
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ
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Abstract. We propose a class of m-crane control systems, that generalizes two- and three-dimensional crane systems. We prove that each
representant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is
differentially flat. Then we investigate its control properties and derive a control law for tracking control problem.
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1. Introduction
Several authors considered crane systems, both two- and three-
dimensional, and investigated their structural properties [2],
flatness [5], motion planning and tracking [1], [16]. Indepen-
dently of the dimension, these systems share common prop-
erties that can be further generalized. In this article, we pro-
pose a class of m-crane control systems constituting a multidi-
mensional generalization of the above-mentioned systems. We
describe this class, investigate its properties and prove that m-
crane systems are feedback equivalent to a normal form, more
precisely, to the second order chained form with drift. For
that chained form, we prove flatness of differential weight 5m
(where m is the number of controls). This article is organized
as follows. In Section 2, we study the m-crane and derive its
equations by calculating the zero dynamics of a constrained
system. In Section 3, we show that the system is feedback
equivalent to the normal form. Section 4 presents results con-
sidering flatness of m-crane systems. Finally, in Section 5 we
use the fact that for a control system to be flat is equivalent
to be dynamically linearizable, to derive a control law for the
trajectory tracking problem and show, in Section 6, simulation
results for the 2-crane system. We stress that the presented dy-
namic linearization is exact, in the sense that the nonlinearities
of the system are fully compensated by a change of coordi-
nates and feedback and should not be confused with the linear
approximation, where nonlinearities are neglected.

2. Modelling the class of m-crane systems
In this section, a model of m-crane systems will be proposed
and studied. It is a multidimensional generalization of a system
that is known in the literature as an overhead crane, see [2],
[5], which have been an inspiration for our study. For better
readability, we start with the simplest case of 2-crane1 and then
we extend our considerations to the general case.

2.1. 2-crane Consider a pendulum of mass µ attached to a
cart (of mass M) that moves in the X-direction. The position
of the cart (measured at the point where the rope is connected
to the winch) is denoted by d. We assume that the rope is

∗e-mail: marcin.s.nowicki@doctorate.put.poznan.pl
1see Remark 2

wound around the winch, therefore the connection point does
not change its vertical component and its coordinates are thus
(d,0). The forces acting on the mass µ are the tension of the
rope T and the gravitational force Fg = µg. The tension can
be projected along the horizontal direction X and the vertical
direction Z as Tx = T sinθ and Tz = T cosθ . The cart is sub-
ject to a friction force cd ḋ, the tension of the rope Tx, and an
external force F̃ that is controlled. There is a winch (of radius
b and moment of inertia J) on the cart, that changes the length
of the rope r. It is influenced by a friction cr ṙ, tension b2T ,
and external torque C̃ . We neglect the dynamics of the winch
itself, but we take into account the torque that the movement of
the winch produces, that serves as a second control in the sys-
tem. The position of the pendulum is expressed with respect to
the global frame (X ,Z) via coordinates (x,z). See Figure 1.

Fig. 1. The overhead two dimensional crane control system

Based on these simple relations we can write the dynamics
of the system:

µ ẍ =−T sinθ

µ z̈ =−T cosθ +µg

Md̈ =−cd ḋ + F̃ +T sinθ

Jr̈ =−cr ṙ−bC̃ +b2T,

(1)

that are subject to the following constraints (recall that the con-
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nection point of the rope has coordinates (d,0)):

x = r sinθ +d

z = r cosθ .
(2)

At first, a feedback is designed to remove dissipative terms,
which are irrelevant to this study

F̃ = cd ḋ +F

C̃ =
1
b
(−cr ṙ+C ) .

While the above set of differential-algebraic equations (1)-
(2) is easy to derive, it is obscure when represented as a control
system. The reason is that the model is over-represented. First,
there is a supplementary configuration variable θ that can be
eliminated from (1) due to the algebraic equations (2). Second,
the variable T is free (i.e. there is no differential equation for
it), so it is a driving variable. Third, it seems like there are
4 degrees of freedom, since there are 4 equations of motion
but because of the algebraic (holonomic) constraints (2) the
number of degrees of freedom is actually 3. In order to express
(1)-(2) as a classical mechanical control system of the form
ξ̈ = F(ξ , ξ̇ )+∑

m
i=1 Gi(ξ )ui, we will eliminate the holonomic

constraints. First, we will get rid of the extra variable θ . From
the constraints (2), we calculate sinθ = x−d

r and cosθ = z
r and

plug them into (1)

ẍ =−T
x−d
rµ

z̈ =−T
z

rµ
+g

d̈ =
1
M

F +T
x−d
rM

r̈ =−1
J
C +

b2

J
T.

(3)

System (3) can be considered as a system that evolves on
the tangent bundle TΞ =

{
(ξ , ξ̇ ) : ξ ∈ Ξ, ξ̇ ∈ Tξ Ξ

}
of the 4-

dimensional configuration manifold Ξ with coordinates ξ =
(x,z,d,r) ∈ R3 ×R+ = Ξ and three driving variables (free
variables, i.e. differentially unconstrained variables) are
(F ,C ,T ), and subject to one holonomic constraint acquired
from (2):

ρ(ξ ) := (x−d)2 + z2− r2 = 0, (4)

which describes a cone in R2×R+, translated by d along the
variable x, the apex being excluded by r > 0.

