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Abstract. The aim of this work is to provide a general method to min-
imize the size (number of states) of a model M of an ATL∗ formula. Our
approach is founded on the notion of alternating bisimulation: given a
model M, it is transformed in a stepwise manner into a new model M’
minimal with respect to bisimulation. The method has been implemented
and will be integrated to the prover TATL, that constructively decides
satifiability of an ATL∗ formula by building a tableau from which, when
open, models of the input formula can be extracted.
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1 Introduction

The Alternating-time temporal logic ATL∗ has been introduced in [AHK02] and
proposed as a logical framework for the specification and the verification of prop-
erties of open systems, that is systems interacting with an environment whose
behaviour is unknown or only partially known. The logic ATL∗ can be seen as a
multi-agent extension of the branching time temporal logic CTL∗ where the path
quantifiers are generalized to “strategic quantifiers”, indexed with coalitions of
agents A, ranging existentially over collective strategies of A and then univer-
sally over all paths (computations) coherent with the selected collective strategy.
The language of ATL∗ allows the expression of statements of the type “Coalition
A has a collective strategy to guarantee the satisfaction of the objective Ψ no
matter what its opponents do”, and can therefore model the interaction of an
open system with an environment by setting the environment to be the system
opponent.

The semantics of ATL∗ is based on the notion of concurrent game mod-
els (CGMs), a generalisation of labelled transition systems to the multi-agent
framework where an edge connecting two states is labelled by a vector describing
the synchronous actions of all the agents, rather then by the action of a single
agent. The aim of this work is to provide a general method to minimize the size
(number of states) of a model M of an ATL∗ formula.

Independently from the specific logic of interest, to get minimal models is
useful for several tasks: hardware and software verification, fault analysis, and



common sense reasoning. Several different criteria of minimality have been stud-
ied in the literature. In the case of first order classical logic, some works minimize
the domain (see for instance [Hin88,Lor94], while others minimize the interpre-
tation either of a certain set of predicates (see for instance [McC87] or of all the
predicates (see for instance [BY00,Nie96,GHS01,HFK00]).

These minimality criteria can be applied to modal logics, too. Minimal model
generation where certain predicates are minimal has been mostly studied in the
context of non-monotonic operators and non-monotonic semantics (see for in-
stance [GGOP08,GH09,BLW09]). In the case of modal logics, however, it is quite
natural to to adopt minimality criteria founded on the notion of bisimulation.
The work [PS14] presents terminating procedures for the generation of models
that are minimal for a given notion of subset-simulation for the propositional
modal logic K and all combinations of it extensions with the axioms T, B, D, 4
and 5. Roughly, what is minimized there is not the number of worlds, but the
number of propositions holding at worlds.

In the specific case of temporal logics the emphasis is rather on the reduction
of the size of the state space. This is crucial if the considered temporal logic has
to be used to model systems whose properties need to be model-checked. In the
case of CTL and CTL∗, having as semantics labelled transition systems (LTS),
models are minimized with respect to bisimulation by using coarsest partition
algorithms refining step by step an initial partition of the set of states of a given
LTS [LIS12,KS90,PT87].

Our work is inspired by the above mentioned partition-refinement approach
for LTS but treats the more complex case of ATL∗ models, namely CGMs. We
rewrite a CGM M into a bisimilar smaller model by using the definition of
alternating bisimulation, that is specific to ATL∗ [DGL16,ÅGJ07].

The intended application is the synthesis of ATL∗ models from formal specifi-
cations by means of the software TATL, available on line via a dynamic web page
[Dav]. Up to our knowledge, TATL is the only existing running system that de-
cides the satisfiability of an ATL∗ formula (and by means of a trivial preliminary
rewriting also of CTL∗ formulae). TATL constructively decides the satisfiabil-
ity of a given ATL∗ formula φ by exhibiting a tableau for φ [CDG14,Dav15].
A tableau for φ is built by analysing the formula and producing states of the
candidate models, so as to obtain a finite graph. When the final tableau is
open, it is a non-empty labelled graph representing a graph of CGMs satisfying
φ at some initial state. The completeness proof (with respect to unsatifiability),
being constructive, provides a procedure to build a model of φ from an open
tableau [CDG14,Dav15]. Such a procedure, however, can generate a model that
has an unnecessarily large number of states, because eventualities are sequen-
tially treated to assure their realizability: eventualities that might be simultane-
ously realized are systematically realized one after the other. To minimize such
a model is important, for instance, for the purpose of model synthesis from a
formal specification written in ATL∗: CGMs that contain an unnecessary great
number of states are difficult to grasp and expensive to treat (for instance to
model check additional properties).



It is worthwhile observing that to rewrite a given model M of a formula φ
into a model M’ that is minimal with respect to alternating bisimulation does
not necessaily mean to get a model of φ having the minimum number of states.
To illustrate this point, let us consider a very simple example.

Example 1. Let φ be 〈〈1〉〉 © p, stating that agent 1 can assure that p holds at
a successor state. Let’s assume that this agent can perform only one action at
each state. Take M1 to have two states, 1 and 2, where 2 is the only successor
of 1, 1 is the only successor of 2, and p is false at 1 but true at 2. Clearly M1

satisfies φ at state 1. Now, takeM2 to be a model having 3 states, A, B and C,
where B is the only successor of A, C is the only successor of B, A is the only
successor of C and the only state not satisfying p is A. Obviously φ keeps true
at state A. The application of our minimisation procedure to M2 outputs M2

itself, not M1. The reason is that any state s′ of the output model must satisfy
exactly the same formulae as s, where s is a bisimilar state of the input model.
In M1, state 1 satisfies ¬p ∧ 〈〈1〉〉(©p ∧©©¬p) while in M2 state A satisfies
¬p ∧ 〈〈1〉〉(©p ∧©© p), thus 1 and A are not bisimilar.

