesis H0, thus
the merging, with a risk of α%. On the contrary, if
T ≤ Zα, then the merging is statistically validated,
thus accepted.

From an experimental standpoint, we showed in (Seb-
ban & Janodet, 2003) that rpni∗ could yield a signifi-
cant improvement over rpni’s performances. However,
these performances are challenged by the competition
“Learning DFA with Noisy Data”. Indeed, rpni∗ is
able to learn small dfa from dense sample but does
not behave so well on large dfa that must be learnt
from sparse samples. It was known since the competi-
tion “Abbadingo One” that rpni had the same prob-
lem. The winner of this last competition had the idea
of improving rpni by 1) delaying a merging as much
as possible in order to have several choices of possible
mergings and 2) performing the “best” merging be-
tween them (see (Lang et al., 1998) for details). We
have decided to follow the same line here, by adapting

a blue-fringe-like procedure to the presence of noisy
data. This approach is enforced by the fact that we
use statistical tests to accept or reject a merging: Such
tests provide rigourous indicators of the quality of an
acceptance or a rejection of a merging throughout the
risks of first and second order. We take advantage of
these risks to select the best mergings.

Data : a sample E+, E−
Result : a red dfa A
A←− colored pta(E+)
while there exists a blue state do

P ←− ∅; M ←− ∅
foreach blue state b do

no merge found ←− true
foreach red state r do

if are mergeable(A,b,r) then
no merge found ←− false
M ←−M ∪ {(b, r)}

if no merge found then P ←− P ∪ {b}
if P 6= ∅ then

A←− do best promotion(A,P)

else A←− do best merging(A,M)

return(A)

Algorithm 2: Pseudo-code of blue∗

blue∗ works with red-blue-white dfa. As rpni∗, the
first task blue∗ achieves is the construction of the pta
of E+. However, every state of this pta will have a
“colored” life: The initial state of the pta is red, its
immediate successors by transitions are blue and all
the other states are white. During the execution of
the algorithm, the red states form the stable part of
the current dfa w.r.t. the mergings: if state i is red,
then its mergings with states 0, 1, . . . , i−1 were tested
and rejected, so state i will necessarily be a state of
the final dfa. As for the non-red states, they may be
either blue or white.

More precisely, a non-red state will become blue iff it is
the successor of a red state by a transition, and white
otherwise. At each round of the main loop, blue∗ fo-
cuses on these blue states and tries to merge them with
all the red states. As we wrote it before, the general
strategy of blue∗ is to delay the acceptable mergings
as much as possible in order to maximize their number
and to perform the best one among them. Therefore,
at the end of the second loop of blue∗, a blue state
b has two possible status: either b is mergeable with
at least one red state, and then this merging may be
chosen to perform the best merging; this is the reason
why blue∗ maintains a list M of all possible mergings.
Or b is not mergeable with any red state, and then we
say that it is promotable and keep it in list P .

Promoting a blue state means to recolor it in red and
to recolor its successors by a transition in blue. If
there exist promotable blue states at the end of the
second loop (in list P), then blue∗ chooses one of
them and promotes it. As several blue states may be
promotable, it seams reasonnable to promote the best
one, that is to say, the one which has the greatest
chance to be really red in the target dfa1. As we
mentioned it above, a blue state is promotable into a
red state iff all its mergings with the red states failed.
However, this rejection may be due to the presence of
noisy data, i.e., we would have accepted this merging
in the absence of noise. We can easily measure the
risk αb,r of having wrongly rejected the merging of
blue state b and red state r, since it is the risk of first
order of our proportion comparison test:

αb,r = P (H0 rejected | p2 − p1 = 0)

⇔ Zαb,r = (p̂2 − p̂1)/
√

2p̂q̂/N

Let us define αb = maxr αb,r. αb is the risk of having
rejected the merging of b ∈ P with every red state
r. So if we choose to promote the blue state b which
minimizes αb, we minimize the risk of promoting a
blue state that should be merged in the target dfa.
So the promoted state must be: b∗ = argmin(b∈P)αb.

When all blue states are mergeable, our aim is to re-
alize the best merging. A first idea is to choose a pair
(b, r) ∈ M that minimizes the risk of having wrongly
accepted their merging, which corresponds to the risk
of second order of our merging test. More precisely,
given a pair (b, r) ∈ M , let βb,r = P (H0 accepted |
Ha true). This definition must be improved, since we
do not know the statistical law followed by hypothesis
Ha : p2 − p1 > 0. So we fix a parameter δ > 0 and we
overcome the difficulty by evaluating:

βb,r(δ) = P (H0 accepted | p2 − p1 = δ)
= P (Z ≤ Zα | p2 − p1 = δ)

= P ((p̂2 − p̂1)/
√

2p̂q̂/N ≤ Zα | p2 − p1 = δ)

= P ((p̂2−p̂1)−δ√
2p̂q̂/N

≤ Zα − δ√
2p̂q̂/N

)

= P (N (0, 1) ≤ Zα − δ/
√

2p̂q̂/N)

As the minimum value of the set {βb,r(δ) : (b, r) ∈
M} is independent of δ, we may choose the pair
(b, r) that minimizes the above quantity: (b∗, r∗) =
argmin(b,r)∈Mβb,r(δ). However, this criterion favours
uninteresting mergings, i.e., mergings that do not al-
low to earn states. In other words, such mergings are
safe but unuseful. So we decide to define nb,r as the

1We could also to promote all of them, but the creation
of a new red state may transform another promotable blue
state into a mergeable one . . .

number of the states that are earned after the merg-
ing of b and r, and we select the pair that minimizes
βb,r(δ) while maximizing eb,r:

(b∗, r∗) = argmin(b,r)∈M
βb,r(δ)

eb,r

References

Lang, K., Pearlmutter, B., & Price, R. (1998). Re-
sults of the abbadingo one dfa learning competi-
tion. Fourth International Colloquium on Grammat-
ical Inference (pp. 1–12).

Oncina, J., & Garćıa, P. (1992). Inferring regular lan-
guages in polynomial update time, vol. 1 of Machine
Perception and Artificial Intelligence, 49–61. World
Scientific.

Sebban, M., & Janodet, J. (2003). On state merging in
grammatical: a statistical approach for dealing with
noisy data. Twentieth International Conference on
Machine Learning (pp. 688–695).

