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Statistical shape analysis
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The building blocks

* A representation

* A metric for measuring dissimilarities (distances) between
shapes

— Is invariant to shape preserving transformations
— Measures deformations that change shape
— |s easy to compute

A mechanism for computing correspondences and geodesics

— A geodesic is an optimal sequence of deformations that align one
shape onto another



Representation
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Quantifying shape similarities and differences

* The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto
the other

Different ways of quantifying bending

Differences in the orientation Differences in the surface Differences in the Second
of normal vectors curvatures Fundamental Forms (ll)

Different ways of quantifying stretch (elasticity)

Differences in the First
Fundamental Form
(the metric)

Differences in
local surface area



Quantifying shape similarities and differences

* The difference between two surfaces is the amount of
bending and stretching needed to align one surface onto

the other

Different ways of quantifying bending

of normal vectors

Differences in the orientation Differences in the surface Differences in the Second
curvatures Fundamental Forms (ll)

Different ways of quantifying stretch (elasticity)

Differences in
local surface area

Differences in the First
Fundamental Form
(the metric)

Jermyn et al. (ECCV2012) Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields



Only suitable for manifold shapes

¢ Ma nlfOld Sha peS are Sim ple Laga et al. (2017) Numerical Inversion of SRNF maps
for Elastic Shape Analysis. In IEEE PAMI
— Can be easily parameterized
— There are elegant tools from differential geometry

— They bend and stretch but they have a fixed topology
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(c) Randomly synthesized 3D human bodies
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What about objects that vary in topology?

* Many natural objects deform in geometry and topology
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In this presentation

* Objects that have a tree structure

Correspondences and geodesics ) (a) Tnput trees.
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In this presentation

* Application to graphics (and biology)
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Automatics synthesis of Sketch-based synthe5|s of
3D botanical trees 3D botanical trees



In this presentation

* Building blocks

— A representation and a metric for measuring dissimilarities
* It should measure geometric and topological deformations that change shape

— Correspondences and geodesics

* Geodesicis the shortest path, with respect to a metric, between two points
* Inshape analysis, it is the optimal path that deforms one shape onto another

* Applications in graphics and biology
— Means and modes of variation for botanical trees and plant roots
— Synthesizing botanical trees from a few parameters (regression)
— Symmetry analysis



The general framework




The general framework

Tree-shape space




The general framework

Tree-shape space
T1
2
T3

T4 T5 ¢ T7

A path in the tree-shape space is a sequence of deformations
( and stretching of branches, and changes in the tree topology)



The general framework

Tree-shape space
T1
2
T3

T4 T5 ¢ T7

The shortest path, under the metric that quantifies
, stretching, and topological changes, is called a geodesic



The general framework

Tree-shape space
T1




Representation of tree-like shapes
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Representation of tree-like shapes

* Tree-like shapes as a tree graph

— Nodes v € IV are bifurcation points, Edges e € E connect bifurcation points

£.(0)
Input tree Tree structure



Representation of tree-like shapes

 Each edge has a geometry
— 1D skeletal curve + thickness of the branch at each point
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Representation of tree-like shapes

 Each edge has a geometry
— 1D skeletal curve + thickness of the branch at each point

\ X, €F, = (R?)",d = 4,

n is the no. of sample points
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Input tree Tree structure Geometry of the edges



Parameterization with maximal binary trees

Dotted edges are virtual (collapse) edges of length



Parameterization with maximal binary trees

A tree becomes an element of X = F,, X -+ X Fo, .




The tree-shape space and the metric

* Atreeis an element of X = Fe X+ X Fe,.

* The tree-shape space is set of subspaces (orthants) glued together
- Asubspace Xi = Fe, - X Fe, . contains "
trees whose non-zero edges are (61, e L €k)
* Within the same orthant /
— Geometry varies but structure remains unchanged 0(0{;
.. e

 Transitions across orthants \

— changes in topology (edge collapse, node split)

Topological transitions



Metrics and geodesics

* A geodesic is the shortest path between two trees x and y
— It can go through multiple orthants (edge collapses, node splits)
— Itis the solution to

N-1
arg min {dg(:z:, y) = Z d* (x4, $t+1)}
t=1

 The minimization is over all possible
rigid transformations and
re-parameterizations of the two trees

Topological transitions



The parameterization is not unique

* Binary trees that collapse to the same tree-shape are

equivalent
A%
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Binarization Parameterization
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Metrics and geodesics

* A geodesic is the shortest path between two trees x and y
— It can go through multiple orthants (edge collapses, node splits)
— Itis the solution to

N-1
arg min {dﬁ(w,y) = Z d* (4, $t+1)}
t=1

* The quality of the geodesic depends
on the choice of the metric d(. , .)