In this setting, it is immediate to realize what is the role of
T in the system. This variable is controlled by "the Nature"
in order to satisfy the constraints of the system. In classical
mechanics such variables are called Lagrange multipliers and
are well studied [9]. Although for any T there exists a solution
of (3), only particular choices of T lead to solutions satisfy-
ing additionally (4). The driving variable T , interpreted as a
control, forces the solutions of (3) to stay on the submanifold
Q := {ξ ∈ Ξ : ρ(ξ ) = 0}. It is natural to find this 3-manifold
and to restrict the motion to it. This is the idea behind various
methods of "eliminating Lagrange multipliers" [18]. Although

there are many natural direct methods, we propose a different
approach (similar to the one used in [8], pp. 108). It is our
belief that it gives an interesting insight into the nature of the
problem.

2.2. The constrained system represented as zero dynamics
For the sake of simplicity, we formulate the following method
for the case, when control system has a single constraint. Con-
sider a smooth mechanical system

ξ̈ = F(ξ , ξ̇ )+
m

∑
i=1

Gi(ξ )ui +a(ξ )λ (5)

where ξ ∈ Ξ ⊂ Rn, the controls u ∈ Rm, and λ is a Lagrange
multiplier to be chosen to fulfill the holonomic constraint

ρ(ξ ) = 0. (6)

We can consider the function ρ as an R-valued output of sys-
tem (5) and let us assume that its relative degree with respect
to λ is well defined and equals two (meaning that the second
order time-derivative of ρ (ξ (t)) depends explicitly on λ ). It
follows that locally ∂ρ

∂ξi
6= 0 and, without loss of generality, we

can suppose that ∂ρ

∂ξn
6= 0 (if not, we permute ξi and ξn) and we

put w = ρ(ξ ) and z j = ξ j, 1≤ j ≤ n−1. In (w,z)-coordinates
the system reads

z̈ j = Fj(w, ẇ,z, ż)+
m

∑
i=1

G ji(w,z)ui +a j(w,z)λ

ẅ = Fn(w, ẇ,z, ż)+
m

∑
i=1

Gni(w,z)ui +an(w,z)λ ,

for 1 ≤ j ≤ n−1. The constraint equation ρ(ξ ) = 0 becomes
w = 0 and implies ẇ = ẅ = 0. The relative degree is two, thus
an(w,z) 6= 0, and λ can be explicitly calculated as a function
of z and u as

λ =− 1
an

(
Fn +

m

∑
i=1

Gniui

)∣∣∣∣
w=ẇ=0

= α(z, ż)+
m

∑
i=1

βi(z)ui

and plugging it into the remaining equations justifies the fol-
lowing.

PROPOSITION 1. The zero dynamics of system (5)-(6) de-
fine the constrained system

z̈ j = Fj +
m

∑
i=1

G jiui +a j

(
α +

m

∑
i=1

βiui

)
= F̃j +

m

∑
i=1

G̃ jiui (7)

whose configuration manifold Q := {ξ ∈ Ξ : ρ(ξ ) = 0} is of
dimension n− 1, and is equipped with coordinates z. For the
so obtained control system, the dimension of the state space
TQ is 2n−2 and the number of controls is m.

To summarize, the method consists of differentiating w =
ρ(ξ ) two times along the dynamics and calculating λ =
α(z, ż) +∑

m
i=1 βi(z)ui that forces the system to evolve on the

manifold Q = {ξ ∈ Ξ : ρ(ξ ) = 0} and thus to respect the con-
straint.
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2.3. 2-crane control system Based on the method formulated
in the previous subsection, the mechanical system of 2-crane
will be derived. The constraint is w = ρ(ξ ) = (x−d)2 + z2−
r2 = 0 and thus

ẇ = 2
(
(x−d)(ẋ− ḋ)+ zż− rṙ

)
= 0 (8)

ẅ = 2
(
(ẋ− ḋ)2 + ż2− ṙ2 +(x−d)(ẍ− d̈)+ zz̈− rr̈

)
= 0

implying that the relative degree with respect to T is, indeed,
two because ẍ, z̈ and r̈ depend explicitly on T . From (4) and (8)
we calculate r and ṙ and, using (3), put into the above

ẅ =2

((
(x−d)ż− z(ẋ− ḋ)

)2

(x−d)2 + z2 + zg− x−d
M

F+

+

√
(x−d)2 + z2

J
C − ε1(x−d)2 + ε2z2

µM
√
(x−d)2 + z2

T

)
=

=η
(
x, ẋ,z, ż,d, ḋ

)
+ τ1(x,d)F + τ2(x,z,d)C+

+κ(x,z,d)T = 0,

where ε1 = µ +M+ µMb2

J , ε2 = M+ µMb2

J , and η ,τ1,τ2,κ are
smooth functions of the indicated variables. Calculating T as

T =−η + τ1F + τ2C

κ
=−(α +β1F +β2C ) , (9)

and plugging into (3) gives

ẍ = (α +β1F +β2C )
x−d

µ
√
(x−d)2 + z2

z̈ = (α +β1F +β2C )
z

µ
√
(x−d)2 + z2

+g

d̈ =
1
M

F − (α +β1F +β2C )
x−d

M
√
(x−d)2 + z2

.