It is worthwhile noticing, however, that such an unnatural model of φ as M2

would not be generated by the tableau procedure for ATL∗ having input φ =
〈〈1〉〉 © p. In general, tableau construction analyses the input formula and pro-
duces tableau states (states of a candidate model) only when they are needed.

The outline of this work is the following. In Section 2 we recall some back-
ground definitions. Section 3 is the core of the paper and provides our minimisa-
tion algorithm and its foundations. Section 4 briefly discuss the implementation
(ongoing work). In Section 5 we give some detailed proofs missing in the paper.
Finally, we conclude and we sketch some lines of future work.

2 Preliminaries

We recall here some standard definitions about ATL∗.

Definition 1 (Concurrent Game Model). Given a set of atomic proposi-
tions P , a CGM (Concurrent Game Model) is a 5-tuple

M = 〈A,S, {Acta}a∈A, out, L〉

such that:
• A = {1, ..., k} is a finite non-empty set of agents;
• S is a non-empty set of states;
• For each a ∈ A, Acta is a non-empty set of actions. If A ⊆ A, then A is a
coalition of agents, ActA = Πa∈AActa and σA denotes a tuple from ActA (an
action of the coalition A). If a ∈ A, σA(a) means the action of the agent a in
the tuple of actions σA;
• If a ∈ A and s ∈ S, acta(s) maps state s to a non-empty subset of Acta: the
set of the available actions for agent a at state s. Similarly, actA(s) maps s to
a non-empty subset of ActA (the set of actions available to coalition A at state



s). That is: actA(s) = Πa∈Aacta(s);
• out is a transition function, associating to each s ∈ S and each σA ∈ actA(s)
a state out(s, σA) ∈ S: the state reached when each a ∈ A does the action σa at
s;
• L is a labelling function L : S → P(P ), associating to each state s the set of
propositions holding at s.

It is worthwhile observing that the above definition does not require the set S
to be finite. In our intended application, however, where models are constructed
out of open finite tableaux, it will always be finite.

The following figure shows a well known simple example of CGM, modelling
the situation of a carriage pushed by two robots (the agents), one at its left and
one at its right, in two opposite directions.

Fig. 1. A simple example of CGM
Auton Agent Multi-Agent Syst

Fig. 1 Two robots and a
carriage: concurrent game
structure M0

Definition 2 (Concurrent game structure) A concurrent game structure2 (CGS) is a tuple
M = ⟨Agt, St,!,π, Act, d, o⟩ which includes a nonempty finite set of all agents Agt =
{1, . . . , k}, a nonempty (possibly infinite) set of states St, a set of atomic propositions !
and their valuation π : ! → 2St , and a nonempty set of (atomic) actions Act. Function
d : Agt × St → 2Act defines nonempty sets of actions available to agents at each state, and o
is a (deterministic) transition function that assigns the outcome state q ′ = o(q,α1, . . . ,αk)

to state q and a tuple of actions αi ∈ d(i, q) that can be executed by Agt in q .
Thus, we assume that all the agents execute their actions synchronously; the combination

of the actions, together with the current state, determines the next transition of the system.
In the rest of the paper, we will write di (q) instead of d(i, q), and we will denote the set

of collective choice of group A at state q by dA(q) = ∏
i∈A di (q).

We will sometimes use the term pointed CGS for a pair (M, q) of a concurrent game
structure and a state in it.

Definition 3 (Path) A path λ = q0q1q2 . . . is an infinite sequence of states such that there is
a transition between each qi , qi+1. We use λ[i] to denote the i th position on path λ (starting
from i = 0) and λ[i,∞] to denote the subpath of λ starting from i . The set of paths starting
in q is denoted by ΛM(q).

Example 2 (Robots and Carriage) Consider the scenario depicted in Fig. 1. Two robots push
a carriage from opposite sides. As a result, the carriage can move clockwise or anticlockwise,
or it can remain in the same place. We assume that each robot can either push (action push)
or refrain from pushing (action wait). Moreover, they both use the same force when pushing.
Thus, if the robots push simultaneously or wait simultaneously, the carriage does not move.
When only one of the robots is pushing, the carriage moves accordingly.

To make our model of the domain discrete, we identify three different positions of the
carriage, and associate them with states q0, q1, and q2. We label the states with propositions
pos0, pos1, pos2, respectively, to allow for referring to the current position of the carriage
in the object language.

2.3 Finite versus infinite CGS

In our definition of CGS (Def. 2.2) we have not put up any requirement of finiteness with
respect to the set of states and actions. The only requirement is that the set of agents must be

2 We would like to note that it is essential for this work that we do not require a finite set of states or actions.
We give a more detailed discussion in Sect. 2.3.
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An action of a coalition A will also be called A-move; when A is A we will
call it global move.

Below, p ∈ P and A is a coalition of agents.

Definition 2 (ATL∗ syntax).

State formulae : ψ := p | (¬ψ) | (ψ ∧ ψ) | (〈〈A〉〉Φ)
Path formulae : Φ := ψ | (¬Φ) | (Φ ∧ Φ) | (©Φ) | (�Φ) | (ΦUΦ)

It is worthwhile observing that any ATL∗ state formula is also an ATL∗ path
formula, while the converse is false. State formulae will always be noted by
lower case Greek letters, and path formulae by upper case Greek letters. Unless
explicitly stated otherwise, in the sequel by ATL∗ formula we mean an ATL∗

state formula.
ATL is the syntactical fragment of ATL∗ obeying to the constraint that any

temporal operator in a formula is prefixed by a path quantifier 〈〈A〉〉, analogously
to CTL w.r.t. CTL∗. Hence any ATL formula is a state formula.

The semantics for ATL∗ is based on the notions of concurrent game model,
play and strategy.

