Counterpart Semantics at work: An Incompleteness Result in Quantified Modal Logic
FRANCESCO BELARDINELLI

ABSTRACT. In this paper we make use of counterpart semantics to prove an original incompleteness result in quantified modal logic (QML), that is, the system $Q^E.K+BF$ based on free logic and containing the Barcan formula is incomplete with respect to Kripke semantics. This incompleteness result extends to the system $Q^E.K+CBF+BF$ obtained by adding the converse of the Barcan formula to $Q^E.K+BF$.

Keywords: Quantified Modal Logic, Kripke and Counterpart Semantics, Incompleteness.

1 Kripke Semantics
In this paper we consider a first-order modal alphabet A containing a denumerable infinite set Var of individual variables x_1, x_2, \ldots; a denumerable infinite set of n-ary predicative constants P^1_n, P^2_n, \ldots, for $n \in \mathbb{N}$; the connectives \neg and \rightarrow; the quantifier \forall; the operator \Box; the existence predicative constant E. The terms t_1, t_2, \ldots are only individual variables.

DEFINITION 1. The formulas in the first-order modal language L are defined in the Backus-Naur form as follows:

$$\phi ::= P^n(t_1, \ldots, t_n) | E(t) | \neg \phi | \phi \rightarrow \psi | \forall x \phi | \Box \phi$$

The symbols \land, \lor, \leftrightarrow, \exists, \diamond are standardly defined; $\phi[\vec{y}/\vec{t}]$ denotes the simultaneous substitution of some, possibly all, free occurrences of $\vec{y} = y_1, \ldots, y_n$ in ϕ with $\vec{t} = t_1, \ldots, t_n$, renaming bounded variables if necessary.

DEFINITION 2. A Kripke frame, or K-frame, is a tuple $F = \langle W, R, D, d \rangle$ such that W is a non-empty set; $R \subseteq W^2$; for $w, w' \in W$, $D(w)$ is a non-empty set and wRw' implies $D(w) \subseteq D(w')$; for $w \in W$, $d(w) \subseteq D(w)$.

A K-frame F has constant (resp. increasing, decreasing) inner domains iff wRw' implies $d(w) = d(w')$ (resp. $d(w) \subseteq d(w')$, $d(w) \supseteq d(w')$).

DEFINITION 3. A Kripke model of language L based on a K-frame F, or K-model, is a pair $M = \langle F, I \rangle$ where I is an interpretation of L such that (i) if P^n is an n-ary predicative constant and $w \in W$, then $I(P^n, w)$ is an n-ary relation on $D(w)$; (ii) $I(E, w) = d(w)$.

Paper submitted to Advances in Modal Logic 2008
A \(w \)-assignments is any function \(\sigma : \text{Var} \to D(w) \). The variant \(\sigma(x) \) does not coincide with \(\sigma \) at most on \(x \), and assigns \(a \in D(w) \) to \(x \).

DEFINITION 4. The satisfaction relation \(\models \) for a world \(w \in \mathcal{M} \), a formula \(\phi \in \mathcal{L} \), and a \(w \)-assignment \(\sigma \) is defined as follows:

\[
\begin{align*}
(\mathcal{M}^\sigma, w) & \models P^\sigma(x_1, \ldots, x_n) \text{ iff } (\sigma(t_1), \ldots, \sigma(t_n)) \in I(P^\sigma, w) \\
(\mathcal{M}^\sigma, w) & \models \neg \psi \text{ iff } (\mathcal{M}^\sigma, w) \not\models \psi \\
(\mathcal{M}^\sigma, w) & \models \psi \rightarrow \psi' \text{ iff } (\mathcal{M}^\sigma, w) \not\models \psi \text{ or } (\mathcal{M}^\sigma, w) \models \psi' \\
(\mathcal{M}^\sigma, w) & \models \forall x \phi \text{ iff for every } w' \in W, wRw' \text{ implies } (\mathcal{M}^\sigma, w') \models \phi \\
(\mathcal{M}^\sigma, w) & \models \exists x \phi \text{ iff for every } a \in D(w), (\mathcal{M}^\sigma(a), w) \models \phi
\end{align*}
\]

A formula \(\phi \) is true at a world \(w \) iff it is satisfied by every \(w \)-assignment \(\sigma \); \(\phi \) is valid on a \(K \)-model \(\mathcal{M} \) iff it is true at every world in \(\mathcal{M} \); \(\phi \) is valid on a \(K \)-frame \(\mathcal{F} \) iff it is valid on every \(K \)-model based on \(\mathcal{F} \).

2 The Systems \(Q^E.K+BF \) and \(Q^E.K+CBF+BF \)

We now introduce the systems \(Q^E.K+BF \) and \(Q^E.K+CBF+BF \) based on free logic. We will consider the following principles in what follows.

