An Algebraic Proof of Cut Elimination

Francesco Belardinelli
Imperial College London

January 25, 2010
Introduction
 Why an algebraic proof of cut elimination?
 Idea of the proof

Sequent Calculi
 The sequent calculus FL\textsubscript{ew}
 FL\textsubscript{ew}-algebras
 Gentzen structures for FL\textsubscript{ew}

Cut Elimination \textit{via} Quasi-completion
 Cut elimination
 Closure operators
 Quasi-completions
 Proof of cut elimination - concluded

Conclusions
 Extensions to other systems
 The finite model property
Why an algebraic proof of cut elimination?

- To clarify the meaning of cut elimination from an algebraic point of view.
Why an algebraic proof of cut elimination?

- To clarify the meaning of cut elimination from an algebraic point of view.
- To provide a proof of cut elimination comprehensible to algebraists, which avoids heavy syntactic arguments.
Why an algebraic proof of cut elimination?

- To clarify the meaning of cut elimination from an algebraic point of view.
- To provide a proof of cut elimination comprehensible to algebraists, which avoids heavy syntactic arguments.
- This talks is based on the paper: F. Belardinelli, P. Jipsen and H. Ono; *Algebraic Aspects of Cut Elimination*, Studia Logica, 2004.
Why an algebraic proof of cut elimination?

- To clarify the meaning of cut elimination from an algebraic point of view.
- To provide a proof of cut elimination comprehensible to algebraists, which avoids heavy syntactic arguments.
- This talk is based on the paper: F. Belardinelli, P. Jipsen and H. Ono; \textit{Algebraic Aspects of Cut Elimination}, Studia Logica, 2004.
- These slides are adapted from the talk given by prof. Ono at the Logic Summer School, ANU, December 2004.
We introduce Gentzen structures for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.
Idea of the proof

- We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.

- We use the *quasi-completion* of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.
We introduce Gentzen structures for the sequent system \textbf{FL}_{ew} without cut. \textbf{FL}_{ew} is intuitionistic logic without the contraction rule.

We use the quasi-completion of these Gentzen structures to show the completeness of \textbf{FL}_{ew} without cut with respect to \textbf{FL}_{ew}-algebras.

This method works for a variety of sequent systems of nonclassical (substructural, modal) logic, both in the propositional and predicate case.
We introduce Gentzen structures for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.

We use the quasi-completion of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.

This method works for a variety of sequent systems of nonclassical (substructural, modal) logic, both in the propositional and predicate case.

In the process we show that the quasi-completion is a generalization of the MacNeille completion.
Idea of the proof

- We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.
- We use the *quasi-completion* of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.
- This method works for a variety of sequent systems of nonclassical (substructural, modal) logic, both in the propositional and predicate case.
- In the process we show that the quasi-completion is a generalization of the MacNeille completion.
- Moreover, the finite model property is obtained for many cases by modifying our completeness proof.
The sequent calculus FL_{ew}

The sequent calculus FL_{ew} is obtained from intuitionistic logic LJ by deleting the contraction rule.

Initial sequents: 1) $\alpha \Rightarrow \alpha$, 2) $0 \Rightarrow$, 3) $\Rightarrow 1$.

Logical rules:

- $\frac{\Gamma \Rightarrow \delta}{1, \Gamma \Rightarrow \delta}$ (1 ⇒)
- $\frac{\Gamma \Rightarrow 0}{\Gamma \Rightarrow 0}$ (⇒ 0)
- $\frac{\Gamma \Rightarrow \alpha \quad \beta, \Sigma \Rightarrow \delta}{\alpha \rightarrow \beta, \Gamma, \Sigma \Rightarrow \delta}$ (→⇒)
- $\frac{\Gamma, \alpha \Rightarrow \beta}{\Gamma \Rightarrow \alpha \rightarrow \beta}$ (⇒→)
- $\frac{\alpha, \Gamma \Rightarrow \delta}{\alpha \land \beta, \Gamma \Rightarrow \delta}$ (∧1 ⇒)
- $\frac{\beta, \Gamma \Rightarrow \delta}{\alpha \land \beta, \Gamma \Rightarrow \delta}$ (∧2 ⇒)
- $\frac{\Gamma \Rightarrow \alpha \quad \Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \land \beta}$ (⇒ ∧)
- $\frac{\alpha, \Gamma \Rightarrow \delta \quad \beta, \Gamma \Rightarrow \delta}{\alpha \lor \beta, \Gamma \Rightarrow \delta}$ (∨ ⇒)
- $\frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow \alpha \lor \beta}$ (⇒ ∨1)
- $\frac{\Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \lor \beta}$ (⇒ ∨2)
- $\frac{\alpha, \beta, \Gamma \Rightarrow \delta}{\alpha \cdot \beta, \Gamma \Rightarrow \delta}$ (⇒)
- $\frac{\Gamma \Rightarrow \alpha \quad \Sigma \Rightarrow \beta}{\Gamma, \Sigma \Rightarrow \alpha \cdot \beta}$ (⇒ ·)
The sequent calculus FL_{ew}

Structural rules:

$$
\begin{align*}
& \frac{\Gamma \Rightarrow \delta}{\alpha, \Gamma \Rightarrow \delta} \quad (w \Rightarrow) & & \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} \quad (\Rightarrow w) \\
& \frac{\Gamma, \alpha, \beta, \Sigma \Rightarrow \delta}{\Gamma, \beta, \alpha, \Sigma \Rightarrow \delta} \quad (e \Rightarrow) & & \frac{\Gamma \Rightarrow \alpha, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta} \quad (cut)
\end{align*}
$$
The sequent calculus FL_{ew}

Structural rules:

\[
\begin{align*}
\frac{\Gamma \Rightarrow \delta}{\alpha, \Gamma \Rightarrow \delta} \quad (w \Rightarrow) & \quad \frac{\Gamma \Rightarrow \delta}{\Gamma \Rightarrow \alpha} \quad (\Rightarrow w) \\
\frac{\Gamma, \alpha, \beta, \Sigma \Rightarrow \delta}{\Gamma, \beta, \alpha, \Sigma \Rightarrow \delta} \quad (e \Rightarrow) & \quad \frac{\Gamma \Rightarrow \alpha \quad \alpha, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta} \quad (\text{cut})
\end{align*}
\]

Theorem (Cut elimination [4])

If a sequent $\Gamma \Rightarrow \delta$ is provable in FL_{ew} then it is provable in FL_{ew}^- without using the cut rule.

FL_{ew}^- denotes the sequent system obtained from FL_{ew} by deleting the cut rule.
Definition
A structure $P = \langle P, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a FL_{ew}-algebra if:

1. $\langle P, \land, \lor, 0, 1 \rangle$ is a bounded lattice,
2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
3. $a \cdot b \leq c$ iff $a \leq (b \rightarrow c)$ (law of residuation).
FL\textsubscript{ew}-algebras

Definition
A structure $P = \langle P, \land, \lor, \cdot, \to, 0, 1 \rangle$ is a $FL\textsubscript{ew}$-algebra if:

1. $\langle P, \land, \lor, 0, 1 \rangle$ is a bounded lattice,
2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
3. $a \cdot b \leq c$ iff $a \leq (b \to c)$ (law of residuation).

Let h be an assignment of propositional variables to elements of P such that $h(0) = 0$ and $h(1) = 1$.
The assignment h can be lifted to the set of all formulas.
FL\textsubscript{ew}-algebras

Definition
A structure $P = \langle P, \land, \lor, \cdot, \to, 0, 1 \rangle$ is an $\text{FL}\textsubscript{ew}$-algebra if:

1. $\langle P, \land, \lor, 0, 1 \rangle$ is a bounded lattice,
2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
3. $a \cdot b \leq c$ iff $a \leq (b \to c)$ (law of residuation).

Let h be an assignment of propositional variables to elements of P such that $h(0) = 0$ and $h(1) = 1$.

The assignment h can be lifted to the set of all formulas.