A play λ in a CGM M is an infinite sequence of elements of S: s0, s1, s2, ...
such that for every i ≥ 0, there is a global move σA ∈ actA(si) such that



out(si, σA) = si+1. Given a play λ, we denote by λ0 its initial state, by λi its
(i+ 1)th state, by λ≤i the prefix λ0...λi of λ and by λ≥i the suffix λiλi+1... of λ.
Given a prefix λ≤i : λ0...λi, we say that it has length i+1 and write |λ≤i| = i+1.
An empty prefix has length 0. A (non-empty) history at state s is a finite prefix
of a play ending with s. We denote by PlaysM and HistM respectively the set of
plays and set of histories in a CGM M.

Given a coalition A ⊆ A of agents, a perfect recall strategy FA is a function
which maps each element λ = λ0...λ` of HistM to an A-move σA belonging to
actA(λ`) (the set of actions available to A at state λ`). Whenever FA depends
only on the state λ` the strategy is said to be positional. In the rest of the paper
we always consider perfect recall strategies.

For any coalition A, a global action σA extends an A-move σA whenever for
each agent a ∈ A, σA(a) = σA(a). Let σA be an A-move; the notation Out(s, σA)
denotes the set of states out(s, σA) where σA is any global vector extending σA.
Intuitively, Out(s, σA) denotes the set of the states that are successors of s when
the coalitions A plays at s the A-move σA and the other agents play no matter
which move.

A play λ = λ0, λ1, ... is said to be coherent with a strategy FA if and only if
for each j ≥ 0, λj+1 ∈ Out(λj , σA), where σA is the A-move chosen by FA at
state λi.

The notion M satisfies the formula Φ at state s, noted M, s |= Φ, is defined
by induction on φ as follows (omitting the obvious boolean cases):

– M, s |= p iff p ∈ L(s), for any proposition p ∈ P;
– M, s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all plays λ

starting at s and coherent with the strategy FA, M, λ |= Φ;
– M, λ |= ϕ iff M, λ0 |= ϕ;
– M, λ |=©Φ iff M, λ≥1 |= Φ;
– M, λ |= �Φ iff M, λ≥i |= Φ for all i ≥ 0;
– M, λ |= ΦUΨ iff there exists an i ≥ 0 whereM, λ≥i |= Ψ and for all 0 ≤ j <
i, M, λ≥j |= Φ.

Given a CGMM and a formula φ, we say thatM satisfies φ whenever there
is a state s such that M, s |= φ; then we also say that M satisfies φ at s and
that M is a model of φ.

The works [ÅGJ07,DGL16] define a notion of bisimulation appropriate to
CGMs and analogous to the notion of bisimulation for transition systems (see,
for instance, [LIS12]).

Definition 3 (Alternating Bisimulation [ÅGJ07,DGL16]). Let M1 =
〈A,S, {Acta}a∈A, out, L〉 and M2 = 〈A,S′, {Act′a}a∈A, out′, L′〉 be two CGMs
over the same set of atomic propositions and over the same set of agents.

– Let A be a coalition. A relation β ⊆ S× S′ is an alternating A-bisimulation
between M1 and M2 iff for all s1 ∈ S and s2 ∈ S′, s1βs2 implies that the
following hold:

1 Local Harmony. L(s1) = L′(s2);



2 Forth. For any αA ∈ actA(s1) there is an α′A ∈ act′A(s2) such that for
any t2 ∈ Out(s2, α

′
A) there exists t1 ∈ Out(s1, αA) such that t1βt2;

2 Back. For any αA ∈ actA(s2) there is an α′A ∈ act′A(s1) such that for
any t3 ∈ Out(s1, α

′
A) there exists t4 ∈ Out(s2, αA) such that t3βt4.

– When β is is an alternating A-bisimulation between M1 and M2, we note

M1

β

�A M2;
– If β is an alternating A-bisimulation betweenM1 andM2 for every coalition

A ⊆ A, then β is a full alternating bisimulation and we note: M1

β

�M2;
– When β is a full bisimulation between M1 and M2, β is total on S and

its inverse is total on S′, then it is a global alternating bisimulation between
M1 and M2. The models M1 and M2 are said to be bisimilar when such a
relation β exists.

Figure 2, borrowed from [DGL16], illustrates the above definition.

Fig. 2. An alternating bisimulation between two CGMs

	

Remark 1. A full alternating bisimulation β is a fixpoint solution of the equation
X = E(X) where a value of X is a subset of S× S′ such that if 〈q, q′2〉 ∈ X then
L(q) = L′(q′) and, for any relation r ⊆ S × S′, 〈s1, s2〉 ∈ E(r) if and only if:
〈s1, s2〉 ∈ r, L(s1) = L′(s2), and for every coalition A two conditions hold: (i) for
any αA ∈ actA(s1) there is an α′A ∈ act′A(s2) such that for any t2 ∈ Out(s2, α

′
A)

there exists t1 ∈ Out(s1, αA) such that t1rt2, and (ii) for any αA ∈ actA(s2)
there is an α′A ∈ act′A(s1) such that for any t3 ∈ Out(s1, α

′
A) there exists

t4 ∈ Out(s2, αA) such that t3rt4.
Observe also that, given a CGM having set of states S, X may be a subset

of S× S (i.e we can have S = S′).



Remark 1 will be useful in the sequel, to understand how our approach to
minimization of a model constructs a maximal fixed point of the above equation
in a stepwise manner.

It is also worthwhile observing that bisimilarity between CGMs is reflexive,
symmetric and transitive, i.e. is an equivalence relation.

The following theorem extends to the case of ATL∗ and perfect recall strate-
gies a result presented in [ÅGJ07,DGL16] for ATL and positional strategies.

Theorem 1. Let M and M′ be two CGM.

1. If M
β

�A M′ and s1βs2, then, for any ATL∗ (state) formula φ such that A
is the only coalition occurring in φ, M, s1 |= φ iff M′, s2 |= φ.

2. If M
β

� M′ and s1βs2, then, for any (state) ATL∗ formula φ, M, s1 |= φ
iff M′, s2 |= φ.

