

Planning Human-like Movements for Dual-arm Robots

Raúl Suárez

In collaboration with Néstor García and Jan Rosell

Example

Accessing and grasping two target objects (priority left)

Using synergies for dual-arm motion planning

What do we understand by "synergies"?

In simple words:

A synergy is a correlation among the joint positions/movements when they collaborate to do something.

Related names:

Postural synergies (from analysis of human grasp) Eigen-grasps (specifically for grasp planning) Principal motion directions (oriented to motion planning)

Search of human-like movements with reduced complexity

- Search for synergies of a dual-arm anthropomorphic system.
- Motion planning in a search space of lower dimension.
- Preserve human-like appearance.

Planning Human-like Movements for Dual-arm Robots

CC

Basic Approach

- 1. Motion capture
- Projection of captured poses to the robotic system
- 3. Principal Component Analysis
- 4. Reduction of the configuration space dimension
- 5. Motion planning

Basic Proposed Approach

- 1. Motion capture
- Projection of captured poses to the robotic system
- 3. Principal Component Analysis
- 4. Reduction of the configuration space dimension
- 5. Motion planning

Planning Human-like Movements for Dual-arm Robots

Hardware & Software

UR5 & Allegro Hand

C+ **:::ROS**

† The Kautham Project

Motion capture

- Sensors synchronized at 50 Hz.
- Each sample contains:
 - Transformation matrix from transmitter to tracker.
 - 22 measurements describing hand pose and orientation.

Planning Human-like Movements for Dual-arm Robots

Experiments

Pouring

Asembly 1

Asembly 2

Shelf

Free movements (open chain)

Cubes

Handkerchief

Flaa

Transfer

Demonstration tasks

Assembly task

Pouring task

Box task

Free-movement task

Planning Human-like Movements for Dual-arm Robots

Mapping Hand Poses

- Some sensor measurements are nonlinear respect the measure angle.
- · There are coupled measurements.
- A specific model is selected and adjusted for each sensor.

- Different from human hand:
 - Rigid palm.
 - Different thumb and abduction movements.
 - Different ranges of movement.
- Cannot be fully mapped joint-to-joint!

Graphical Verification

Mapping

Projection of the hand pose and then solve the inverse kinematics

$$^{W}T_{B_{i}}$$
 $^{B_{i}}T_{H_{i}} = ^{W}T_{T}$ $^{T}T_{S_{i}}$ $^{S_{i}}T_{H_{i}}$ 8 solutions

Which one to choose?

Planning Human-like Movements for Dual-arm Robots

Solution selection:

Joint angle adjustement

$$\bar{\theta_j} = \operatorname{atan2}\left(\frac{1}{n}\sum_{k=1}^n \sin(\theta_{j_k}), \frac{1}{n}\sum_{k=1}^n \cos(\theta_{j_k})\right)$$

$$\hat{\theta}_{j_k} = \begin{cases} \theta_{j_k} & \text{si } \left|\theta_{j_k} - \bar{\theta}_j\right| \leq \pi \\ \theta_{j_k} - \text{sign}(\theta_{j_k}) 2\pi & \text{si } \left|\theta_{j_k} - \bar{\theta}_j\right| > \pi \end{cases}$$

Planning Human-like Movements for Dual-arm Robots

Mapping

Relation with the mobile manipulator

Basic Proposed Approach

- 1. Motion capture
- Projection of captured poses to the robotic system
- 3. Principal Component Analysis
- 4. Reduction of the configuration space dimension
- 5. Motion planning

Planning Human-like Movements for Dual-arm Robots

Principal Component Analysis (PCA)

- A PCA is run over the mapped configurations.
- The directions with larger dispersion are the Principal Motion Directions (PMD).

Basic Proposed Approach

- 1. Motion capture
- Projection of captured poses to the robotic system
- 3. Principal Component Analysis
- Reduction of the configuration space dimension
- 5. Motion planning

Planning Human-like Movements for Dual-arm Robots

Planning subspace

- The box B contains the 95% of the sample distribution.
- The first q PMDs accumulate the 95% of the variance.
- B_q is the box spanned by the q first PMDs and interior to B.

Selection of main PMDs

Basic Proposed Approach

- 1. Motion capture
- Projection of captured poses to the robotic system
- 3. Principal Component Analysis
- 4. Reduction of the configuration space dimension
- 5. Motion planning

Goal sampling

• Generation of N_c feasible goal configurations

Planning Human-like Movements for Dual-arm Robots

Goal sampling

Configurations must be collision-free!