Definition
A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on an $\text{FL}\textsubscript{ew}$-algebra P iff $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ holds in P for any assignment h.
FL\textsubscript{ew}-algebras

Definition
A structure $\mathbf{P} = \langle P, \land, \lor, \cdot, \to, 0, 1 \rangle$ is a FL\textsubscript{ew}-algebra if:

1. $\langle P, \land, \lor, 0, 1 \rangle$ is a bounded lattice,
2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
3. $a \cdot b \leq c$ iff $a \leq (b \to c)$ (law of residuation).

Let h be an assignment of propositional variables to elements of P such that $h(0) = 0$ and $h(1) = 1$. The assignment h can be lifted to the set of all formulas.

Definition
A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on an FL\textsubscript{ew}-algebra \mathbf{P} iff $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ holds in \mathbf{P} for any assignment h.

Theorem (Completeness of FL\textsubscript{ew})
A sequent $\alpha_1, \ldots, \alpha_m \Rightarrow \beta$ is provable in FL\textsubscript{ew} iff it is valid on every FL\textsubscript{ew}-algebra.
Gentzen structures for FL_{ew}

For a nonempty set Q, let Q^* be the set of all (finite, possibly empty) multisets of members of Q. The empty multiset is denoted by ε.
Gentzen structures for FL_{ew}

For a nonempty set Q, let Q^* be the set of all (finite, possibly empty) multisets of members of Q. The empty multiset is denoted by ε.

A *Gentzen structure* for FL_{ew} is a tuple $Q = \langle Q, \preceq, \land, \lor, \cdot, \to, 0, 1 \rangle$ such that $0, 1 \in Q$, \land, \lor, \cdot, \to are binary operations on Q, and \preceq is a subset of $Q^* \times (Q \cup \{\varepsilon\})$ that satisfies the following conditions:

- $a \preceq a$ and $0 \preceq c$ and $\varepsilon \preceq 1$
- $x \preceq c$ implies $dx \preceq c$
- $x \preceq a$ and $by \preceq c$ imply $(a \to b)xy \preceq c$
- $ax \preceq b$ implies $x \preceq a \to b$
- $ax \preceq c$ and $bx \preceq c$ imply $(a \lor b)x \preceq c$
- $x \preceq a$ implies $x \preceq a \lor b$
- $x \preceq b$ implies $x \preceq a \lor b$
- $ax \preceq c$ implies $(a \land b)x \preceq c$
- $bx \preceq c$ implies $(a \land b)x \preceq c$
- $x \preceq a$ and $x \preceq b$ imply $x \preceq a \land b$
- $abx \preceq c$ implies $(a \cdot b)x \preceq c$
- $x \preceq a$ and $y \preceq b$ imply $xy \preceq a \cdot b$
Let g be an assignment of propositional variables to elements in Q such that $g(0) = 0$ and $g(1) = 1$. The assignment g can be lifted to the set of all formulas.
Let g be an assignment of propositional variables to elements in Q such that $g(0) = 0$ and $g(1) = 1$. The assignment g can be lifted to the set of all formulas.

Definition

A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on a Gentzen structure Q iff $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ holds in Q for any assignment g.
Gentzen structures for FL_{ew}

Let g be an assignment of propositional variables to elements in Q such that $g(0) = 0$ and $g(1) = 1$.

The assignment g can be lifted to the set of all formulas.

Definition

A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on a Gentzen structure Q iff

$\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ holds in Q for any assignment g.

The system FL_{ew}^- is complete with respect to the class of Gentzen structures.

Theorem

A sequent $\alpha_1, \ldots, \alpha_m \Rightarrow \beta$ is provable in FL_{ew}^- iff it is valid on every Gentzen structure.
Each FL_{ew}-algebra can be seen as a Gentzen structure if \preceq is defined by

$$\langle a_1, \ldots, a_m \rangle \preceq c \quad \text{iff} \quad (a_1 \cdot \ldots \cdot a_m) \leq c$$
Each FL_{ew}-algebra can be seen as a Gentzen structure if \preceq is defined by
\[
\langle a_1, \ldots, a_m \rangle \preceq c \quad \text{iff} \quad (a_1 \cdot \ldots \cdot a_m) \leq c
\]