The detailed proof of Theorem 1 is given in Section 5. The key idea is that if
β is a full alternating bisimulation between M and M′ and FA is a strategy for
a coalition A in M then FA can be simulated in M′ by exploiting the existence
of β. As a consequence of Theorem 1, if M and M′ are bisimilar then, for any
(state) formula φ, M is a model of φ if and only if M′ is a model of φ.

3 Model Minimization

Our approach to the minimization of a model M satisfying a given formula Φ
consists in rewriting it into the smallest bisimilar model in a stepwise manner.
The definitions and results that follow are the foundations of our procedure.

3.1 Quotient models

Given a partition P = {C1, ..., Ck} of the set of the states of a CGM, we will say
that each set Ci is a cluster of the partition P .

Definition 4 (Harmonious partition). A harmonious partition P of a CGM
M is a partition of the set of states of M such that for each cluster C of P , if
s, s′ ∈ C then L(s) = L(s′).

Given a CGM, a state s, a coalition A and a move σA available for A at s,
we say that a state t is reachable from s via σA if t ∈ Out(s, σA), i.e. there is a
global move σA extending σA such that t = out(s, σA).

Definition 5 (Behavioural equivalence of states w.r.t. a partition). Let
P be a harmonious partition of a CGM and let s and t be two states such that
L(s) = L(t).

– Let A be a coalition. We say that s and t are (behaviourally) A-equivalent
w.r.t. P , and we note s ≡PA t, when :



• Given any action σA ∈ actA(s), there is an action σ′A ∈ actA(t) such
that the set of clusters of states that are reachable from t via σ′A is a
subset of the set of clusters of states that are reachable from s via σA.

• Given any action σA ∈ actA(t), there is an action σ′A ∈ actA(s) such
that the set of clusters of states that are reachable from s via σ′A is a
subset of the set of clusters of states that are reachable from t via σA.

– We say that s and t are (behaviourally) equivalent w.r.t. P , and we note
s ≡P t, when s ≡PA t for each coalition A.

It is worthwhile observing that ≡PA (resp. ≡P ) is an equivalence relation.

Remark 2. It is important to observe that given a harmonious partition P of the
set of states of a CGM, the behavioural equivalence w.r.t. P of two states for a
coalition does not imply their behavioural equivalence for another coalition. To
see this, let us consider Example 2.

Example 2. Let M1 be a CGM having four states: s1, s2, s3 and s4, and three
agents, 1, 2 and 3. Let p be the only boolean variable and let: L(s1) = L(s2) =
{p}, L(s3) = L(s4) = ∅. Each agent can play either action 0 or action 1 at states
s1 and s2, and only action 3 at s3 and s4. The transitions are: out(s1, 〈0, 0, 0〉) =
out(s1, 〈1, 1, 1〉) = s3, out(s1, α1〉) = s1 for any other global move α1 available
at s1, out(s2, 〈0, 0, 0〉) = out(s2, 〈0, 0, 1〉) = s4, out(s2, α2〉) = s2 for any other
global move α2 available at s2, out(s3, 〈3, 3, 3〉) = s3 and out(s4, 〈3, 3, 3〉) = s4.

Let P be the harmonious partition of the set of states where s1 and s2 are
in the cluster C1, while s3 and s4 are in the cluster C2. For A = {1} it is easy
to see that s1 ≡PA

s2. In fact, action 0 available at s1 is simulated by action 0
available at s2 and also action 1 available at s1 is simulated by action 0 available
at s2. Conversely, action 0 at s2 is simulated by action 0 (or 1) at s1. However,
for A′ = {1, 2}, s1 6≡P ′A s2. Indeed, at state s1 the formula 〈〈1, 2〉〉 © ¬p is false,
while at state s2 is true (it suffices to play 〈0, 0〉). This shows that the equivalence
of states for a coalition A does not imply the equivalence for each coalition A′

such that A ⊂ A′.
The same example shows that the equivalence of states for a coalition A”

does not imply the equivalence for each coalition A′′′ such that A′′′ ⊂ A′′. In
fact, take A′′ = {1, 2, 3}. If the coalition plays the global move 〈0, 0, 0〉 at s1,
which leads to the cluster C1, then it can play the same move at s2 to get the
same effect; if it plays 〈1, 1, 1〉 at s1 then it can play either 〈0, 0, 0〉 or 〈0, 0, 1〉 at
s2 to get the same effect; finally, if it plays any move different form 〈0, 0, 0〉 and
〈1, 1, 1〉 at s1, then it can play any move different form 〈0, 0, 0〉 and 〈0, 0, 1〉 at s2
to get the same effect. A symmetrical reasoning on the actions that the coalition
A′′ can play at s2 allow us to conclude that s1 ≡PA′′ s2. However taking the
subset coalition A′′′ to be {1, 2} we get, as already seen, that s1 6≡PA′′′ s2.

Below we always assume that S is finite.

Definition 6 (Stability). Given a partition P = {C1, ..., Cn} of the set of
states S of a CGM and a relation r ⊆ S× S , P is stable w.r.t. r when, for any
1 ≤ i ≤ n, s, t ∈ Ci implies s r t.



If P is stable w.r.t.≡P , then obviously it is stable w.r.t.≡PA for each coalition
A.

Our minimization procedure builds step by step the coarsest harmonious
partition P of the set of states of the model M to be minimized that is stable
w.r.t. ≡P . Then it builds out of P a minimal model bisimilar toM as a quotient
of S with respect the equivalence ≡P .

Definition 7 (Quotient model). Let M be a CGM 〈A,S, {Acta}a∈A, out, L〉.
Let P = {C1, ..., Cn} be a harmonious partition of S that is stable w.r.t. ≡P .
Let ρ be a function associating to each cluster Ci of P an element of Ci as
representative element of Ci.

A quotient-model M′ of M w.r.t. ≡P and ρ is defined as a

M′ = 〈A,S′, {Act′a}a∈A, out′, L′〉

where:

– S′ is the set of clusters in P : S′ = {C1, ..., Cn};
– Ci is connected to Cj via σA if and only if in the modelM we have out(ρ(Ci), σA)
∈ Cj. This defines the transition function out′.

