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Mathematician and statistician David George Kendall writes:(2]

In this paper ‘shape’ is used in the vulgar sense, and means what one would normally expect it to mean.
[...] We here define ‘shape’ informally as ‘all the geometrical information that remains when location,
scalel®! and rotational effects are filtered out from an object.’




What is shape

* Shape is not affected by some shape-preserving
transformations

Shape is what is left when differences, which can be attributed to
translations, scale, and rotations have been filtered out

David G. Kendall (1984) — first to introduce statistics into shape analysis
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Why shape is important ?

Biomedical 3D modeling Archaeology
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Problem statement

* Given a population of 3D objects, we want to

— Study and model the shape variability within the
population (mean shape, modes of variation)
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Automatically generated random human shapes in random poses




Problem statement

e Given a population of 3D objects, we want to

— Study and model the shape variability within the
population (mean shape, modes of variation)

— Build statistical models that describe the population

— Analyze & model deformations and growth patterns
* How the 3D shape of the brain evolves with Alzheimer ?
* Typical growth curve of a feetus?
» Differences in the growth of human body across countries

e Correlation or causality relations (between the spatial
distribution of Kebab shops with human body shape)



Let’s focus on the mean shape
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* The registration problem
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Let’s focus on the mean shape

* The registration problem
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Things are not always so simple ...

Wrong alignment
Correct correspondence

Average
shape
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Things are not always so simple ...

Wrong alignment Correct alignment
Correct correspondence Wrong correspondence

W W

Average
shape

Average
shape
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Let’s focus on the mean shape

* First problem - We need correct registration

— Correct alignment and correct correspondences
under rigid transformations & non-rigid deformations

Translate

Scale /'4‘ Rotate Bending Stretching

Rigid transformations Non-rigid deformations
(do not change shape) (do change the shape)




Let’s focus on the mean shape

* The space of shapes is not Euclidean

(a) Linear path
(1—=1t)f1+tfo
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(a) Linear path
(1—=1t)f1+tfo

(b) Natural deformation

19



Let’s focus on the mean shape

* The space of shapes is not Euclidean

(a) Linear path
(1—=t)fr+tfe
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Let’s focus on the mean shape

* Second problem: we need an appropriate non-
linear metric

(a) Linear path
(1 —=1)f1+tf2

(b) Natural deformation
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In this presentation

e Background and motivation

* Problem 1: Elastic registration
— Surface representation
— Re-parameterization and registration

* Problem 2: what is the right metric for
comparing shapes
— The elastic metric for 3D shape analysis
— The Square Root Normal Field (SRNF) representation
* Problem 3: the SRNF inversion problem

* Applications
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Representation of surfaces

e Parameterized surfaces

f:8* 5 R
s=(, v) > f(5) = (x(s), ¥(5), (5))

S (5) = (x(s), ¥(s), 2(8))

1
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Spherical parameterization
of closed Genus-0 surfaces
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Remove shape-preserving transformations

e Parameterized surfaces

f:8* 5 R
s=(u, v) > £(5) = (x(s), ¥(s), (5))

* Normalize all shapes for translation and scale

— Translate all the shapes so that their centre of mass is
at origin

— Scale all the shapes to have unit surface area

 How about rotation and correspondences ?
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Parameterization provides registration

Initial parameterization Re-parameterization of f,
(not optimal) (optimal)

Ji(s),

120(7)

T

Diffeomorphism
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Parameterization provides registration

* Find the optimal rotation and diffeomorphism to apply
to f2 so that it becomes as close as possible to f1

ds([f1],[f2])= min d(f1,0(f207)).

0€S0(3).yel

Correspondence

d(f1,0(f207))
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Let’s focus on the mean shape

* First problem - We need correct registration

ds([A1l;[f2]) =  min rd(fl,o(f: 0Y)).

0€S0(3).y€

Correspondence

— Assume correspondences are given

* Find optimal rotation (SVD decomposition if d is Euclidean)

— Assume optimal rotation is given

» Solve for optimal corresondence, i.e. re-parameterization or
diffeomorphism \gamma

* Involves search over the space of all possible diffeomorphisms

— Repeat many times the two steps above
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Let’s focus on the mean shape

* First problem - We need correct registration

ds([f1];[f2]) =  min l_d(fl,o(fz 0Y)).