(10)

Note that since κ 6= 0, the tension T is well defined, and
thus the description is global on Q. Indeed, from Proposi-
tion 1 it follows that the constrained system (10) evolves on
the tangent bundle TQ = Q×R3 of the configuration manifold
Q = {(x,z,d)∈R3 : x−d 6= 0 and z 6= 0}. It is a control-affine
system of the form (7), with m = 2, that is, with two inputs.

Now apply to (10) static invertible feedback given by

u1 =
1
M

F

u2 =
1

µ
√
(x−d)2 + z2

(α +β1F +β2C ) ,

which brings the 2-crane system into the form

ẍ = u2(x−d)

z̈ = u2z+g

d̈ = u1−u2
µ

M
(x−d).

(11)

2.4. m-Crane While it has been reported that the system with
one additional degree of freedom, (see [5] and Remark 1 be-
low), the so called three dimensional crane (3-crane, for short)
is somehow analogous, it seems that it has never been investi-
gated in details. As it will be shown, the 2-crane and 3-crane
belong to a larger class of systems that will be described in this

section. Therefore, we deliberately skip modeling the 3-crane
and go directly to an arbitrary dimension.

REMARK 1. In the literature (and the colloquial language),
the 2-crane is called the two dimensional crane. Notice, how-
ever, that despite the numbers match, they have different mean-
ing. In fact, the name 2-crane refers to the number of controls
(the m-crane has m controls) while "two-dimensional" refers
to a crane that moves in a plane. We avoid the popular name,
since it is misleading: the term "two dimensional" brings to
mind that the configuration space is 2-dimensional, which is
not the case (it is actually 3-dimensional).

The precedent analysis can be generalized to any number of
dimensions. The model of m-crane consists of a varying-length
rope with a load attached (a pendulum), in an m-dimensional
Euclidean space, hooked on to a platform that moves in the
first m−1 directions (all being controlled). The change of the
length of the pendulum is carried out by a winch mounted on
the platform. The movement of the pendulum in the m− th
direction is influenced by the gravitational acceleration g. The
configuration of the end-point of the pendulum is in an (m−1)-
dimensional sphere of radius r (which can vary) so the system
has 2m−1 configuration, 2(2m−1) states (configurations and
velocities) and m controls. The position of the platform (mea-
sured at the point, where the rope is connected to the winch)
is (d1,d2, . . . ,dm−1), therefore the origin of the sphere has co-
ordinates (d1,d2, . . . ,dm−1,0). Denote by θi the angle in the
(Xi,Xi+1)-plane form Xi axis with the range 0 ≤ θi < 2π for
1 ≤ i ≤ m− 2 and θm−1 being in the range of 0 ≤ θm−1 ≤ π .
The configuration of the end-point of the pendulum is de-
scribed by a Cartesian coordinate system as

x1−d1 = r cosθ1 = rS1

x2−d2 = r sinθ1 cosθ2 = rS2

x3−d3 = r sinθ1 sinθ2 cosθ3 = rS3

...

xm−1−dm−1 = r
m−2

∏
i=1

sinθi cosθm−1 = rSm−1

xm = r
m−2

∏
i=1

sinθi sinθm−1 = rSm,

(12)

which describes constraints of the system. The equations of
dynamics of the pendulum, the platform, and the winch are:

µmẍi = −T Si for 1≤ i≤ m−1
µmẍm = −T Sm +µmg

µid̈i = −ciḋi + F̃i +T Si for 1≤ i≤ m−1
Jr̈ = −cr ṙ−bC̃ +b2T

(13)

where µm is the mass of the end-point (load), µ1 . . . ,µm−1 are
mass parameters of the platform in each of m−1 directions (it
may vary depending on the construction), J is the moment of
inertia of the winch.

Similarly, as in the case of the 2-crane, the dissipative terms
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can be compensated by an appropriate feedback

F̃i = ciḋi +Fi

C̃ =
1
b
(−cr ṙ+C ) .

From (12) we calculate

Si =
xi−di

r
for 1≤ i≤ m−1

Sm =
xm

r
and plug into (13), which gives the system

µmẍi =−T xi−di
r for 1≤ i≤ m−1

µmẍm =−T xm
r +µmg

µid̈i = Fi +T xi−di
r for 1≤ i≤ m−1

Jr̈ =−C +b2T.

(14)

that evolves on TΞ, where Ξ =R2m−1×R+ consists of config-
urations (x,d,r) ∈ Ξ, subject to the holonomic constraint

ρ(ξ ) = (x1−d1)
2 + . . .+(xm−1−dm−1)

2 + x2
m− r2 = 0.