– The set {Act′a}a∈A is constructed accordingly;
– For any Ci, L

′(Ci) = L(s), for any s ∈ Ci.

Let us observe that, formally, the construction of a quotient modelM′ ofM
depends not only on the partition P , but also on the choice ρ of a representative
state ri of Ci. However, given a partition P that is stable with respect to the
relation ≡P , the choice of ρ can have an effect only on labels of connecting edges
inM′ but not on the existence of a connection between two states ofM′ (that is,
clusters of P ). In fact, let Ci be a cluster, ri be a state inM such that ρ(Ci) = ri
and s be any other element of Ci. Then s ≡P ri by construction, therefore:

– If σA leads from ri to a t ∈ Cj in M then by definition there is some global
action leading from s to some state (possibly another than t) that belongs
to the same cluster Cj ;

– If no global action leads from ri to Cj inM then no global action leads from
s to Cj in M. In fact if some global action σA leads from s to some state
in Cj then some global action σ′A leads from ri to some state in Cj , since
s ≡P ri.

Therefore a quotient model of M w.r.t. a harmonious partition P of M’s
states is unique modulo renaming of edge labels.

The following result states that a quotient model of M, as defined above, is
indeed bisimilar to M.

Theorem 2. LetM be a CGM 〈A,S, {Acta}a∈A, out, L〉. Let P = {C1, ..., Cn} be
a harmonious partition of its states that is stable w.r.t. ≡P and let ρ be a function
choosing representative elements from clusters. LetM′ = 〈A,S′, {Act′a}a∈A, out′, L′〉
be a quotient-model of M w.r.t. ≡P and ρ. Then the relation β ⊆ S× S′ defined
by: sβCi iff s ∈ Ci is a global alternating bisimulation between M and M′.



The proof of Theorem 2 is given in Section 5.
As a consequence of Theorem 2 and Theorem 1 we get that if ifM is a model,

P a partition of its states that is stable w.r.t. ≡P ,M′ a corresponding quotient
model, and finally, φ is any ATL* formula (over the given sets of propositions
and agents), then M is a model of φ if and only if M′ is a model of φ.

3.2 Minimization Algorithm

When the modelM to be minimized has a finite number of states, as it is in our
intended application to model minimization in TATL, a maximal bisimulation
relation β ⊆ S× S, hence a corresponding minimal partition P of S stable w.r.t.
≡P inducing a minimal quotient model of a CGM M, can be given a stepwise
characterization and effectively constructed, analogously to the case of labelled
partition systems. More precisely:

Definition 8 (Stratified bisimilarity relations).
Given a CGM M = 〈A,S, {Acta}a∈A, out, L〉, the stratified alternating bisimula-
tion relations βk ⊆ S× S for k ∈ N are defined as follows:

– s1β0s2 iff s1, s2 ∈ S and L(s1) = L′(s2);
– s1βk+1s2 iff s1βks2, L(s1) = L′(s2) and for each coalition A ⊆ A:

1 Forth. For any αA ∈ actA(s1) there is an α′A ∈ act′A(s2) such that for
any t2 ∈ Out(s2, α

′
A) there exists t1 ∈ Out(s1, αA) such that t1βkt2.

2 Back. For any αA ∈ actA(s2) there is an α′A ∈ act′A(s1) such that for
any t3 ∈ Out(s1, α

′
A) there exists t4 ∈ Out(s2, αA) such that t3βkt4.

– By construction, for any k we have βk+1 ⊆ βk. Set the relation β∗ to be⋂
k∈N βk.

When | S | is finite, the relation β∗ can be obviously be computed in finite
time since there is a j, 0 ≤ j ≤| S | such that β∗ = βj . By Remark 1 any full
alternating bisimulation relation that is a subset of S × S is a fixpoint solution
of the equation X = E(X), where X is a subset of S × S having the property
that if 〈q, q′〉 ∈ X then L(q) = L′(q′). We have:

Theorem 3. The relation β∗ is the maximal fixpoint solution of the equation
X=E(X).

This can be shown by arguments similar to those proving an analogous claim
for labelled transition systems [HM85]. The detailed proof is given in Section 5.

Remark 3. We can observe that if Pk is the harmonious partition of S corre-
sponding to a given stratified alternating bisimulation relation βk then s1 ≡Pk

s2
(as in Definition 5) if and only if s1βk+1s2. The two formalizations capture the
same concept, but behavioural equivalence directly corresponds to the implemen-
tation of our minimization algorithm (see Section 4). Moreover, any harmonious
partition P of the set of states of a model M is stable w.r.t. the relation ≡P
(as in Definition 6) if and only if ≡P is a solution of the equation X = E(X),
although not necessarily the maximal one, corresponding to the minimal, i.e
coarsest, partition. The partition of S induced by β∗ is the minimal partition
that is stable with respect ≡P .



Let P ∗ be the partition of the states S of a CGM M induced by β∗. The
quotient model of M with respect to ≡P∗ is the minimization of M with re-
spect to alternating bisimilarity. This yields an algorithm that minimizesM by
computing, step by step, the partition P ∗ starting from an initial partition; its
underlying general principle is:
Let P0, the initial partition, be such that s1, s2 ∈ S belong to the same cluster if
and only if L(s1) = L′(s2).
For each i > 0 compute the i-th approximant Pi of P ∗ until Pi+1 = Pi.
Output Pi as the value of P ∗.

4 Implementation and application to TATL

We have implemented (in OCaml, the same language used for TATL) our min-
imization algorithm in order to add to TATL a new functionality: the mini-
mization of the model extracted from an open tableau for an input formula φ
by executing the procedure given by the completeness proof for ATL∗ tableaux
in [Dav15]. So far, TATL does not show any model, but only the tableau. The
forthcoming version of TATL will allow the user to visualize the model generated
by the completeness proof procedure and also its minimization. Here we give the
pseudo-code of our implementation.