Goal sampling

• Configurations must be near to the search subspace B_q .

Planning Human-like Movements for Dual-arm Robots

Goal sampling

• The projected configurations into B_q and the projection path must be collision-free.

Planning procedure

- n_c of the N_c sampled goals closest to B_q are selected.
- One RRT-Connect per goal.
- All instances in parallel.
- Once a solution is found, the planning is stopped.

Planning Human-like Movements for Dual-arm Robots

Experimental results

Case	Without PMDs	Task specific PMDs	Other PMDs
Used PMDs	0	4	8
Space dimension	12	4	8
Success rate	100 %	100 %	100 %
Used memory	63.36 Mb	28.64 Mb	48.56 Mb
Used time	2.66 s	0.35 s	1.35 s
Solution length	21.40 rad	4.99 rad	13.49 rad
Valid segments	20 %	69 %	42 %

100-executions average results limited to 100 s, run in a 2.13-GHz Intel Core 2, 4-GB RAM PC.

Motion planning

Motion planning

- The use of synergies (or PMDs):
 - Reduces the planning time.
 - Results in more human-like motions.
 - · Reduces the tree size and the probability of collisions.
- Best results with the task specific synergies.
- Free-movement synergies useful for general application.

Planning Human-like Movements for Dual-arm Robots

Task-dependent synergies for dual-arm motion planning

Exploiting Task Similarities

- Search task similarities based on the corresponding synergies of a dual-arm anthropomorphic system.
- · Improve the motion planning using such similarities.
- Preserve/Improve human-like appearance.

Planning Human-like Movements for Dual-arm Robots

Task likeness

 Likeness index of two tasks using the synergy information:

$$\mathcal{L}(S_A, S_B) = \frac{\Phi_{AB}}{\Phi_{AB_{\max}}} \in [0, 1]$$

$$\Phi_{AB_{\max}} \ge \Phi_{AB} = \int_{-\infty}^{\infty} \mathcal{N}_A \mathcal{N}_B \ d\boldsymbol{x}$$

Task likeness

In practice, task likeness can be computed as:

$$\Phi_{AB} = \int_{-\infty}^{\infty} \mathcal{N}_{A} \mathcal{N}_{B} d\mathbf{x} = \frac{e^{-\frac{1}{2}(\mu_{A} - \mu_{B})^{\mathsf{T}}(\Sigma_{A} + \Sigma_{B})^{-1}(\mu_{A} - \mu_{B})}}{\sqrt{(2\pi)^{m}|\Sigma_{A} + \Sigma_{B}|}}$$

$$\Phi_{AB_{\text{max}}} = \frac{1}{\sqrt{\pi^{m}} \prod_{j=1}^{m} \sigma_{A_{j}} + \sigma_{B_{j}}}$$

Planning Human-like Movements for Dual-arm Robots

Task likeness

Likeness $\mathcal{L}(S_A, S_B)$

Tasks	Assembly	Pouring	Box	Free-mov.
Assembly	1	0.1081	0.0114	0.6104
Pouring	0.1081	1	0.0035	0.5699
Box	0.0114	0.0035	1	0.6829
Free-mov.	0.6104	0.5699	0.6829	1

Time normalized to

$$\hat{t} \in [0, 1]$$

First-order approximation:

$$\hat{t} = \kappa_0 + \kappa_{\mathcal{L}} \mathcal{L} + \kappa_q q$$

 $m{\kappa}_{\mathcal{L}} < 0 \Longrightarrow \hat{t}$ decreases with \mathcal{L}

The PMDs of a task with a high L, produces better results.

Task classification

$$\mathcal{D}(S_A, S_B) = 1 - \mathcal{L}(S_A, S_B) \in [0, 1]$$

(Pseudo-distance, does not satisfy the triangle inequality)

minimizing

$$\max_{i \neq j} \left(\frac{d(S_i, S_j) - \mathcal{D}(S_i, S_j)}{\mathcal{D}(S_i, S_j)} \right)$$

Planning Human-like Movements for Dual-arm Robots

Optimizing the motion planning

- If there is a "new task" and a task-specific synergy basis is not available:
 - Obtain a path with the free-movement PMDs.
 - Obtain the synergies of this path.
 - Find the more alike synergy basis S_A .
 - Use S_A to produce a better plan.