(15)

We identify the zero dynamics, see section 2.2, defined by
above constraint (15), by calculating

w = ρ(ξ ) = 0

ẇ =
d
dt

ρ(ξ ) = 0

ẅ =
d2

dt2 ρ(ξ ) = 0

and we express r, ṙ,T (using the first, second, and third equa-
tion, respectively) as functions of (x1, . . . ,xm,d1, . . . ,dm−1) and
their derivatives. The solution for T is of the form

T = α +
m−1

∑
i=1

βiFi +βmC

and we plug it into (14) to get, for 1≤ i≤ m−1,

µmẍi =−

(
α +

m−1

∑
i=1

βiFi +βmC

)
xi−di

r

µmẍm =−

(
α +

m−1

∑
i=1

βiFi +βmC

)
xm

r
+µmg

µid̈i = Fi +

(
α +

m−1

∑
i=1

βiFi +βmC

)
xi−di

r
.

We scale the controls by setting ui =
1
µi

Fi and replace the

last control by um =− 1
µmr

(
α +∑

m−1
i=1 βiFi +βmC

)
=− 1

µmr T .
Thus the m-crane system

ẍi = um(xi−di), for 1≤ i≤ m−1,
ẍm = umxm +g
d̈i = ui−um

µm
µi
(xi−di), for 1≤ i≤ m−1,

(16)

evolves on TQ=Q×R2m−1, where Q= {(xi,xm,di)∈R2m−1}
is the configuration manifold, equipped with the coordinates
q = (x1, . . . ,xm,d1, . . . ,dm−1), and consisting of points that re-
spect the constraint (15).

REMARK 2. One could ask why the simplest considered ex-
ample is that of the 2-crane. By Section 2.4 it is fairly easy
to deduce what would be the 1-crane. It is a pendulum in 0-
sphere, which is a pair of points {−r,r}, where r can vary, and
one equation of the dynamics Jr̈ = −cr ṙ− bC̃ , with one con-
trol C̃ . This system is simply (static) feedback linearizable to
the double integrator.

3. Equivalence of the m-crane to the second or-
der chained form with drift

In this section we will show that the m-crane (16) can be further
simplified and brought to a normal form, that is the second
order chained form with a constant drift. For better readability,
we first explain the normal form for the 2-crane, and then we
give it for the general case. Consider 2-crane system (11) and
introduce a new coordinate s = µ

M x+d. The system in (s,x,z)-
coordinates reads

s̈ = u1

ẍ = u2(x−d) = u2 (M̄x− s)

z̈ = u2z+g,
(17)

where M̄ = µ+M
M . Until now all transformations have been

global on Q∼= Rn. Now, we realize that system (17) exhibits a
singularity at z = 0 since the third equation reads z̈ = u2z+g,
is independent of the remaining equations and controls, and its
linear approximation at z = 0 is not controllable. Therefore we
restrict our consideration assuming z 6= 0, i.e., now the config-
uration manifold is Q = {(s,x,z) ∈ R3 : z 6= 0}. We apply the
following feedback

ũ1 = u1

ũ2 = u2z,
(18)

and the system is

s̈ = ũ1

ẍ = ũ2
M̄x− s

z
z̈ = ũ2 +g,

and we change the coordinates

z1 =
M̄x− s

z
z2 = z

z3 = x,

which results in the following system

z̈1 = ᾱ + β̄1ũ1 + β̄2ũ2

z̈2 = ũ2 +g

z̈3 = z1ũ2,

4 Bull. Pol. Ac.: Tech. XX(Y) 2016
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where:

ᾱ =
2ż
z3 ((M̄x− s)ż− (M̄ẋ− ṡ)z)−g

M̄x− s
z2

β̄1 =−
1
z

β̄2 = (M̄−1)
M̄x− s

z2 ,

which, after applying feedback v1 = ᾱ + β̄1ũ1 + β̄2ũ2, v2 = ũ2,
results in the normal form

z̈1 = v1

z̈2 = v2 +g

z̈3 = z1v2.

Throughout this section, the index i satisfies 1 ≤ i ≤ m − 1.
In order to formulate the general result, define Q+ =
{(xi,xm,di)∈R2m−1 : xm > 0} and Q−= {(xi,xm,di)∈R2m−1 :
xm < 0}.

PROPOSITION 2. The m-crane, given by (16) on Q+ and on
Q−, is globally static feedback equivalent to the second order
chained form with a constant drift vector field:

z̈i = vi

z̈m = vm +g

z̈m+i = zivm.

(19)

Proof. First, introduce new m−1 global coordinates:

si =
µm

µi
xi +di

and keep the m coordinates (x1, . . . ,xm). The transformed sys-
tem in (s,x)-coordinates reads

s̈i = ui

ẍi = um(µ̄ixi− si)

ẍm = xmum +g,

where µ̄i =
µi+µm

µi
.

The normal form (19) is obtained by applying feedback

ũi = ui

ũm = umxm xm 6= 0,

which yields the following system

s̈i = ũi

ẍi = ũm
µ̄ixi− si

xm

ẍm = ũm +g.

Introduce new global coordinates on Q+ and on Q− by

zi =
µ̄ixi− si

xm

zm = xm

zm+i = xi+1

and the system reads

z̈i = ᾱi +
m

∑
j=1

β̄i jũ j

z̈m = ũm +g

z̈m+i = ziũm,

which, after applying feedback vi = ᾱi +∑
m
j=1 β̄i jũ j, vm = ũm,

gives normal form (19).