Algorithm 1 Main Procedure
P ← initial partition
change ← true
while change do

change ← false
for all cluster B ∈ P do

if SPLIT(B, P ) = {B1, B2} 6= {B} then
Refine P by replacing B by B1 and B2
change ← true

end if
end for

end while

Algorithm 2 function SPLIT(B,P )
choose a state s ∈ B
B1, B2 ← ∅
for all t ∈ B do

if EQUIVALENCE(s, t, P ) then
B1 ← B1 ∪ {t}

else
B2 ← B2 ∪ {t}

end if
end for
if B2 = ∅ then

return {B1}
else

return {B1, B2}
end if

Obviously the algorithm terminates, because the number of iterations of the
main loop is upper bounded by the size of the set of states, that is finite.



Algorithm 3 function EQUIVALENCE(s, t, P )
if s = t then

true
else

if L(s) = L(t) then
clusterS ← set of successor clusters of s
clusterT ← set of successor clusters of t
if clusterS = clusterT then

EQUIVALENCE BY COALITIONS(s, t, P )
else

false
end if

else
false

end if
end if

The core function is SPLIT that splits a cluster of the current partition Pi
in two clusters whenever two states s and t in it are not behaviourally equiv-
alent with respect to Pi; to do so it calls the function EQUIVALENCE. This
last checks the behavioural equivalence of states w.r.t. the current partition
for each coalition A (as in Definition 5), by means of the function EQUIVA-
LENCE BY COALITIONS. For space reason, the pseudo code of this last func-
tion is not given here. This function checks if two states in a given cluster of
the current partition P are behaviourally equivalent with respect to P for all
coalitions or not, which inevitably makes the program to have an exponential
complexity. It is necessary to check each coalition because behavioural equiv-
alence of two states w.r.t. the current partition for a given coalition does not
imply equivalence for another coalition (see Remark 2 and Example 2).

When the main procedure halts then the computed result P is the partition
P ∗ associated to β∗. In order to prove this claim let us note P0 the initial
partition of the procedure, P1, P2... Pm the partitions computed in the main
loop until stability, r0, r1, r2...rm the corresponding equivalence relations, and
r = rm the relation corresponding to the final result P . An easy induction on
i ∈ N proves that β∗ ⊆ βi ⊆ ri. Hence β∗ ⊆ r. For the converse inclusion, let
us observe that if P is the result of the main procedure, then P is stable w.r.t.
≡P (see the definition of the function SPLIT). By Remark 3, r is a solution of
the fixed point equation X = E(X). Hence r ⊆ β∗, because, by Theorem 3, β∗

is the maximal solution of such an equation. Thus β∗ = r.

Also the model extraction function from a tableau (via the procedure of the
completeness proof) has been implemented and partial tests of our implementa-
tion of the minimization algorithm applied to the model extracted by the tableau
have been done, but a complete and representative set of test cases still needs
to be constructed.

The last figure illustrates the minimization procedure via a simple example,
with one agent, chosen among the tests so far done. The input formula φ of the
tableau, as provided to the software TATL, is exhibited at the left top : it is
〈〈1〉〉((〈〈1〉〉�〈〈∅〉〉©♦�a)∧ (©(¬b∧¬a))), where a and b are propositional letters
and ∅ is the empty coalition. The graph on the left, having eight states, is the
model of the formula produced by the completeness procedure: it satisfies φ at
state n1. At the right, the minimized model, having three states and satisfying



φ at state n1. The literals holding at each state are indicated inside each state
ellipse.

Fig. 3. Input (left) and output (right) of the minimization algorithm

																						 	

5 Proofs

5.1 Proof of Theorem 1

The proof is organized in two parts: the first one defines the preliminary notion
of simulating strategy, the second one constitutes the core of the proof: we show
that bisimilar states satisfy the same formulae.

Simulating Strategy
Let s be a state of M and s′ be a state of M′ such that sβs′. Below, by a

strategy F ′A simulating FA in M′ we mean a strategy in M’ simulating all the
plays starting at s that are coherent with FA by plays starting at s′. The strategy
F ′A is built as follows.

The notation reach(M, h, FA), where h is an history in M, denotes the set
of all the states inM that occur in plays that stem from the last state of h and
that are coherent with a given strategy FA.

By convenience we suppose the set of actions {Acta}a∈A inM to be enumer-
able, so that, for any history h, the set reach(M, h, FA) is enumerable. Other-
wise, we would need to to use transfinite induction (and the axiom of choice) to
inductively define F ′A. Thus, let an enumeration of reach(M, h, FA) be given.



The strategy FA associates an A-move to each history h in M. We build F ′A
for histories in M′ by first defining, by induction on N, a partial strategy F ′A
simulating FA for histories having length 0 (the empty history), then for histories
having length greater than 0. That is, we build the partial function F ′A step by
step, by first simulating the A-action done by FA at s (the history has length 1),
then the actions done by FA at states in M reached via such an action, and so
on. Then we extend F ′A to make it total: the function F ′A so far built might not
be defined for states in M′ that are not connected by paths coherent with it to
s′.

In order to define the partial function F ′A, four auxiliary notions are previously
defined simultaneously by induction on N:

1. A chain of sets succ0(M′, s′) ⊆ ... ⊆ succn(M′, s′)... where succn(M′, s′)
will be the set of states of M′ that are reachable from s′ in at most n steps
if the agents in the coalition A play accordingly to the partial strategy F ′A
so far constructed.

2. A chain of mappings ζ0 ⊆ ...ζn... where ζn : succn(M′, s′)→ reach(M, h, FA),
h is an history coherent with FA starting with s (the considered state inM),
and ζn(t′)βt′ for every t′ ∈ succn(M′, s′);

3. A chain of partial strategies for the coalition A inM′: F ′A(0) ⊆ ... ⊆ F ′A(n)...
where the domain of F ′A(n) is succn−1(M′, s′) (succn−1(M′, s′) = ∅ by con-
vention);

4. An infinite sequence S′0, S
′
1, S
′
2, ... of subsets of states of M’.

The inductive definition is as follows, where in the base one defines reach0, ζ0
and F ′A(0), while at step n+1 one defines ζn+1, reachn+1 and F ′A(n+ 1) and S′n.