0€S0(3).ye

Correspondence

e Second problem

— What is d ? How do we measure distances between
surfaces ?
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In this presentation

* Problem 2: what is the right metric for
comparing shapes
— The elastic metric for 3D shape analysis
— The Square Root Normal Field (SRNF) representation
* Problem 3: the SRNF inversion problem

* Applications
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The space of shapes is not Euclidean

(a) Linear path
(1—=1t)f1+tfo

(b) Natural deformation
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Elastic shape metric for comparing surfaces

The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto
the other
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Elastic shape metric for comparing surfaces

The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto
the other

Three ways of quantifying bending

Differences in the orientation Differences in the surface Differences in the Second
of normal vectors curvatures Fundamental Forms (I1)
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Elastic shape metric for comparing surfaces

The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto
the other

Three ways of quantifying bending

Differences in the orientation Differences in the surface Differences in the Second
of normal vectors curvatures Fundamental Forms (1)

Two ways of quantifying stretch (elasticity)

Differences in the First
Fundamental Form
(the metric)

Differences in
local surface area
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The general elastic metric

The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto
the other

Three ways of quantifying bending

Differences in the orientation Differences in the surface Differences in the Second
of normal vectors curvatures Fundamental Forms (1)

Two ways of quantifying strecth (elasticity)

Differences in the First
Fundamental Form
(the metric)

Differences in
local surface area
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Simplified elastic metric

The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto
the other

Three ways of quantifying bending

Differences in the orientation Differences in the surface Differences in the Second
of normal vectors curvatures Fundamental Forms (Il)

Differences in the First
Fundamental Form
(the metric)

Differences in
local surface area
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The partial elastic metric (Jermyn et al.)

e Surface bending

— Change in the orientation of the normal vectors
— Normal to a surface fat a point s

n(s) =gL(s)xgh(s)  a(s) = 23

e Surface stretching -
— Change in local area of fat s: 7(s) = |n(s)]

2
&z
v

* Asurface f can then be represented
with (r, 1)
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Partial elastic shape metric

The difference between fand g is the amount of bending
and stretching needed to align one surface onto the other

d((r1,71), (ra, 712)) = o / Ory (jzf)" 2(5) 454 / (O7ir(s), Ba(s)) r(s)ds.
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Elastic shape metric for comparing surfaces

The difference between fand g is the amount of bending
and stretching needed to align one surface onto the other

Penalizes stretching

d((r1,71), (ra, 712)) = o / Ory (':zf)" 2(8) 4d / (O7ir(s), Oia(s)) r(s)ds.
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Elastic shape metric for comparing surfaces

The difference between fand g is the amount of bending
and stretching needed to align one surface onto the other

Penalizes stretching Penalizes bending

d((r1,71), (ra, 712)) = o / Ory (2?)” 2(8) 4d / (O7ir(s), Oia(s)) r(s)ds.
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Elastic shape metric for comparing surfaces

The difference between fand g is the amount of bending
and stretching needed to align one surface onto the other
— Not Euclidean
— Very complex to evaluate and use for shape statistics
— Computationally very expensive

Penalizes stretching Penalizes bending

d((r1,71), (ra, 712)) = o / 6“(2%" 2(8) 4d / (O7ir(s), Oia(s)) r(s)ds.

40



Square-Root Normal Field (SRNF)

 SRNF representation of surfaces introduced by
Jermyn et al. ECCV2012

1 . .
* Fora = " and f = 1, the elastic metric reduces

to the Euclidean distance between SRNF
representations of surfaces

dnt) = [ 2OF ds e [ (om(6),0ma(0) ris)ds

= g1 —g2|*

= [la© - a©)s
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SRNF linearizes the manifold of shapes

Map all the shapes to the SRNF space

q>
. O/O
Space of parameterized surfaces SRNF space is Euclidean
(non-linear)
Straight lines correspond to
* Geodesic paths and distances are optimal deformations
hard to compute (geodesics)
* Difficult to perform statistics e Standard linear statistics