4. Flatness of m-crane
The notion of flatness and of flat systems was proposed and
then intensively studied in the ’90s by Fliess, Lévine, Martin
and Rouchon [3] [4], Jakubczyk [7], Pomet [14] [15], Murray
[10], and others. Despite extensive efforts, a complete charac-
terization of flatness is still unknown. Apart from theoretical
challenge, it has attracted a lot of attention because of its ap-
plications in control design, e.g. constructive controllability
problem and trajectory tracking. Among various (equivalent)
formulation of the notion of flatness, we will use the following
one

DEFINITION 1. The system

Σ : ζ̇ = F(ζ ,u), (20)

where ζ ∈ X ⊂ RN and u ∈ U ⊂ Rm, is (locally) flat at
(ζ0, ūl

0), where ζ0 ∈ X and ūl
0 = (u, u̇, . . . ,u(l)) ∈U ×Rml , for

l ≥ −1, if there exist m smooth functions (flat outputs) φi =
φi(ζ ,u, u̇, . . . ,u(l)), defined in a neighborhood O l of (ζ0, ūl

0),
such that the state and the controls can be represented as
smooth maps of φ = (φ1, . . . ,φm) and their finite number of
derivatives

ζ = γ

(
φ , φ̇ , . . . ,φ (s)

)
u = δ

(
φ , φ̇ , . . . ,φ (s)

)
,

along any trajectory ζ (t) given by a control u(t) that sat-
isfy

(
ζ (t),u(t), u̇(t), . . . ,u(l)(t)

)
∈ O l . If the functions φ =

(φ1, . . . ,φm) and the maps γ and δ are defined globally, then
the system is called globally flat.

In general, flat outputs (if they exist) are not unique and a
way to systematize them is by their differential weight [17],
which is the minimal number of derivatives of a flat output φ ,
needed to express ζ and u. Formally, consider a flat output φ ,
such that

ζ = γ

(
φ1, φ̇1, . . . ,φ

(s1)
1 , . . . ,φm, φ̇m, . . . ,φ

(sm)
m

)
u = δ

(
φ1, φ̇1, . . . ,φ

(s1)
1 , . . . ,φm, φ̇m, . . . ,φ

(sm)
m

)
,

where sm stands for the highest order of time-derivatives of φi
present in γ or δ . We will call ∑

m
i=1(si + 1) = m+∑

m
i=1 si the

differential weight of φ . A flat output is called minimal if its
differential weight is the lowest among all flat output of Σ. We
define the differential weight of a flat system to be equal to the
differential weight of its minimal flat output. What is more,
the differential weight is equal to N +m+ r, where r is the
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minimal possible dimension of a precompensator defining a
dynamic feedback that linearizes the system. Systems that are
linearizable by static (r = 0) feedback are flat with differential
weight N +m, for details see [11].

For flat mechanical systems, we may distinguish another in-
teresting property that many of them share, namely configura-
tion flatness (config-flat). Note that, in the case of mechanical
systems, we have ζ = (q, q̇), where N = 2n, with q denoting
configurations and q̇ are velocities. We say that a mechanical
system is config-flat if all flat outputs φi depend on the config-
uration variables q only. This property was studied by Murray
et al. in [10].

Now we formulate some general results describing the m-
crane system. Recall that system (20) is called strongly acces-
sible at ζ if, for any T > 0 the set of points reachable from ζ

in time T has nonempty interior, see e.g. [6],[13].

PROPOSITION 3. The m-crane system (16) is strongly ac-
cessible at any (q, q̇) ∈ TQ±, where Q± = {(xi,xm,di) ∈
R2m−1 : xm 6= 0, 1≤ i≤ m−1}= Q+∪Q−.

Proof. By Proposition 2, the m-crane is feedback equivalent
to (19) on Q±. It is well known that the strong accessi-
bility is feedback invariant, therefore we will show strong
accessibility for normal form (19). Denote ζ = (z, ż) and
express system (19) as ζ̇ = F(ζ ) + ∑

m
i=1 viGi(ζ ). It is

strongly accessible at ζ ∈ Z if dimL0(ζ ) = dim Z, where
the Lie ideal L0 of the system is the Lie ideal generated by
G1, . . . ,Gm in the Lie algebra L = {F,G1, . . . ,Gm}LA, see
e.g. [6],[13]. In the case of mechanical system (19), Z =
TQ± so the condition for strong accessibility is dimL0(ζ ) =
2(2m− 1). We will take the following set of vector fields{

Gi, [G j,adF Gm] ,adF Gi, [adF G j,adF Gm]
}

, for 1≤ i≤ m and
1 ≤ j ≤ m−1, that belong to L0 and show that they span TZ
at every ζ = (z, ż) = (q, q̇). We have

F =
2m−1

∑
i=1

żi
∂

∂ zi
+g

∂

∂ żm
,

and the vector fields

G j =
∂

∂ ż j
for 1≤ j ≤ m−1,

Gm =
∂

∂ żm
+

m−1

∑
i=1

zi
∂

∂ żm+i
,

[G j,adF Gm] =
∂

∂ żm+ j
for 1≤ j ≤ m−1,

adF G j =−
∂

∂ z j for 1≤ j ≤ m−1,

adF Gm =− ∂

∂ zm
−

m−1

∑
i=1

zi
∂

∂ zm+i
+

m−1

∑
i=1

żi
∂

∂ żm+i
,

[adF G j,adF Gm] =
∂

∂ zm+ j
for 1≤ j ≤ m−1,

(21)

indeed, span TZ at every ζ = (z, ż) = (q, q̇).