Also, let Q be any Gentzen structure with a strongly transitive \preceq:

$x \preceq a$ and $ay \preceq c$ imply $xy \preceq c$

If the restriction \preceq_0 of \preceq to $Q \times Q$ is moreover antisymmetric, then Q is a FL_{ew}-algebra with the lattice order \preceq_0.
Gentzen structures and FL_{ew}-algebras

- Each FL_{ew}-algebra can be seen as a Gentzen structure if \leq is defined by

 $$\langle a_1, \ldots, a_m \rangle \leq c \iff (a_1 \cdot \ldots \cdot a_m) \leq c$$

- Also, let Q be any Gentzen structure with a strongly transitive \leq:

 $$x \leq a \text{ and } ay \leq c \text{ imply } xy \leq c$$

 If the restriction \leq_0 of \leq to $Q \times Q$ is moreover antisymmetric, then Q is a FL_{ew}-algebra with the lattice order \leq_0.

- In conclusion, we can say that any Gentzen structure with a strongly transitive relation can be identified with a FL_{ew}-algebra, and vice versa.
To prove cut elimination for \mathbf{FL}_{ew} it is enough to show the following result:

Lemma

If $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ fails for some g in a Gentzen structure Q then $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ fails for some h in an \mathbf{FL}_{ew}-algebra P.
To prove cut elimination for FL_{ew} it is enough to show the following result:

Lemma

If $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ fails for some g in a Gentzen structure Q then $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ fails for some h in an FL_{ew}-algebra P.

How do we get such an FL_{ew}-algebra P from a given Gentzen structure Q? Moreover, Q must be embedded into the FL_{ew}-algebra P.

1. We give a uniform way of constructing such a P called the *quasi-completion* of Q;
2. We show that Q can be quasi-embedded into P.

F. Belardinelli

An Algebraic Proof of Cut Elimination
To prove cut elimination for FL_{ew} it is enough to show the following result:

Lemma

If $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ fails for some g in a Gentzen structure Q then $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ fails for some h in an FL_{ew}-algebra P.

How do we get such an FL_{ew}-algebra P from a given Gentzen structure Q? Moreover, Q must be embedded into the FL_{ew}-algebra P.

1. We give a uniform way of constructing such a P called the *quasi-completion* of Q;
2. We show that Q can be quasi-embedded into P.

When Q is a FL_{ew}-algebra, P is a MacNeille completion of Q and the quasi-embedding becomes a complete embedding.
Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a commutative monoid. A unary function C on $\wp(M)$ is a closure operator if for all $X, Y \in \wp(M)$:

1. $X \subseteq C(X)$
2. $C(C(X)) \subseteq C(X)$
3. $X \subseteq Y$ implies $C(X) \subseteq C(Y)$
4. $C(X) \ast C(Y) \subseteq C(X \ast Y)$, where $W \ast Z = \{w \cdot z \mid w \in W \text{ and } z \in Z\}$.

Lemma

The tuple $\mathbf{C} \mathbf{M} = \langle \mathcal{C}(\wp(M)), \cap, \cup, \ast C, \Rightarrow, \mathcal{C}(\emptyset), \mathcal{C}(\{1\}) \rangle$ is a FL$_{e}$-algebra, not necessarily integral.
Closure operators

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a commutative monoid.
A unary function C on $\wp(M)$ is a closure operator if for all $X, Y \in \wp(M)$:

1. $X \subseteq C(X)$
2. $C(C(X)) \subseteq C(X)$
3. $X \subseteq Y$ implies $C(X) \subseteq C(Y)$
4. $C(X) \ast C(Y) \subseteq C(X \ast Y)$, where $W \ast Z = \{w \cdot z \mid w \in W \text{ and } z \in Z\}$.