– Step 0. This is just an initialisation step, were we consider the empty history
in M, having length 0.

• succ0(M′, s′) = {s′};
• ζ0(s′) = s;
• F ′A(0) = ∅.

– Step n+ 1. Here we consider histories h in M stemming from s and having
length n + 1, thus, in particular, also histories of length n + 1 ending with
s, since plays in M may contain cycles on s.
• S′(n) = succn(M′, s′) \ succn−1(M′, s′). Intuitively, S′(n) is the set of

the new states reached in M′ from s′ in n steps.
• For every t′ ∈ S′n, note t the state ζn(t′) ofM. Let σA(t) be FA(h) where
h ends with t and h as length n. Since tβt′ (by construction of ζn at the
previous step), then we can choose an A-action at t′ in M’, say σ′A(t′),
such that for every q′ ∈ Out(t′, σ′A) there is a bisimilar state (of M) in
Out(t, σA), and let q be the first such state in the given enumeration of
reach(M, h, FA). If q′ ∈ reachn(M′, t′) set ζn+1(q′) = ζn(t) (since ζ and
F ′A must be functions), otherwise set ζn+1(q′) = q.

• succn+1(M′, s′) = succn(M′, s′) ∪
⋃
s′∈S′n

Out(s′, σ′A).

• F ′A(n+ 1) = F ′A(n) ∪
⋃
t′∈S′n

σ′A(t′).



Set F ′A (the partial strategy for M’ we are looking for) to be:
⋃
n∈N F ′A(n).

This defines F ′A for histories ending with a state that is reachable from s′. Then
arbitrarily extend the function F ′A(n) to histories ending with states ofM’ where
it is not yet defined.

Observe that, given s and s′, the strategy F ′A simulating FA is uniquely defined
(once a choice of a σ′A in M′ simulating the given σA in M is made).

Proof of truth preservation by bisimilar states
The only item of Theorem 1 that needs a proof is the first one (then the

second one immediately follows). In order to prove it, we first prove the following
lemma:

Lemma 1. Let A be any coalition, let β be an A-simulation between two models
M and M′ and let s1 and s2 be two states of these models such that s1βs2.
Suppose that all the paths λ stemming from s1 and coherent with a given strategy
FA are such that M, λ |= Ψ , where Ψ is any ATL∗ path formula such that A is
the only coalition occurring in Ψ . Then all the paths λ′ stemming from s2 and
coherent with the corresponding simulating strategy F ′A are such thatM′, λ′ |= Ψ .

The proof of the Lemma is by induction on Ψ . Recall that any state formula
is also a path formula, while the converse is false.

– Base. Suppose that all the paths λ stemming from s1 and coherent with a
given strategy FA are such that M, λ |= p, where p is a propositional letter.
This just means that p is true at s1 and the result trivially holds by Local
Harmony.

– Inductive Step.
• Ψ =©Ψ1. This case is easy, given the definition of bisimulation.
• Ψ is either ¬Ψ1 or Ψ1 ∧Ψ2. The result for these cases follow immediately

from the inductive hypothesis.
• Ψ = �Ψ1.

Suppose that all the paths λ inM stemming from s1 and coherent with
a given strategy FA are such that M, λ |= �Ψ1. Therefore in M all the
suffixes of such paths satisfy Ψ1, that is, all the paths stemming from s1
and coherent with FA satisfy Ψ1. Since by construction of the simulating
strategy F ′A the states occurring in the paths stemming from s2 and
coherent with F ′A are β-images of states in in the paths λ stemming from
s1 in M, by the inductive hypothesis all the suffixes of all the paths
stemming from s2 and coherent with F ′A satisfy Ψ1. Hence all the paths
stemming from s2 and coherent with F ′A satisfy �Ψ1.

• Ψ = Ψ1Uψ2. This case is similar to the above one.
• Ψ = 〈〈A〉〉Ψ1. Suppose that all the paths λ stemming from s1 and coherent

with a given strategy FA are such that M, λ |= 〈〈A〉〉Ψ1. Since 〈〈A〉〉Ψ1 is
a state formula, this actually means that there is some strategy, say



GA, such that all the paths λ stemming from s1 and coherent with GA
are such that M, λ |= Ψ1. Thus, by inductive hypothesis, all the paths
λ′ stemming from s2 and coherent with G′A – where G′A is the strategy
simulating GA – are such that M′, λ′ |= Ψ1. Therefore trivially all the
paths λ′ stemming from s2 and coherent with F ′A, the strategy simulating
FA, are such that M′, λ′ |= 〈〈A〉〉Ψ .

Once established Lemma 1 the proof of the first item of Theorem 1 for ATL∗

is almost immediate. In fact, suppose thatM
β

�AM′, and s1βs2. IfM, s1 |= φ,
where φ is an ATL∗ state formula where only the coalition A occurs, then each
path λ starting at s1 satisfies φ, because for satisfaction of state formulae only
the state λ0 = s1 matters. In other words, all the paths λ stemming from s1
and coherent with the empty strategy FA are such that M, λ |= φ. Hence, by
Lemma 1, all the paths λ′ stemming from s2 and coherent with F ′A, the strategy
simulating FA –that is again empty – are such that M′, λ′ |= φ. But this means
that M′, s2 |= φ. The converse, namely that if M′, s2 |= φ then M, s1 |= φ
also follows from Lemma 1, because the inverse relation of β is a A-bisimulation
between M’ and M.

This concludes the proof of Theorem 1.

5.2 Proof of Theorem 2

Let P , M and M′ as in the statement of the theorem. By construction, β is
total on S and its inverse is total on S′. What needs to be shown is that for any
A ⊆ A, β is an alternating A-bisimulation between M and M′.