Topological transitions



A metric which quantifies bending and stretching

* Bending corresponds to changes in

— The orientation of the tangent vectors to the skeletal curve

e Stretching corresponds to

— Branch elongation, which can be measured by changes in the
magnitude of the tangent vector to the skeletal curve

— Changes in the thickness of the branches

Bending

(B.B) = af
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The ESRVF tree-shape space

e |f we set
— a=c=1,b=%

* and define a branch with its Extended Square-Root Velocity
function (ESRVF) (q, r), where

~ g is the square-root velocity function ¢(s) =
(SRVF) of the skeletal curve

— ris the thickness

')
£ (s)lI2

* The complex metric becomes an L2 metric in the ESRVF space



The ESRVF tree-shape space

 Map all trees onto the ESRVF space, use the QED metric to compute
geodesics, and map the result back for visualization
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Examples of geodesics

QED in tree-shape space QED in the ESRVF tree-shape
[Wang et al. ACM ToG2018] space [Wang et al. SGP2018]



Examples of geodesics

QED in the ESRVF tree-shape space [Wang et al. SGP2018]



Examples of geodesics (video 1 and video 2)

QEDT in tree-shape space  QEDT in the ESRVF QEDT in tree-shape space QEDT in the ESRVF

[Wang et al. ToG2018 tree-shape space [Wang et al. ToG2018] tree-s-hape.space
[This Articlel [This Article]




Application to symmetry analysis

Shape f



Application to symmetry analysis

Shape f

F=H()/

(Refléction of f with
respect to an arbitrary plane)

H(v)= (I —2%)

vy



Application to symmetry analysis

Shape f Fully styrr:emetrlc

(Reflectlon of f with
respect to an arbitrary plane)

H(v) = (1—2%7)






Applications — Summary statistics

* Mean tree of a population of trees
— Map all the trees to the ESRVF space
— Compute their mean by solving

n
. 2
Hq = argmin ) [d(q,q;)]"
=1

l

— Map the result back to the tree-shape space for visualization



Applications — Summary statistics

* Modes of variation (Geodesic PCA)
— Map all the trees to the ESRVF space
— Compute their mean
— Project all points to the tangent space at the mean
— Perform PCA in the tangent space

— Map the principal directions to principal geodesics in the ESRVF
space

— Map the principal geodesics in the ESRVF space to the tree-
shape space for visualization



Applications — Random sampling

* Synthesizing random trees
— Perform PCA in the tangent space to the ESRVF space

— Generate random samples N /A
: . OV Al
in this tangent space ,Zl

— Map the sample to the N
ESRVF space q=Exp,, (,ZI o \/ZA,-)

— Map the sample back
to the trees-shape space for visualization



Application - Mean tree computation

Input tree models {x,,i=1,---, N}
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Application - Mean tree computation

Input tree models {x;,,i=1, -, N}




Examples of mean trees

Input tree models

Mean tree

42



Examples of mean trees

Input tree models

Mean tree
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Applications — Summary statistics

(a) Input trees. (b) Mean and first three modes of variation.



Applications — Summary statistics

Within one standard deviation

Within two standard deviations

Beyond two standard deviations

Automatically synthesized random trees




Applications — Summary statistics
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(a) Input trees.

(b) Mean and first three modes of variation.



Applications — Examples of summary statistics

Within one

standard deviation
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Within two standard deviations

Beyond two standard deviations

Automatically synthesized random trees




Applications — Regression

N
* Any tree can be written in the formq=Exp, (Z-

* Let p be a set of m parameters

— Assume that any tree can be obtained fro
using the linear relation

Axp=b

ese parameters

— A is the regression matrix
— b is a vector which holds the b/’s



Applications — Regression

N
* Any tree can be writen in the form q=Exp, (Z b,--Ai)
i=1

* Let p be a set of m parameters

— Assume that any tree can be obtained from these parameters
using the linear relation

AXp=Db
* The parameters b can be

— Biologically motivated




Applications — Regression

N
* Any tree can be writen in the form q=Exp, (Z b,--Ai)
i=1

* Let p be a set of m parameters

— Assume that any tree can be obtained from these parameters
using the linear relation

A >< p — b Input:

* The parameters b can be 2D Crown

Contour

— Biologically motivated

. Output:
— 2D sketches in our case 3D Tre:ModeI



Applications — Regression (video 3 and video 4)

e Sketch-based 3D tree synthesis (videos)
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Applications — Regression

e Sketch-based 3D tree synthesis




Limitation
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Formulation 2

* A tree as layers of curves

— Each side branch will grow at a location of the
main parent branch

— Each curve will be represented with its
SRVF function

)
[ (s)]l2

q(s)




Formulation 2

* |n the case of two layers (one main branch and N lateral
branches), each tree i will be represented as

SRVF of the main branch Location of the i-th _
lateral branch on the main bracnh

SRVF of the i-th lateral branch




Formulation 2

e The metric
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Formulation 2

de (

ne metric

— Deforming the main branch

— Deforming the lateral branches
— Moving the position of the lateral branches along their parent
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Some preliminary results
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Application plant root analysis (preliminary results)

e Data set

Cai et al. 2015. RootGraph: a graphic optimization tool for automated image
analysis of plant roots



Examples of geodesics between wheat roots




Application to plant root analysis (preliminary results)

 Examples of mean roots
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Limitations

 Computationally very expensive

— Current implementation limited to two layers (main branch +
lateral branches)

— Extending it to more layers requires efficient implementation
(note that the metric is recursive!)

* The quality of the results depends on the choice of the
paremeters A = (A, Ag, Ap)



Summary

 Two formulations of the tree-shape space and associated
metric for statistical analysis of 3D botanical trees

— The metric captures bending, stretching, and topological variations

* Used to compute
— Geodesics, Summary statistics, random sampling
— Regression, which is used in a 2D sketch-based 3D tree synthesis

 The second formulation is better but is computationally very
expensive

— Current implementation is limited to only two levels



Summary
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