Let $C(\wp(M))$ be the set of all C-closed subsets, define operations \cup_C, \ast_C and \Rightarrow on $C(\wp(M))$ as follows:

- $X \cup_C Y = C(X \cup Y)$
- $X \ast_C Y = C(X \ast Y)$
- $X \Rightarrow Y = \{z \mid X \ast \{z\} \subseteq Y\}$
Closure operators

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a commutative monoid.
A unary function C on $\wp(M)$ is a closure operator if for all $X, Y \in \wp(M)$:

1. $X \subseteq C(X)$
2. $C(C(X)) \subseteq C(X)$
3. $X \subseteq Y$ implies $C(X) \subseteq C(Y)$
4. $C(X) \ast C(Y) \subseteq C(X \ast Y)$, where $W \ast Z = \{ w \cdot z | w \in W \text{ and } z \in Z \}$.

Let $C(\wp(M))$ be the set of all C-closed subsets, define operations \cup_C, \ast_C and \Rightarrow on $C(\wp(M))$ as follows:

- $X \cup_C Y = C(X \cup Y)$
- $X \ast_C Y = C(X \ast Y)$
- $X \Rightarrow Y = \{ z | X \ast \{ z \} \subseteq Y \}$

Lemma

The tuple $\mathbf{C}_M = \langle C(\wp(M)), \cap, \cup_C, \ast_C, \Rightarrow, C(\emptyset), C(\{1\}) \rangle$ is a FL$_e$-algebra, not necessarily integral.
Quasi-completions

Let Q be a Gentzen structure, for $x \in Q^*$ and $a \in Q \cup \{\varepsilon\}$ define

$$[x; a] = \{ w \in Q^* \mid xw \preceq a \}$$
Quasi-completions

Let Q be a Gentzen structure, for $x \in Q^*$ and $a \in Q \cup \{\varepsilon\}$ define

$$[x; a] = \{ w \in Q^* \mid xw \leq a \}$$

Now define a function C on $\wp(Q^*)$ by

$$C(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in Q^* \text{ and } a \in Q \cup \{\varepsilon\} \}$$
Let Q be a Gentzen structure, for $x \in Q^*$ and $a \in Q \cup \{\varepsilon\}$ define

$$[x; a] = \{w \in Q^* | xw \preceq a\}$$

Now define a function C on $\wp(Q^*)$ by

$$C(X) = \bigcap\{[x; a] | X \subseteq [x; a] \text{ for } x \in Q^* \text{ and } a \in Q \cup \{\varepsilon\}\}$$

The function C is a closure operator such that $C(\{\varepsilon\}) = Q^* = C(\{1\})$. Thus, C_{Q^*} is a \mathbf{FL}_{ew}-algebra, which is called the quasi-completion of Q.
To show that the Gentzen structure Q is quasi-embeddable into C_{Q^*} we define a *quasi-embedding* $k : Q \rightarrow C(\varnothing(Q^*))$ as

$$k(a) = [\varepsilon; a] = \{ w \in Q^* | w \sqsubseteq a \}$$
Quasi-embeddings

- To show that the Gentzen structure Q is quasi-embeddable into C_{Q^*} we define a *quasi-embedding* $k : Q \rightarrow C(\wp(Q^*))$ as

$$k(a) = [\varepsilon; a] = \{ w \in Q^* \mid w \preceq a \}$$

- Then we can prove the following.

Lemma

Suppose that $a, b \in Q$ and that U and V are arbitrary C-closed subsets of Q^* such that $a \in U \subseteq k(a)$ and $b \in V \subseteq k(b)$, then for each $\star \in \{\land, \lor, \cdot, \rightarrow\}$:

$$a \star b \in U \star_C V \subseteq k(a \star b),$$

where \star_C denotes \cap, \cup_C, \ast_C and \Rightarrow respectively.
Suppose that \(\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta) \) does not hold in \(Q \) by an assignment \(g \).
Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ does not hold in Q by an assignment g.

Define an assignment h on C_{Q^*} as $h(q) = k(g(q))$ for each proposition q.
Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ does not hold in Q by an assignment g.

Define an assignment h on C_{Q^*} as $h(q) = k(g(q))$ for each proposition q.

By induction on the length of a formula ϕ we can show that:

$$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$
Proof of cut elimination - concluded

- Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \subseteq g(\beta)$ does not hold in Q by an assignment g.
- Define an assignment h on C_Q^* as $h(q) = k(g(q))$ for each proposition q.
- By induction on the length of a formula ϕ we can show that:

 $$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$

- Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in C_Q^*.