It is straightforward to see that the m-crane system is not
static feedback linearizable, which we will show for normal
form (19) whose Lie brackets are given by (21). For mechan-
ical systems the distribution D0 = span{Gi,1≤ i≤ m} is al-
ways involutive, but D1 = span{Gi,adF Gi,1≤ i≤ m} is not
involutive since [G j,adF Gm] and [adF G j,adF Gm] /∈ D1. The
m-crane is not static feedback linearizable; it is, however, lin-
earizable via dynamic feedback, as asserts the following result.

PROPOSITION 4. The m-crane system (16) is globally
config-flat on TQ±, provided that the control u ∈ Rm satisfies
um 6= 0, with a global flat output φ =(φ1, . . . ,φm)= (x1, . . . ,xm)
of minimal differential weight 5m.

REMARK 3. Notice that 5m = 2(2m− 1) + m + 2 imply-
ing that the minimal dimension of a linearizing precompen-
sator is 2. It follows from the proof below that, indeed, the 2-
dimensional double preintegration üm = vm of the control um,
dynamically linearizes the m-crane.

Proof. First, we show that φ = (φ1, . . . ,φm) = (x1, . . . ,xm) is,
indeed, a flat output of (16). On Q±, we have

xi = φi xm = φm di =
umφi−φ̈i

um

ẋi = φ̇i ẋm = φ̇m ḋi =
umφ̇i+φiu̇m−

...
φ i

um
− u̇m(φium−φ̈i)

u2
m

um = φ̈m−g
φm

ui = d̈i +um
µm
µi

(
φi− umφi−φ̈i

um

)
,

(22)
which is well defined for φm = xm 6= 0 and um 6= 0. Al-
though from the above it is not immediately clear that the
differential weight is 5m, we will show it in a different way.
Since the state space is of dimension 2(2m− 1) it is enough
to show that after the two-fold prolongation of a well-chosen
input the system is static feedback linearizable. The control
to be prolonged is dm := um (this is just a notation, physi-
cally dm is not a component of the position), therefore the
configuration manifold of the extended system is of dimen-
sion 2m with coordinates (x1, . . . ,xm,d1, . . . ,dm) and controls
are (u1, . . . ,um−1,vm), where vm = üm. The dynamics read, for
1≤ i≤ m−1,

ẍi = dm(xi−di)

ẍm = dmxm +g

d̈i = ui−dm
µm

µi
(xi−di)

d̈m = vm.

(23)

It is straightforward to verify that the lineariz-
ability distribution D0

e = span{Ge
i ,1≤ i≤ m} and

D1
e = span{Ge

i ,adFeGe
i ,1≤ i≤ m}, the index e indicat-

ing extended system (23), are involutive and of constant rank.
Thus the extended system is static feedback linearizable.

The m-crane possess a singularity of the control at which the
system ceases to be flat. From (22) we can see that the singular
control is um = 0. Since um has a physical interpretation of the
tension T , its singular value T = 0 corresponds to the case of
a free-fall of the load (completed by an arbitrary movement in
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all di-directions), which is to deduce from the equations of m-
crane system (16) by setting um = 0 and thus implying ẍi =
0, ẍm = g, d̈i = ui.

5. Derivation of a control law and trajectory gen-
erator for the m-crane

In this section, we derive a cascade controller for m-crane sys-
tem (16) that solves a trajectory tracking problem. The inner
controller is a dynamic feedback controller that linearizes the
original system by prolonging it and then transforming the pro-
longed system into a linear system in the Brunovský canonical
form with controllability indices (4,4, . . . ,4), i.e., m indepen-
dent chains of integrators of length 4 each. The outer controller
is a simple linear feedback that tracks desired trajectories de-
signed by a generator proposed in Section 5.2. below.

5.1. Control law In order to derive the dynamic linearization
feedback for system (16), first, we prolong it by vm = üm to
obtain system (23), where dm = um (see the proof of Propo-
sition 4), and then, second, we find a static feedback that lin-
earizes (23). The latter can be done by observing that the flat
output φ = (φ1, . . . ,φm) = (x1, . . . ,xm) is a linearizing output
for (23) and therefore a linearizing controller is

ui = av̄i +bv̄m + ci for 1≤ i≤ m−1
vm = bmv̄m + cm,

(24)

where a,b,bm,ci, for ≤ i ≤ m, are functions of φ , φ̇ , φ̈ ,φ (3)

given by

a =− φm

φ̈m−g
b =

φmφ̈i(
φ̈m−g

)
2

ci =
2φ

(3)
m

(
φ̇mφ̈i +φmφi

(3)
)

(
g− φ̈m

)
2

+
2φi

(3)φ̇m + φ̈iφ̈m

g− φ̈m
+

+
2φmφ

(3)
m

2φ̈i(
g− φ̈m

)
3
+(

µm

µi
+1)φ̈i

bm =
1

φm

cm =
2φ̇m

2
(
φ̈m−g

)
φm3 −

φ̈m
(
φ̈m−g

)
+2φm

(3)φ̇m

φm2 .

