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1 Introduction

Tumor and immune micro-environment is a recognized characteristic of cancer cells [1].
These two underlying cellular and molecular contexts influence many other biological

processes, including cell signaling or the epigenetic control of gene expression.
The quantitative characterization of tumour-infiltrating lymphocytes (TILs), for exam-

ple, is of growing importance in precision medicine. With the growth of cancer immunother-
apy, these characterizations are likely to have increasing clinical importance, as understand-
ing each patient’s immune response becomes more important. Recent studies further sug-
gest that the spatial context and nature of cellular heterogeneity within the tumor micro-
environment, in terms of immune infiltrate in the tumor center and invasive margin, is
important in cancer prognosis. Prognostic factors, including immunoscore, which quantify
spatial densities of TIL in different tumor regions, have high prognostic value. Therefore,
assessments of tumor-associated lymphocytes are increasingly important both in the clinical
evaluation of pathology slides and in translational research on the role of these lymphocyte
populations. Our goal is to better understand cancer heterogeneity in solid tumors from the
perspective of tumor/immune infiltration and to assess how nutrient and oxygen gradients
influence tumor cell fate and drug resistance. . Ultimately, understanding these processes
would help find relevant patient subgroups with actionable treatment outcomes (i.e., survival,
treatment response, clinical trial recruitment).

2 Project overview and objectives

Cancer is a complex disease involving multiple genetic and epigenetic changes that contin-
ually evolve during disease progression. To survive and proliferate, cancer cell populations
use adaptive evolutionary strategies based on heterogeneity and survival of the fittest cells
[3].

The high plasticity of cancer cells leads to the rewiring of signaling pathways and metabolic
networks, all in response to changes in their micro-environmental conditions. For all these
reasons, the mathematical modeling of the evolution of cancer must include several bio-
logical scales: molecular, cellular and tissue. In this project, we represent cancer cells as
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distributions on multiple spatial and anatomical dimensions and study their evolution using
high-dimensional partial differential equation models.

3 Scope of the work

The recent approval of immuno-oncology therapies holds great promise to address the need,
but resistance and insufficient biomarkers to predict response [5] underscore the need for
better characterization of the disease. immunosuppression in the tumor microenvironment
(TME). Single-cell transcriptomics, multiplex (low and high plex technologies) have revealed
intra-tumor heterogeneity (ITH) in many types of cancer, identifying cell populations that
promote drug resistance, predict metastatic risk and mediate cancer. plasticity [21, 22, 20].
However, recent advances allow simultaneous capture of the locations of dozens of cell types
in the TME, which is essential for understanding tumour-stroma crosstalk [19, 2, 16, 17].
The orthogonal integration of high-dimensional single-cell spatial data from normal and
diseased tissues as well as standard/routine digital pathology data should therefore facilitate
the dissection of TME cell communication.

Epithelial cancers represent approximately 90% of human malignancies. Here, we com-
bine single-cell and spatial transcriptomics (Nanostring, GeoMX) with single-cell resolution
multiplexed protein imaging of a series of primary human solid tumors, as well as matched
normal tissues and routine H&E digital pathology data. These data will be complemented
by public data-sets using similar technologies (MIBI, 10×Genomics). Among these, NSCLC
and mesothelioma will serve as a prototype to study the role of TME in deep patient phe-
notyping using multi-modal spatial tissue imaging data. In case of positive results, the
methodology will be applied to other solid tumors of strategic interest for internal immuno-
oncology pipelines (i.e. breast, pancreas, liver and bladder). The selection of the indication,
the target population for each indication should be further discussed with our internal com-
mercial collaborator for this project.

In this project, various AI methods [4] – including deep learning – will be used to quan-
tify tumor spatial heterogeneity at different scales (blood vessel distribution, invasion fronts,
cell clusters and metabolic marker distribution) from H&E stained histological sections5, tis-
sue imaging data-sets by multiplexed immunofluorescence and mass cytometry. Ultimately,
these methods will feed the mathematical model with the information [9] (initial data and
parameters) needed to predict tumor progression and response [10] during targeted therapy
[11, 12, 13, 14]. Particular emphasis will be placed on the explainability of innovative AI ap-
proaches, allowing the development of a creative framework [15], by involving our biomedical
partners) [18].

4 Task list

To be defined upon agreement with our collaborators. However, an initial plan would be:
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4.1 Preliminary Phases

1. Scoping: Write the research protocol and datasets specification

2. Data Access: Activate identified business partners and install/enable the infrastructure
to support at the long run the RD activities.

3. Knowledge Engine Priming: Review literature and preprocess public and internal
datasets. Knowledge synthesis to be integrated in analysis or used in post hoc an-
notation of targets relevant to the current project and that are complementary to
ongoing activities.

4. Data Generation: Determine possible new data modalities to be generated to enrich
current datasets and that are needed for the development.

4.2 Analysis Phases

1. Data Preprocessing: Curate clinical data, preprocess molecular data (e.g. harmoniza-
tion across datasets) and histology data (e.g. matter detection, tiling, etc.).

2. Disease Subtype Identification: Perform unsupervised or guided clustering of patients
with multimodal data. Characterization of clusters and prioritization.

3. Subgroup Characterization: Build predictive models from multimodal data and extract
biologically relevant features for subtypes.

4.3 Discovery Phases

1. Target Prioritization: Prioritize potential targets based on strength of association with
subtype features and mechanistic relations with disease phenotype

2. Target Discovery: Apply Knowledge Engine to identify possible biomarkers of identified
subtypes from characterization multimodal features.

5 Project Schedule

The planned duration is 12 months. The key phases and milestones are listed above. A more
detailed version could be discussed with our collaborators.

The project it is a collaboration between DDS/AIDA represented by the BIDP (Biomed-
ical Imaging and Digital Pathology) team located in Chilly-Mazarin (FR), Translational
Sciences Molecular Histology and Digital Pathology laboratory located in Vitry-sur-Seine
(FR), and IBISC laboratory from université Paris-Saclay.
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