F. Belardinelli
An Algebraic Proof of Cut Elimination
Proof of cut elimination - concluded

- Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ does not hold in Q by an assignment g.
- Define an assignment h on C_{Q^*} as $h(q) = k(g(q))$ for each proposition q.
- By induction on the length of a formula ϕ we can show that:

$$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$

- Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in C_{Q^*}.
- Then in particular $h(\alpha_1) \ast_C \ldots \ast_C h(\alpha_n) \subseteq h(\beta)$, and by the results above,

$$\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \in h(\alpha_1) \ast_C \ldots \ast_C h(\alpha_n) \subseteq h(\beta) \subseteq k(g(\beta)) = \{w \mid w \preceq g(\beta)\}$$
Proof of cut elimination - concluded

▶ Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ does not hold in Q by an assignment g.
▶ Define an assignment h on CQ^* as $h(q) = k(g(q))$ for each proposition q.
▶ By induction on the length of a formula ϕ we can show that:

$$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$

▶ Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in CQ^*.
▶ Then in particular $h(\alpha_1) \ast_C \ldots \ast_C h(\alpha_n) \subseteq h(\beta)$, and by the results above,

$$\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \in h(\alpha_1) \ast_C \ldots \ast_C h(\alpha_n) \subseteq h(\beta) \subseteq k(g(\beta)) = \{ w \mid w \preceq g(\beta) \}$$

▶ But this implies $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$, which is a contradiction. Thus, $\alpha_1, \ldots \alpha_n \Rightarrow \beta$ is not valid in CQ^*.

Proof of cut elimination - concluded

- Suppose that \(\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta) \) does not hold in \(Q \) by an assignment \(g \).

- Define an assignment \(h \) on \(C_Q^* \) as \(h(q) = k(g(q)) \) for each proposition \(q \).

- By induction on the length of a formula \(\phi \) we can show that:

 \[
 g(\phi) \in h(\phi) \subseteq k(g(\phi))
 \]

- Now, suppose that \(\alpha_1, \ldots, \alpha_n \Rightarrow \beta \) holds in \(C_Q^* \).

- Then in particular \(h(\alpha_1) \ast_C \ldots \ast_C h(\alpha_n) \subseteq h(\beta) \), and by the results above,

 \[
 \langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \in h(\alpha_1) \ast_C \ldots \ast_C h(\alpha_n) \subseteq h(\beta) \subseteq k(g(\beta)) = \{ w \mid w \preceq g(\beta) \}
 \]

- But this implies \(\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta) \), which is a contradiction. Thus, \(\alpha_1, \ldots, \alpha_n \Rightarrow \beta \) is not valid in \(C_Q^* \).

- This completes the proof of cut elimination for \(FL_{ew} \).
Let P be a FL_{ew}-algebra and define

$$C(X) = \bigcap \{[x; a] \mid X \subseteq [x; a] \text{ for } x \in P^* \text{ and } a \in P \cup \{e\}\}$$
MacNeille- and Quasi-completions

- Let P be a FL_{ew}-algebra and define
 \[C(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in P^* \text{ and } a \in P \cup \{ \varepsilon \} \} \]
- Then we can show that
 \[C(X) = (X \rightarrow) \leftarrow = \{ a \mid a \leq b \text{ for all } b \text{ such that } b \geq c \text{ for all } c \in X \} \]
 and therefore the quasi-completion C_{P^*} of P is isomorphic to the MacNeille completion of P.
MacNeille- and Quasi-completions

Let P be a FL_{ew}-algebra and define

$$C(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in P^* \text{ and } a \in P \cup \{ \varepsilon \} \}$$

Then we can show that

$$C(X) = (X \rightarrow) \leftarrow = \{ a \mid a \leq b \text{ for all } b \text{ such that } b \geq c \text{ for all } c \in X \}$$

and therefore the quasi-completion C_{P^*} of P is isomorphic to the MacNeille completion of P.

Further, since \leq is strongly transitive, $a \star b \in k(a) \star_C k(b)$ implies that $k(a \star b) = k(a) \star_C k(b)$.