System (23) (equivalently, system (16) after prolongation),
with controller (24), is mapped into the Brunovský canonical
form by choosing linear coordinates as φ

( j)
i , for j = 0,1,2,3,

in which it takes the form

φ
(4)
i = v̄i, for 1≤ i≤ m. (25)

Now, for this linear system (25), the outer cascade is designed
to track desired trajectories φd = (φ1d , . . . ,φmd) by taking

v̄i = φ
(4)
id + ki1(φ

(3)
id −φ

(3)
i )+ ki2(φ̈id− φ̈i)+

+ ki3(φ̇id− φ̇i)+ ki4(φid−φi) for 1≤ i≤ m
(26)

where ki j, with j = 1,2,3,4, are control gains. By plugging
(26) into (25), the error dynamics of the closed-loop system

are obtained as

e(4)i + k1e(3)i + k2ëi + k3ėi + k4ei = 0, for 1≤ i≤ m,

where ei = φid −φi. Appropriately chosen gains (for example
using the pole placement method) ensure that the error dynam-
ics are asymptotically stable. Note that, as will be apparent
later, our reference trajectories are defined on a finite time in-
terval [t0, t f ], therefore our solution requires that the system
starts "sufficiently close" to the reference trajectories, in or-
der to be able to almost approach them before the experiment
ends, that is, before t f . Although this assumption is theoret-
ically limiting, we claim that from practical point of view is
easy to be satisfied.

The original control system (13) is controlled by F̃i and C̃
and the control law (26) is expressed in terms for v̄i’s. To relate
them notice that, first, (24) relates v̄i’s with ui’s (recall that
vm = üm), second, F̃i = ciḋi +Fi and C̃ = 1

b (−cr ṙ+C ), and
third, control inputs Fi and C can be calculated in terms of
ui’s as:

Fi = µiui

C =
µmrdm−α−∑

m−1
i=1 βiFi

βm
,

(27)

where 1≤ i≤ m−1, with

r =

√
m−1

∑
i=1

(xi−di)2 + x2
m,

α =
∑

m−1
i=1 (ẋi− ḋi)

2 + ẋ2
m + xmg

κ

−
(∑m−1

i=1 (ẋi− ḋi)(xi−di)+ xmẋm)
2

r2κ
,

βi =−
xi−di

µiκ
,

βm =
r

Jκ
,

κ =
∑

m−1
i=1 (xi−di)

2(µm +µi +b2µmµi)+ x2
mµi(J+b2µm)

rJµmµi
.

5.2. Trajectory generator We apply a method presented in
[8] to design reference trajectories φ(t) = (φ1d(t), ...,φmd(t))
in the space of flat outputs. We state the problem of gen-
erating a reference trajectory φ(t) as the problem of find-
ing a solution of the reference system φ

(4)
id = v̄id , for 1 ≤

i ≤ m. In other words, to find a reference trajectory φid(t)
starting, at the initial time t0, from a given value φid(t0), to-
gether with given values of the successive time-derivatives
φ̇id(t0), φ̈id(t0),φ

(3)
id (t0) as well as that of the reference control

v̄id(t0) and arriving, at the final time t f , at a given final configu-
ration φid(t f ) (with given values φ̇id(t f ), φ̈id(t f ),φ

(3)
id (t f )), and

v̄id(t f ). We thus, for each component φi(t) of φ(t), fix 5 ini-

tial conditions
(

φid(t0), φ̇id(t0), φ̈id(t0),φ
(3)
id (t0),φ

(4)
id (t0)

)
and

5 final conditions
(

φid(t f ), φ̇id(t f ), φ̈id(t f ),φ
(3)
id (t f ),φ

(4)
id (t f )

)
,

where φ
(4)
id (t0) = v̄i(t0), φ

(4)
id (t f ) = v̄i(t f ). We will design each
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reference trajectory φid(t) in the space of polynomials of de-
gree 9, with 10 coefficients aik for 0 ≤ k ≤ 9 calculated based
on the initial and final conditions.

The polynomial φid(t) is given by

φid(t) =
9

∑
k=0

aik(
t− t0
t f − t0

)k, (28)

and its derivatives by

φ
(k)
id (t) =

1
(t f − t0)k

9

∑
l=k

l!
(l− k)!

ail(
t− t0
t f − t0

)l−k. (29)

The coefficients aik are computed by equating the successive
derivatives of φid at t0 and t f to the initial and the final con-
ditions, respectively. In order to simplify these calculations,
note that, the first 5 coefficients (ai0, . . . ,ai4) can be calculated
directly

ai j =
(t f − t0) j

j!
φ
( j)
id (t0), for 0≤ j ≤ 4, (30)

and the remaining ai5, . . . ,ai9 are given by the system of linear
equation

φ
(k)
id (t f ) =

1
(t f − t0)k

9

∑
l=k

l!
(l− k)!

ail , for 0≤ k ≤ 4. (31)

Notice that we solve equations (28)-(31) independently for
each i = 1, . . . ,m. To summarize, there are 10m coefficients aik
in total, 5m to be calculated from (30) and the remaining 5m
can be calculated by solving m linear systems given by (31).