42



SRNF linearizes the manifold of shapes

Perform all the analysis in the space of SRNFs

+q,)/2
%Q/(ql'{o

Space of parameterized surfaces SRNF space is Euclidean
(non-linear)

q>

* Mean=(q;+q,)/2
* Linear interpolation: tq, + (1-t)q,
* Statistics: standard PCA
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SRNF linearizes the manifold of shapes

Map the results back to the space of surfaces

Inverse SRNF

q>

+q,)/2
g, (917 95)

Space of parameterized surfaces SRNF space is Euclidean
(non-linear)

* Mean=(q,+q;)/2

<:| * Linear interpolation: tq, + (1-t)q,
* Statistics: standard PCA
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Applications of SRNFs

 Comparison of shapes
e Elastic registration of shapes

 Computing geodesics (optimal deformation of
one surface onto another)

* Transferring deformations

e Statistical shape analysis
— Mean shape and modes of variations

— Characterizing populations with probability
distributions

— Generating arbitrary 3D shapes

45



Using the SRNF

e Comparing 3D shapes

46

d(fi, f2) = min  d(fi1 —O(f207))

0eS0(3) el

= i — O(qo.
oes%’},—,er”‘“ (g2.7)||

O(g2,7) = (g2 )/

where .J., is the determinant of the Jacobian of .




Using the SRNF

e Comparing 3D shapes

47

d(fi, f2) = min  d(fi1 —O(f207))

0eS0(3) el

= i — O(qo.
oesg?:f)l,—,er“‘“ (g2.7)||

O(g2,7) = (g2 )/

where .J., is the determinant of the Jacobian of .

astic registration of 3D shapes

(0',v") = argmin d(f — O(f07))
0eS0O(3) el

= argmin |[lg — O(g2,7)|
OeS0(3)~er




Registration and classification results

* Registration results
— Anatomical surfaces
— Complex shapes
* Classification results
— Generic 3D shapes (SHRECO7 dataset)
— Medical imaging
 diagnosis of attention deficit hyperactivity disorder (ADHD)
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Registration results —anatomical 3D shapes

Elastic registration of carpal bones
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Registration results —anatomical 3D shapes

Elastic registration of carpal bones
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Registration results —anatomical 3D shapes

Elastic registration of carpal bones

YXYY"
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Registration results —anatomical 3D shapes

Elastic registration of carpal bones

YXXY"
¢dééé
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Correspondence results — complex shapes

0N Isometric deformations

A o

L[F*] = 0.1609

I ARR L b U

L[F*] = 0.1369

\"\_.\

T 1
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—

Correspondences are color-coded



Correspondence results — complex shapes

Elastic deformations

LT
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Correspondence results — complex shapes

Correspondence in the presence of missing parts

222 845

L[F*] = 0.0997

YRR

(L[F*] =0.1977)




In this presentation

* Problem 3: the SRNF inversion problem
* Applications
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Shape statistics using SRNFs

* The SRNF map should be invertible

Inverse SRNF

q>

+q,)/2
g, (917 95)

Space of parameterized surfaces SRNF space (linear)
(non-linear)

* Mean=(q,+q;)/2

<:| * Linear interpolation: tq, + (1-t)q,
* Statistic: standard PCA
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SRNF maps inversion

* The SRNF map should be invertible
— We know how to compute SRNFs

~

q(s) = /r(s)n(s) = =

— Their inverse is not unigue and it does not have a
closed analytical form (at least we don’t know it)

e Good news

— We can invert it numerically

58



SRNF inversion

e Formulation

— Given g, we want to find f such that SRNF(f) = Q(f) is
as close as possible to g

Eo(f;9) = min [Q(f) = O(a, I3

59



SRNF inversion

e Formulation

— Given g, we want to find f such that SRNF(f) = Q(f) is
as close as possible to g

Eo(f:q) = min[|Q(f) = O(g. )5
7Y

— Define the surface f as the deformation of a
reference surfsce f, (e.g. a sphere)

f — fO + w,
— Parameterize the space of deformations with some
orthonormal basis

W= 2 heB %Y

60



SRNF inversion

e Formulation

— Given g, we want to find f such that SRNF(f) = Q(f) is
as close as possible to g