MacNeille- and Quasi-completions

Let P be a \mathbf{FL}_{ew}-algebra and define

$$C(X) = \bigcap \{[x,a] \mid X \subseteq [x,a] \text{ for } x \in P^* \text{ and } a \in P \cup \{\varepsilon\}\}$$

Then we can show that

$$C(X) = (X \rightarrow) \leftarrow = \{a \mid a \leq b \text{ for all } b \text{ such that } b \geq c \text{ for all } c \in X\}$$

and therefore the quasi-completion C_{P^*} of P is isomorphic to the MacNeille completion of P.

Further, since \leq is strongly transitive, $a \star b \in k(a) \star_C k(b)$ implies that $k(a \star b) = k(a) \star_C k(b)$.

Thus, the map k can be identified with the complete embedding of a \mathbf{FL}_{ew}-algebra P into its MacNeille completion.
Extensions to other systems

This algebraic proof of cut elimination can be extended to:

- the intuitionistic and classic systems \(\text{LJ} \) and \(\text{LK} \).
- intuitionistic substructural systems:
 - propositional calculi \(\text{FL}_e \) and \(\text{FL}_{ec} \).
 - first-order calculi \(\text{QFL}_{ew}, \text{QFL}_e \) and \(\text{QFL}_{ec} \).
- the classic substructural systems \(\text{CFL}_{ew}, \text{CFL}_e \) and \(\text{CFL}_{ec} \).
- the propositional modal logics \(\text{K}, \text{T} \) and \(\text{S4} \).
The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma

Let Q be a Gentzen structure for FL_{ew} such that the closed base $B = \{ [x; a] \mid x \in Q^*, a \in Q \cup \{ \varepsilon \} \}$ is finite, then the quasi-completion C_{Q^*} of Q is also finite.
The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma

Let Q be a Gentzen structure for FL_{ew} such that the closed base $B = \{[x; a] \mid x \in Q^*, a \in Q \cup \{\varepsilon\}\}$ is finite, then the quasi-completion C_{Q^*} of Q is also finite.

Now define a subset $P_{(x,a)}$ of $Q^* \times (Q \cup \{\varepsilon\})$ such that:

1. $(x, a) \in P_{(x,a)}$.
2. Suppose that $(w, b) \in P_{(x,a)}$. If "$u \preceq c$ implies $w \preceq b$" is one of the conditions for \preceq in Q, then (u, c) is a member of $P_{(x,a)}$. Similarly, if "$u \preceq c$ and $v \preceq d$ imply $w \preceq b$" is one of the conditions for \preceq.

The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma

Let Q be a Gentzen structure for FL_{ew} such that the closed base $B = \{[x; a] \mid x \in Q^*, a \in Q \cup \{\varepsilon\}\}$ is finite, then the quasi-completion C_{Q^*} of Q is also finite.

Now define a subset $P_{(x, a)}$ of $Q^* \times (Q \cup \{\varepsilon\})$ such that:

1. $(x, a) \in P_{(x, a)}$.
2. Suppose that $(w, b) \in P_{(x, a)}$. If “$u \preceq c$ implies $w \preceq b$” is one of the conditions for \preceq in Q, then (u, c) is a member of $P_{(x, a)}$. Similarly, if “$u \preceq c$ and $v \preceq d$ imply $w \preceq b$” is one of the conditions for \preceq.

For a finite subset S of $Q^* \times (Q \cup \{\varepsilon\})$, let P_S be the union of $P_{(x, a)}$ for $(x, a) \in S$. We say that the set S is *finitely based*, when P_S is finite.
The Finite Model Property

Now we show how to obtain a Gentzen structure for FL_{ew} such that the closed base B is finite.

Lemma

If Q is a Gentzen structure for FL_{ew} and S is finitely based, then the relation \preceq^* such that for $(w, b) \in \mathcal{P}_S$, $w \preceq^* b$ iff $w \preceq b$, and otherwise $w \preceq^* b$ always holds, satisfies the following conditions:

1. the structure $Q^* = \langle Q, \preceq^*, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a Gentzen structure for FL_{ew}.
2. the closed base B determined by \preceq^* is finite.
Now we show how to obtain a Gentzen structure for FL_{ew} such that the closed base B is finite.