Extending synergies to the velocity space

Directions of the position synergies

Most common velocity directions

Zero-order synergy

First-order synergy

joint velocities correlations

joint positions correlations

Synergies vary along

the configuration space

Partition method

Planning Human-like Movements for Dual-arm Robots

Human-like movements

Human like index

Definition of an index to determine how much human-like is a given movement

$$\mathcal{Q}_{\mathcal{P}} = 1 - \frac{1}{L} \int_{\mathcal{P}} \text{Misalignment}(\boldsymbol{q}, \boldsymbol{v}) \ \mathrm{d}\boldsymbol{q}$$

Misalignment between the path and the first order synergies of free movements

Planning Human-like Movements for Dual-arm Robots

Human like index

$$\mathcal{Q}_{\mathcal{P}} = 1 - \frac{1}{L} \int_{\mathcal{P}} \mathsf{MISALIGNMENT}(oldsymbol{q}, oldsymbol{v}) \; \mathrm{d}oldsymbol{q}$$

Bright yellow denotes better alignments than dark red.

Human like index

$$\mathcal{Q}_{\mathcal{P}} = 1 - \frac{1}{L} \int_{\mathcal{P}} \text{Misalignment}(\boldsymbol{q}, \boldsymbol{v}) \; \mathrm{d} \boldsymbol{q}$$

 $\mathsf{MISALIGNMENT}(q,v)$ returns the misalignment η

$$\eta = \frac{1}{\pi} a\cos\left((1-\rho)\Phi_{\mu} + \rho\Phi_{\Sigma}\right)$$

• $\rho \in [0,1]$ is a weighting variable that represents the proximity of the basis ${}^1\!S(\mu,\Sigma)$ to the origin of the velocity space, i.e. ρ increases as the origin of ${}^1\!S$ gets closer to the origin of the velocity space.

 ρ is computed as two times the probability P that a random vector x obtained from the normal multivariate distribution $\mathcal{N}(\mu, \Sigma)$ satisfies $\mu \cdot x < 0$.

Planning Human-like Movements for Dual-arm Robots

Human like index

$$\mathcal{Q}_{\mathcal{P}} = 1 - \frac{1}{L} \int_{\mathcal{P}} \text{Misalignment}(\boldsymbol{q}, \boldsymbol{v}) \; \mathrm{d} \boldsymbol{q}$$

MISALIGNMENT(q, v) returns the misalignment η

$$\eta = \frac{1}{\pi} a\cos\left((1-\rho)\Phi_{\mu} + \rho\Phi_{\Sigma}\right)$$

 $\Phi_{\pmb{\mu}} \in [-1,1]$ is a measure that represents the alignment between \pmb{v} and $\pmb{\mu}$

 Φ_{μ} is computed as

$$\Phi_{\boldsymbol{\mu}} = \operatorname{sgn}(\boldsymbol{v} \cdot \boldsymbol{\mu}) e^{-\frac{1}{2}(\boldsymbol{w} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1}(\boldsymbol{w} - \boldsymbol{\mu})}$$

Human like index

$$Q_{\mathcal{P}} = 1 - \frac{1}{L} \int_{\mathcal{P}} \text{Misalignment}(\boldsymbol{q}, \boldsymbol{v}) d\boldsymbol{q}$$

MISALIGNMENT(q, v) returns the misalignment η

$$\eta = \frac{1}{\pi} a\cos\left((1-\rho)\Phi_{\mu} + \rho\Phi_{\Sigma}\right)$$

 $\Phi_{\Sigma} \in [-1,1]$ is a measure that represents the alignment of v and the direction u_1 of largest variance of Σ

 Φ_{Σ} is computed as

$$\Phi_{\Sigma} = 2 \frac{\hat{\boldsymbol{v}}^{\mathsf{T}} \Sigma \hat{\boldsymbol{v}}}{\boldsymbol{u}_{1}^{\mathsf{T}} \Sigma \boldsymbol{u}_{1}} - 1 \quad \text{with} \quad \hat{\boldsymbol{v}} = \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}$$

Planning Human-like Movements for Dual-arm Robots

Human like index

$$Q_{\mathcal{P}} = 1 - \frac{1}{L} \int_{\mathcal{P}} \text{Misalignment}(\boldsymbol{q}, \boldsymbol{v}) d\boldsymbol{q}$$

Practical implementation for each segment of the movement path

$$\mathcal{Q}_{\mathcal{P}} pprox 1 - \sum_{i=1}^{n-1} ext{Misalignment} ig(q_i, q_{i+1} - q_iig) rac{\left\|q_{i+1} - q_i
ight\|}{L}$$

