
Ph.D. proposition

“Using machine learning techniques to accelerate the proof of
optimality in branch-and-cut algorithms for the NP-hard combinatorial
optimization problem.”

It is well known that branch-and-cut algorithms are the most efficient tools for solving NP-hard
combinatorial optimization problems to optimality. The most famous example is the Concorde
program written by Applegate et al. for solving the Traveling Salesman Problem (TSP). The
branch-and-cut algorithm is a variant of the Branch-and-bound algorithm where one may
generate valid inequalities at branch-and-bound tree nodes to cut off the current fractional
solution. These valid inequalities could be generated either from facet-defining inequalities of
the convex hull of the (integer) feasible solutions of the problem or from generic valid
inequalities of Mixed Integer Programming (MIP) theory. The first, called facet cuts, often are
more efficient than the second, called generic cuts, as they are more specific to the structure of
the problem. But generating facet cuts may be very hard as it requires solving the associated
separation problem, usually NP-hard itself. Branch-and-cuts algorithms also rely on branching
on integer (zero-one) variables to cut off the current fractional solution. All the art of branch-
and-cut algorithms consists in

- making a judicious choice of the node in the branch-and-bound tree to process,
- at the chosen node, choosing generating cuts or branching,
- and finally, determining which kind of cuts to generate for the first case? or which

variable to branch on for the second case.

Different choices in these steps may lead to very other performances of branch-and-cut
algorithms. Therefore, from the early day of branch-and-cut algorithms, many rules of
branching (strong branching, …) and generating cuts (deepest cut…) have been introduced in
the literature. However, no rule could be shown to be the best as the performance depends
heavily on the problem, especially on the instance. Because of this data dependence, recently,
many works have proposed machine learning methods to advise the right rules of generating
cuts and branching.

However, several pathologies persist and can considerably slow down branch-and-cut
algorithms, such as the tailing-off effect. The latter happens when the branch-and-cut algorithm
already finds an optimal solution (by heuristic or by solving relaxations) to the problem but has
great difficulty proving the solution's optimality.

In many situations, especially for hard instances of combinatorial optimization, the tailing-off
effect frequently appears. In this case, the pathology is that branch-and-cut algorithms may
spend more than half of the total execution time to close the gap at less than 1% to optimality.
The tailing-off effect may be due to two following reasons:

- Necessary time devoted to fin violated cuts at the nodes of the branch-and-bound tree,
but their addition to the relaxation improves only very little the lower bound.

- Branching on variables does not allow to fathom nodes in the branch-and-bound tree
anymore.

Hence, the tailing-off effect causes severe pathology of branch-and-cuts algorithms when
solving hard instances. To our knowledge, there is no known solution to overcome this effect
in the literature. The Ph.D. thesis proposes efficient solutions to the tailing-off effect using

machine learning techniques. In contrast with the existing learning methods, we apply machine
learning methods only when the tailing-off effect appears. The Ph.D. thesis should devise
generating cut and branching rules that can help to eliminate the tailing-off effect. These rules
should consider the specific structure of the problem by designing efficient rules to generate
facet cuts. The demonstration of the efficiency of rules will be through case studies on hard
combinatorial optimization problems with high practical impacts, such as TSP and MaxCut.

References:

[1] Yoshua Bengio, Andrea Lodi, Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research, 290
(2): 405-421, 2021.

[2] Nina Balcan, Siddharth Prasad, Tuomas Sandholm, Ellen Vitercik. Sample Complexity of
Tree Search Configuration: Cutting Planes and Beyond. Conference on Neural Information
Processing Systems, 2021.

[3] Nina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to Branch.
International Conference on Machine Learning, 2018.