Lemma

If Q is a Gentzen structure for FL_{ew} and S is finitely based, then the relation \preceq^* such that for $(w, b) \in \mathcal{P}_S$, $w \preceq^* b$ iff $w \preceq b$, and otherwise $w \preceq^* b$ always holds, satisfies the following conditions:

1. the structure $Q^* = \langle Q, \preceq^*, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a Gentzen structure for FL_{ew},
2. the closed base B determined by \preceq^* is finite.
The finite model property for \mathbf{FL}_{ew}

- Suppose that $\mathbf{FL}_{\text{ew}} \not\vdash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn’t hold in the *free* Gentzen structure Q^+ for \mathbf{FL}_{ew}.

F. Belardinelli
An Algebraic Proof of Cut Elimination
The finite model property for FL_{ew}

- Suppose that $\text{FL}_{\text{ew}} \not\vdash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \leq \beta$ doesn't hold in the free Gentzen structure Q^+ for FL_{ew}.
- We can show that the singleton $\{ (\langle \alpha_1, \ldots, \alpha_m \rangle, \beta) \}$ is finitely based.
The finite model property for FL_{ew}

- Suppose that $\text{FL}_{\text{ew}} \not\vdash \alpha_{1}, \ldots, \alpha_{m} \Rightarrow \beta$, then $\langle \alpha_{1}, \ldots, \alpha_{m} \rangle \preceq \beta$ doesn’t hold in the free Gentzen structure Q^{+} for FL_{ew}.

- We can show that the singleton $\{(\langle \alpha_{1}, \ldots, \alpha_{m} \rangle, \beta)\}$ is finitely based.

- By the lemma above, $\{(\langle \alpha_{1}, \ldots, \alpha_{m} \rangle, \beta)\}$ is embedded into a Gentzen structure $(Q^{+})^{*}$ for FL_{ew} with a relation \preceq^{*} such that the closed base is finite. Moreover, $\langle \alpha_{1}, \ldots, \alpha_{m} \rangle \preceq^{*} \beta$ doesn’t hold in $(Q^{+})^{*}$ by definition.
The finite model property for FL_{ew}

- Suppose that $\text{FL}_{ew} \not\vdash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \leq \beta$ doesn’t hold in the free Gentzen structure Q^+ for FL_{ew}.

- We can show that the singleton $\{((\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is finitely based.

- By the lemma above, $\{((\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is embedded into a Gentzen structure $(Q^+)^*$ for FL_{ew} with a relation \leq^* such that the closed base is finite. Moreover, $\langle \alpha_1, \ldots, \alpha_m \rangle \leq^* \beta$ doesn’t hold in $(Q^+)^*$ by definition.

- By a previous lemma, the quasi-completion R of $(Q^+)^*$ is finite. Since $\langle \alpha_1, \ldots, \alpha_m \rangle \leq^* \beta$ doesn’t hold in $(Q^+)^*$, $(\alpha_1 \cdot \ldots \cdot \alpha_m) \leq \beta$ doesn’t hold either in R, which is a FL_{ew}-algebra.
Suppose that $\text{FL}_{\text{ew}} \not \vdash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn’t hold in the free Gentzen structure Q^+ for FL_{ew}.

We can show that the singleton $\{(\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is finitely based.

By the lemma above, $\{(\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is embedded into a Gentzen structure $(Q^+)^*$ for FL_{ew} with a relation \preceq^* such that the closed base is finite. Moreover, $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq^* \beta$ doesn’t hold in $(Q^+)^*$ by definition.

By a previous lemma, the quasi-completion R of $(Q^+)^*$ is finite. Since $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq^* \beta$ doesn’t hold in $(Q^+)^*$, $(\alpha_1 \cdot \ldots \cdot \alpha_m) \leq \beta$ doesn’t hold either in R, which is a FL_{ew}-algebra.

This proof of the finite model property can be extended to the first-order substructural logic QFL_{ew}.

Thank you!