Example

Human-Demonstrated Motion Planning for Anthropomorphic Dual-Arm Robots

Néstor García, Jan Rosell and Raúl Suárez

Planning Human-like Movements for Dual-arm Robots

Including hand movements

Planning Human-like Movements for Dual-arm Robots

Planning Human-like Movements for Dual-arm Robots

Thumb-2 Finger

4

Approach

- 1. Capture human grasping motions
- 2. Map movements to the robot whose motions will be planned
- 3. Identify the grasping phases
- 4. Compute the synergies of each phase and grasp type
- 5. Design a bidirectional planner that
 - a) Considers simultaneously different potential grasps
 - b) Biases the tree growth towards the directions of synergies
 - c) Reduces the dimension of the search space

Planning Human-like Movements for Dual-arm Robots

Motion capture

- Human motions recorded using a Cyberglove (50 Hz sampling frequency, 22 variables per sample)
 - 12 repetitions per 15 different grasp types on 9 objects (>15000 configuration samples).
- Captured samples are mapped to the robotic system (the mapping depends on the robotic system)
 - Hand-arm system composed of two UR5 arms equipped with 4-finger Allegro hands.
- Mapping:
 - Flexion/extension joints of the fingers and the thumb are computed with a joint-to-joint mapping.
 - Remaining joints (i.e. the thumb-opposition joint and the abduction/adduction joints of the fingers and the thumb) are computed with a fingertip-position mapping.

Analysis

- Mapped configurations analyzed with PCA (each axis represents a synergy)
- · Movements has two phases
 - Pre-grasp phase: trajectories of the hand joints are common regardless of the grasp type performed.
 - Grasp phase: trajectories differ and specialize for each type of grasp.
- Transition between phases is diffuse
 - Determined minimizing the likeness of the samples in each phase (overlapping of the sample distributions)

$$\mathcal{L}(Q_A, Q_B) = \frac{e^{-\frac{1}{2}(\mu_A - \mu_B)^{\mathsf{T}}(\Sigma_A + \Sigma_B)^{-1}(\mu_A - \mu_B)}}{\sqrt{(2\pi)^{1+2n} |\Sigma_A + \Sigma_B|}}$$

Planning Human-like Movements for Dual-arm Robots

Pre-grasp (approximation) and grasp synergies

Synergies

- All pre-grasp synergies merged to explain the motion in the pre-grasp phase for all the grasps
 - Represented by the first 6 synergies (to cover 95% of the samples)
- Grasp synergies merged per families to explain the motion in each family
 - Represented by the first 4 or 5 synergies (to cover 95% of the samples)

k	Pre-Grasp	Grasp Family					
		1	2	3	4		
1	65.575 %	79.474 %	64.234 %	63.280 %	88.568 %		
2	77.795 %	86.125 %	81.877 %	84.238 %	91.955 %		
3	84.586 %	91.442 %	88.091 %	91.428 %	94.921 %		
4	90.316 %	94.015 %	92.225 %	94.377 %	96.606 %		
5	93.260 %	96.229 %	95.108 %	96.394 %	97.676 %		
6	95.996 %	97.665 %	96.781 %	97.664 %	98.685 %		
7	97.262 %	98.315 %	97.850 %	98.569 %	99.160 %		
:	16•1 28•3 30•3	:			:		
16	100 %	100 %	100 %	100 %	100 %		

Planning Approach

Proposed planner is RRT-Connect with some modifications:

Extend the trees following the synergies:

The tree growing is steered towards its projection into the subspace of grasp synergies.

Deal with multi-goal queries:

Planner maintains a tree for each goal configuration.

Connect the trees less greedily:

Instead of growing one tree until the other is reached, both trees are alternatively steer to each other following the synergies.

Planning Human-like Movements for Dual-arm Robots

Planning Approach

Experimental results

Average results of the motion planning when running:

- a) the classic RRT-Connect
- b) the proposed approach with the proper grasp synergies
- c) the proposed approach with mismatched grasp synergies

Case	Success	Planning	#Planning	# Collision	Valid motion	Solution	Human-Likeness
Ca	rate	time	iterations	checks	rate	length	$\mathcal{Q}_{\mathcal{P}}$
a)	97%	51.80 s	1834	32231	68.3%	14.18 rad	73.6%
b)	100%	6.21 s	274	10649	80.0%	7.79 rad	83.1%
c)	100%	11.79 s	484	13667	75.3%	8.35 rad	81.9%

Planning Human-like Movements for Dual-arm Robots

Experimental results

Experimental results

Planning Human-like Movements for Dual-arm Robots

Including base movements

Goal: plan coordinate motions of the base and the arms of a mobile anthropomorphic dual-arm robot mimicking human movements.