Eo(f:q) = min[|Q(f) = O(g. )5
7Y

— Define the surface f as the deformation of a
reference surfsce f, (e.g. a sphere)

f — fO + w,
— Parameterize the space of deformations with some
orthonormal basis

w = Z awh * General surfaces: spherical harmonic basis
D EGB oY% . Domain-specific data: use PCA basis
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SRNF inversion

e Formulation

— Given g, we want to find f such that SRNF(f) = Q(f) is
as close as possible to g

Eo(f1q) = min[|Q(f) = O(g. )5
Y

E(w;q) = min |[Q(fo +w) ~ O(@,7)]l3
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SRNF inversion by gradient descent

x

(c) Ground truth.

4 , g
O i

Reconstructed surface
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition

! “Multiresolution surface

@ @ ¥ K XK
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition

! “Multiresolution surface

'oa*&%%

_________________________________________

Multiresolution
SRNF
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition

Multiresolution
SRNF
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition

] Multiresolution
SRNF
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition

¢ Multiresolution
i SRNF

_@
D
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition

69
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Multi-resolution SRNF representation

* Use spherical wavelet decomposition
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Some inversion results

(a) The target surfaces f,.

*=Q1

e

}

w

(b) The reconstructed surfaces f*.

v

(c) Pixel-wise errors |f*(s) — fo(s)].
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Some inversion results

(a) The target surfaces f,.

| |

Yoo

(b) The reconstructed surfaces f*.

0.005

(c) Pixel-wise errors |f*(s) — fo(s)]-
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Some inversion results

(a) The target surfaces f,.

M'm“-( ekm

) The reconstructed surfaces f*.

Yo Q| A A

(c) Pixel-wise errors |f*(




In this presentation

* Applications
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Geodesic paths

 Map shapes to SRNF space

SRNF space (linear)
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Geodesic paths

* Linear interpolation on SRNF space

SRNF space (linear)

q
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Geodesic paths

* Linear interpolation on SRNF space

SRNF space (linear)

q
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Geodesic paths

 Map lines from SRNF space back to original

Space Inverse SRNF

q>

q1 tg,+ (1-t)g,

fffiiee
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Geodesic paths

(a) Linear path (1 —¢#)f; + tfo
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Geodesic paths

(a) Linear path (1 —¢#)f; + tfo
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Geodesic paths

94

(a) Linear path (1 —¢)f; + tfs

14

(b) Geodesic path a(t) by SRNF inversion
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Geodesic paths

BoAANA A YA

(a) Linear path (1 —1)f; +tf2
(registration computed with SRNF)
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Geodesic paths

BEAAA A A

(a) Linear path (1 —1)f; +tf2
(registration computed with SRNF)

TYLE LA

(c) Geodesic path using SRNF inversion proposed here.
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Geodesic paths

FEEee

(a) Linear path (1 —¢)f; +tf2
(registration computed with SRNF)
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Geodesic paths

FEete

(a) Linear path (1 —t)f; +tf2
(registration computed with SRNF)

pEee

85 (d) Geodesic path using SRNF inversion proposed here.




Geodesic paths

# & 4 47V

(a) Linear path (1 —¢t)fi +tf2
(registration computed with SRNF)

Rl raly

(b) Geodesic path using SRNF inversion proposed here.
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Geodesic paths

Qetnoen

(a) Linear path with SRNF registration.

iifreen

(b) Geodesic path using SRNF inversion proposed here.
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Geodesic paths

(f

(a) Linear path with SRNF registration.

i)

(b) Geodesic path using SRNF inversion proposed here
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Symmetry analysis

Shape symmetrization and measure of asymmetry

Shape f




Symmetry analysis

Shape symmetrization and measure of asymmetry

Shape f f — H(V)f

(Reflection of f with
respect to an arbitrary plane)

H(v)=(I— 2%)



Symmetry analysis

Shape symmetrization and measure of asymmetry

Shapes L(F*) = 0.1535 S=HE)f

(Reflection of f with
respect to an arbitrary plane)