6. Simulation results
The simulation model corresponds to the small laboratory
crane (schematic drawing is presented in Figure 1), that is char-
acterized by parameters given in Table 1.

M = 1.2 [kg] µ = 0.15 [kg]
J = 0.065 [kgm2] b = 0.02 [m]
g = 9.81 [ m

s2 ]
Table 1: Parameters of the simulated 2-crane system

A control problem considered in the simulations concerns
trajectory tracking of the load for the 2-crane case described
by (1) or, equivalently, by (11), where the position of the load
is given by (x,z) = (x1,x2). By Proposition 4, (φ1,φ2) = (x,z)
are the flat outputs of the 2-crane system (11). In order to
achieve the trajectory tracking problem, we combine cascade
controller (24), (26) and trajectory generator (28)-(31). Since
reference trajectories are (φ1d(t),φ2d(t)) = (xd(t),zd(t)) and
thus describe the time-evolution of the load, we will choose
successive derivatives of x(t) and z(t), at t0 and t f , to vanish,
which guarantees that the crane will carry the load smoothly
with the zero velocity and acceleration at the initial and final
position and with the zero initial and final controls (rest-to-rest
trajectory).

So for the desired trajectory, initial conditions (t0 = 0) are
taken as

xd(t0) = 0.28

ẋd(t0) = ẍd(t0) = x(3)d (t0) = x(4)d (t0) = 0
zd(t0) = 0.3

żd(t0) = z̈d(t0) = z(3)d (t0) = z(4)d (t0) = 0

and final conditions (t f = 30) are taken as

xd(t f ) = 0.78

ẋd(t f ) = ẍd(t f ) = x(3)d (t f ) = x(4)d (t f ) = 0
zd(t f ) = 1

żd(t f ) = z̈d(t f ) = z(3)d (t f ) = z(4)d (t f ) = 0,

The reference trajectory is calculated using (28)-(31) as

xd(t) =xd(t0)+D(
126t5

t5
f
− 420t6

t6
f

+
540t7

t7
f
− 315t8

t8
f

+
70t9

t9
f
)

zd(t) =zd(t0)+Z(
126t5

t5
f
− 420t6

t6
f

+
540t7

t7
f
− 315t8

t8
f

+
70t9

t9
f
),

where D = xd(t f )− xd(t0) and Z = zd(t f )− zd(t0).
We conducted two simulations, with nominal parameters

(scenario S1), and with parametrical uncertainties of 20% on
the cart and load masses, winch radius and winch’s moment
of inertia (scenario S2). Results are presented in Figure 2 and
Figure 3 for, respectively, S1 and S2. In both cases we assume
10% errors on the initial position , that is x(t0) = 0.308 and
z(t0) = 0.33.

In the simulation scenario S1, the closed-loop system
presents results satisfactory for most practical applications,
that is, the tracking error converges around 0 in less than 4
seconds, after that time the reference trajectory is tracked with
trajectory tracking error lower than 10−3 m, while after 15 s
the error reaches 10−10 m. It can be seen that the angle θ

evolves smoothly as expected, although the transient state ob-
served during the initial time of around 5s is oscillatory with an
amplitude of oscillations of circa 0.02 rad. The control force
and torque produce smooth and bounded control signals. It
is significant in the context of implementation in a real-life
system. What is more, the control force F tends to 0, while
C converges to a constant value that defying the gravitational
force. In simulation scenario S2, the system also shows fast
error convergence, but comparing to S1, it is slower of around
3 seconds, what can be observed especially in the graph of the
angle θ . It is worth noting that as a result of parametric uncer-
tainties being present in simulation scenario S2, the errors con-
verge to values around 10−4 m. Oscillations of higher ampli-
tude may be observed on the plot of the control torque C , while
the plot of the control force F remains very similar to S1. For
analyzed scenarios S1 and S2, the presented controller shows
robustness with respect to uncertainties of coefficients and, si-
multaneously, it can also handle uncertain measurements of the
cart position as well as of the cable length.
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Fig. 2. Simulation results for 2 - crane system (S1)
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Fig. 3. Simulation results for 2 - crane system with parametrical uncertainties (S2)
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7. Summary
In this work, a generalization of crane control systems, called
m-crane, was proposed. This generalization has allowed us to
explore many control properties that are shared by representa-
tives of this class. Among others, it was proven, that m-crane
systems are strongly accessible and, which is especially impor-
tant in applications, differentially flat (with differential weight
5m). Next we used this last property to solve trajectory track-
ing problem, that was illustrated by simulations. The geomet-
rical approach to characterize the class of control systems pre-
sented in this article can be extended further to classification
of systems that are linearizable via a two-fold prolongation.
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