Planning Human-like Movements for Dual-arm Robots

Approach overview

- 1. Capture and map human movements
- Extract synergies (correlations) between robot position and torso configurations.
- 3. Cartesian-space discretization:

Different base positions → Different arm synergies.

4. Use the compute synergies to define subspaces where a standard motion-planning algorithm plans the solution path.

Experimental Setup

- A mobile anthropomorphic dual-arm robot.
- An optical motion-capture system formed by reflective markers and infrared cameras.
- The Kautham Project, a simulation tool with capabilities for collision checking, motion planning and graphical visualization.

Planning Human-like Movements for Dual-arm Robots

Motion capture

- Captured human motions walking towards a table and grasping two cylinders placed on pedestals.
- Parametrized initial and final positions.

$$\begin{array}{l} \theta_t \in \{-\frac{\pi}{4},\, 0,\, \frac{\pi}{4}\} \text{ rad} \\ \rho \in \{2,\, 3\} \text{ m} \\ \phi \in \{-\frac{\pi}{6},\, 0,\, \frac{\pi}{6}\} \text{ rad} \Longrightarrow \text{216 experiments} \\ \psi \in \{-\frac{\pi}{6},\, 0,\, \frac{\pi}{6}\} \text{ rad} \\ h_l, h_r \in \{1,\, 1.5\} \text{ m} \end{array}$$

 3D position of the shoulders, elbows and wrists and palm orientation captured using markers.

Synergies

- Dual-arm synergies are obtained running a PCA over the mapped torso configurations.
- The directions with larger dispersion are the synergies.
 (Equivalent to a single degree of freedom).

- Dual-arm synergies depend on robot position χ \longrightarrow Cartesian-space discretization
- Recursive partition into sectors of annuli centered on the table, such that the synergies of each annular sector are different to the ones from the neighboring sectors.

Planning Human-like Movements for Dual-arm Robots

Synergies

• Division of the space within a given annular sector, for a given angle ϕ and radius ρ :

- Likeness $\mathcal{L}(Q_A,Q_B)$ between two sets Q_A and Q_B of configurations defined as the overlapping between distributions of the configurations in the sets.
- The best position to divide a sector is the one that minimizes the objective function f:
 - $f = \max(\mathcal{L}(Q, Q_{\phi}^{-}), \mathcal{L}(Q, Q_{\phi}^{+})$, if splitting by ϕ .
 - $f = \max(\mathcal{L}(Q, Q_{\rho}^{-}), \mathcal{L}(Q, Q_{\rho}^{+})$, if splitting by ρ .
- Partition procedure recursively self-invoked until no valid partitions are found, according to a given aspect ratio and number of samples it contains

Result

Free-walk phase

Synergies similar if far from the table.

Arms mostly at resting

Synergies differ and are grouped into different sectors Arms prepare for the goal pose

Grasping phase

A unique set of synergies if robot in front of the table

Arms reach the goal

Planning Human-like Movements for Dual-arm Robots

Motion planning

- The first p dual-arm synergies span a lower-dimensional subspace B_p .
- The first *p* synergies accumulate more than the 95% of the total sample variance.
- B_p still represents accurately the mapped torso configurations.
- Each annular sector has a **different** B_p .
- If the motion planning performed in B_n ,
 - The planning complexity is reduced
 - Human-like motions obtained.

Experiment (Classic RRT-connect)

Planner	Success rate	Planning time	Iteration s	Collision checks	Valid segments	Path length
Proposed	100%	2.923 s	290	2156	74.09%	4.378 rad
RRT-Connect	100%	11.378 s	1940	6532	63.32%	4.731 rad

Planning Human-like Movements for Dual-arm Robots

Experiment (Proposed with synergies)

Planner	Success rate	Planning time	Iteration s	Collision checks	Valid segments	Path length
Proposed	100%	2.923 s	290	2156	74.09%	4.378 rad
RRT-Connect	100%	11.378 s	1940	6532	63.32%	4.731 rad

Gracias por la atención!

Planning Human-like Movements for Dual-arm Robots

Planning Human-like Movements for Dual-arm Robots

Raúl Suárez

In collaboration with Néstor García and Jan Rosell