Let A be any coalition, and suppose that s ∈ Ci. By construction local
harmony between s and Ci holds.

– Proof of the Forth Condition
Let us suppose that σA is an A-action available at s in M. Let r = ρ(Ci),
that is, r is the representative element of Ci used to build the transitions in
M′ from the state Ci to its successors.
Since the partition P of states of M used to build the quotient model M′
is stable w.r.t. ≡P (by construction), it is stable also w.r.t. ≡PA . Therefore
s ≡PA r. By definition of ≡PA , there is some A-action σ∗A available at r in
M such that the following property holds:
P1: the set of clusters of states that are reachable from r via σ∗A in M is a
subset of the set of clusters of states that are reachable from s via σA.
Take the A-action available at Ci that must be shown to exist for the Forth
condition to hold to be σ∗A. Thus we must show :
If a cluster Cj belongs to Out(Ci, σ

∗
A) (inM’), then there exists t ∈ Out(s, σA)

(in M) such that tβCj i.e t ∈ Cj .
So, suppose that in M′: Cj ∈ Out(Ci, σ

∗
A). By construction of M′, this

implies that inM there is some global action extending σ∗A to all the agents,
say comp(σ∗A), that leads from r to some state q belonging to Cj . Then,



by the property P1 above, there is also in M some global action comp(σA)
extending σA to all the agents that leads from s to some state t belonging
to Cj , in other words there exists t ∈ Out(s, σA) such that t ∈ Cj . We are
done.

– Proof of The Back Condition
Let us suppose that σA is an A-action available at Ci inM′. By construction,
σA is the restriction to agents in A of a global action in M that leads from
the representative element r of Ci to some state.
Since the partition P of states ofM used to build the quotient modelM′ is
stable w.r.t. ≡P , it is so also w.r.t. ≡PA . Therefore, since s, r ∈ Ci, s ≡PA r.
Therefore there is some action σ∗A available at s inM such that the following
property holds :
P2: the set of the clusters of states that are reachable from s via σ∗A is a
subset of the set of the clusters of states that are reachable from r via σA.
Take the A-action available at s that must be shown to exist for the Back
condition to hold to be σ∗A. Thus we must show :
If a state t belongs to Out(s, σ∗A) (inM), then there exists a Cj ∈ Out(Ci, σA)
(in M’) such that t ∈ Cj , i.e. tβCj .
So, suppose that a state t belongs to Out(s, σ∗A), and let Cj be the cluster to
which t belongs. By the property P2 the cluster Cj is reachable also from r
via σA. Therefore, by construction of M’, Cj ∈ Out(Ci, σA). We are done.

�

5.3 Proof of Theorem 3

First, let us observe that for i > 0, the relation βi of Definition 8 can be equiva-
lently described as E(βi), where E is the operator defined in Remark 1, Section
2.

In order to prove the theorem, first we show that β∗ is a solution of the
fixpoint equation X = E(X).

Since Since β0, β1, β2, ... is a descending chain (by construction) and the set
S is finite, there must be a j such that ∀m ≥ j βm = βj . In particular, βj+1 =
E(βj). But β∗, defined as

⋃
k∈N βk=βj = βj+1. Hence β∗ = E(β∗).

Then we show that any binary relation on S that is a solution to X = E(X)
is included in β∗, therefore that β∗ is the maximal solution.

Thus, let suppose that r ⊆ S×S is such that r = E(r). We show, by induction
on i ∈ N, that if 〈s1, s2〉 ∈ r then s1βis2.
Base: i = 0.
Since 〈s1, s2〉 ∈ r = E(r), then s1 and s2 have the same labels. Then obviously
s1β0s2.
Inductive Step: i > 0.
Since 〈s1, s2〉 ∈ r = E(r), then i) L(s1) = L′(s2) and (ii) for every coalition A:
(a) for any αA ∈ actA(s1) there is an α′A ∈ act′A(s2) such that for any t2 ∈
Out(s2, α

′
A) there exists t1 ∈ Out(s1, αA) such that such that t1rt2, and



(b) for any αA ∈ actA(s2) there is an α′A ∈ act′A(s1) such that for any t3 ∈
Out(s1, α

′
A) there exists t4 ∈ Out(s2, αA) such that t3rt4.

By inductive hypothesis r ⊆ βi−1 thus t1βi−1t2 and t3βi−1t4. Therefore
s1βis2.

Therefore for each n we have s1βns2 and we conclude that s1β
∗s2.

�

6 Conclusions

Up to our knowledge, the algorithm proposed in this work is the first procedure
that minimizes ATL∗ models with respect to alternating bisimulation.

This algorithm has a time complexity that is exponential in the size of A,
since, as observed, all the coalitions – that is all the subsets of A– need to be
checked in order to conclude that a given cluster of the current partition does
not need to be split. It is interesting to compare it with the classical partition-
refinement minimization algorithms for labelled transition systems, whose com-
plexity depend only on the number n of states of the system and the number
m of transitions: the algorithm in [KS90] has time complexity O(nm) while the
optimized algorithm in [PT87] has time complexity m log n. Labelled transition
systems can be seen as concurrent game structures with exactly one agent, thus
it is not surprising that minimizing ATL∗ models is harder, both conceptually
and algorithmically, than minimizing CTL∗ models. Although the problem of
minimizing an ATL∗ model is intrinsically exponential, it would be interesting
to face issues of optimisation of our algorithm with the view of making it more
efficient for practical use.

As we said, we implemented and tested our algorithm, but a large, complete
and representative set of test cases is still ongoing work. When this will be
finished we will add to the prover TATL the functionality of exhibiting minimized
models of the input formula.

In this work we have considered only ATL∗ with perfect information. Re-
cently a definition of bisimilarity of models coping with imperfect information
has been proposed [BCD+17] and it might be interesting to explore the possibil-
ity of extending our study to the minimization of models of ATL∗ with imperfect
information.
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