Length of the path is a measure of asymmetry



Symmetry analysis

e Shape symmetrization and measure of asymmetry

WRRee

L(F*) =0.0963

JLLLLLS

L(F*)=0.1189




Deformation transfer

hl
Source deformation
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Deformation transfer

}?,1
Source deformation
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Deformation transfer

}2,1 A
Source deformation
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Deformation transfer

e Parallel transport in the SRNF space

— We are given f,, hy, />,
we need to find 4,

— Compute
* Q(f), Q(Ay), Qff,)
*V= Q(hl) - Q(fl); fl \ hl
* g=Qff) +v Source deformation

— Invert q to obtain 4,

hg
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Deformation transfer results

b

fi hiy

(a) Source deformation
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Deformation transfer results

iR

fi hi

(a) Source deformation

- a
\ v B B
\ \
*
1

f2 ha

(b) Deformation transfer by linear extrapolation,
ha = fa + a(h1 — f1)
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Deformation transfer results

e

S hy P ha f2 ha
(a) Source deformation | (b) Deformation transfer by linear extrapolation, (c) Deformation transfer by SRNF inversion
ha = f2 + a(ha — f1) Q(h2) = Q(f2) + AQ(h1) — Q(f1)).
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Deformation transfer results

fi hi

(a) Source deformation

100

f2
(b) Deformation transfer by linear extrapolation,
ha = fa + a(h1 — f1)

f2 ha
(c) Deformation transfer by SRNF inversion

Q(h2) = Q(f2) + a(Q(h1) — Q(f1))-



Deformation transfer results

S ha f2 ha P ha
(a) Source deformation | (b) Deformation transfer by linear extrapolation, (c) Deformation transfer by SRNF inversion
ha = fa + a(hy — f1) Q(h2) = Q(f2) + A(Q(h1) — Q(f1))-
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Summary statistics

* Back to our mean shape

— Given a set of surfaces £, 1, ....

— We want to compute the mean shape and the modes
of variations

* Using SRNFs

— Compute Q(f,), Qlf5), ...

— Use Principal Component Analysis (PCA) in the SRNF
space

— Invert the mean and principal directions back to the
surface space
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Summary statistics results

m
h

103

X
i
i

(a) Shape.

Mean and modes of variation



Summary statistics results

Mean and modes of variation
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Summary statistics results

Mean and modes of variation Random human body shapes
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Classification of shapes
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Classification of shapes

s49p12
s36p12
s62p12
s104p12
s52p12
sipi2

+1s104p3

Pose 12

—r—

(SF Pose® 5
s39p3
Pose3 ..
-1s100p3
s47p3
-1s110p3
“{s1p3
s44p3
“1s21p3
+{s53p7
Pose7 =i Pose3

s51p7

“1s19p7
s110p7
s60p7
-{s62p7
{s58p7
|s105p7
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| s,,,, Pose 7 )
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Pose 5 -«
s1p5

- 1s104p5
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Classification of shapes — SHRECO7

e MDS plots

Euclidean distance between surfaces before registration
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Classification of shapes — SHRECO7

e MDS plots

Euclidean distance between Euclidean distance in SRNF

surfaces after registration shape space
110



* SRNF representation
— Efficient registration even under large elastic deformations

— Linearizes the shape space
* Perform standard analysis (using vector calculus) in the space of SRNFs
* Map the results back to the space of surfaces

* Modelling tasks become straight forward vector calculus
operations
— Deformations, deformation transfer
— Symmetrization
— 3D shape generation
— Statistical classification
— Regressions

111



* The elastic registration procedure requires
parameterized surfaces

— Closed genus-0 surfaces = spherical
parameterization

— Open surfaces (e.g. human faces) = disk
parameterization

— High genus surfaces are hard to parameterize

* Do not handle topological changes
— E.g. when a bone erodes, a hole might appear.

— |t can be a parameterization issue
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* The elastic metric
— SRNF is a special case for alpha =%, beta=1

e ), ) = o | 2 s (0o, 09l e

— Ideally, we want to control the weight of each term

— There is no such nice simplification for arbitrary alpha
and beta
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How about objects with structural variability?
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