<table>
<thead>
<tr>
<th>Calculi</th>
<th>Inner Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Taut)</td>
<td>Tautologies of classical propositional calculus</td>
</tr>
<tr>
<td>(K)</td>
<td>(\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi))</td>
</tr>
<tr>
<td>(MP)</td>
<td>(\phi \rightarrow \psi, \phi \vdash \psi)</td>
</tr>
<tr>
<td>(Nec)</td>
<td>(\phi \vdash \Box \phi)</td>
</tr>
<tr>
<td>(E-Ex)</td>
<td>(\forall x \phi \rightarrow (E(y) \rightarrow \phi(x/y)))</td>
</tr>
<tr>
<td>(E-Gen)</td>
<td>(\phi \rightarrow (E(x) \rightarrow \psi) \Rightarrow \phi \rightarrow \forall x \psi, x \text{ not free in } \phi)</td>
</tr>
<tr>
<td>(BF)</td>
<td>(\forall x \Box \phi \rightarrow \Box \forall x \phi)</td>
</tr>
<tr>
<td>(CBF)</td>
<td>(\Box \forall x \phi \rightarrow \forall x \Box \phi)</td>
</tr>
<tr>
<td>(N-\Box)</td>
<td>(\neg E(x) \rightarrow \Box \neg E(x))</td>
</tr>
<tr>
<td>(NE)</td>
<td>(E(x) \rightarrow \Box E(x))</td>
</tr>
</tbody>
</table>

DEFINITION 5. The system \(Q^E.K+BF \) includes the schemes of axioms \(Taut, K, E-Ex, BF \), and the inference rules \(MP, Nec, E-Gen \). The system \(Q^E.K+CBF+BF \) extends \(Q^E.K+BF \) by adding \(CBF \).

We consider the standard definitions of **proof** and **theorem**: \(S \vdash \phi \) means that \(\phi \) is a theorem in the system \(S \). A \(K \)-frame \(\mathcal{F} \) is a \(K \)-frame for \(\phi \) iff all the theorems of \(S \) are valid on \(\mathcal{F} \), i.e., \(S \vdash \phi \) implies \(\mathcal{F} \models \phi \).

LEMMA 6. For any system \(S \) in the first column, \(\mathcal{F} \) is a \(K \)-frame for \(\phi \) iff it satisfies the constraint on inner domains in the second column:

\[
\begin{array}{|c|c|}
\hline
\text{Calculi} & \text{Inner Domain} \\
\hline
Q^E.K+BF & \text{decreasing} \\
Q^E.K+CBF+BF & \text{constant} \\
\hline
\end{array}
\]

LEMMA 7. Every \(K \)-frame for \(Q^E.K+BF \) validates the necessity of fictionality, i.e., \(Q^E.K+BF \models N\neg E \).

We leave to the interested reader the proof of this standard result, which is due to decreasing inner domains. In the incompleteness result in section 4...
we will show that $Q^E.K+BF$ does not prove $N\neg E$. Lemma 7 applies also to the system $Q^E.K+CBF+BF$.

3 Counterpart Semantics

For introducing the counterpart semantics for QML we make use of typed languages. First, every variable x_i in the alphabet A is a term of type n, or n-term, for $n \geq i$. If x_j is an n-term and t_1, \ldots, t_n are m-terms, the substituted m-term $x_j[t_1, \ldots, t_n]$ is the m-term t_j, or $t_j : m$ in short.

DEFINITION 8. The typed first-order modal language L_T contains all and only the formulas ϕ of type n, or $\phi : n$, for $n \in \mathbb{N}$, defined as follows:

- if P^m is an m-ary predicative constant and (t_1, \ldots, t_m) is an m-tuple of n-terms, then $P^m(t_1, \ldots, t_m)$ is a (atomic) formula of type n;
- if ψ, ψ' are n-formulas, then $\neg \psi$ and $\psi \rightarrow \psi'$ are formulas of type n;
- if ψ is an m-formula and (t_1, \ldots, t_m) is an m-tuple of n-terms, then $(\Box \psi)(t_1, \ldots, t_m)$ is a formula of type n;
- if ψ is an $n+1$-formula, then $\forall x_{n+1} \psi$ is a formula of type n.

The formula $\Box \psi : n$ is a shorthand for $(\Box \psi)(x_1, \ldots, x_n) : n$. Let ϕ be an n-formula and \vec{s} an n-tuple of k-terms, the substituted k-formula $\phi[\vec{s}]$ is inductively defined as follows:

- ϕ is the atomic formula $P^m(t_1, \ldots, t_m)$, then $\phi[\vec{s}]$ is $P^m(t_1[\vec{s}], \ldots, t_m[\vec{s}])$;
- $\phi = \neg \psi$, then $\neg \psi[\vec{s}] = \neg(\psi[\vec{s}])$;
- $\phi = \psi \rightarrow \psi'$, then $(\psi \rightarrow \psi')[\vec{s}] = \psi[\vec{s}] \rightarrow \psi'[\vec{s}]$;
- $\phi = (\Box \psi)(t_1, \ldots, t_m)$, then $(\Box \psi)(t_1[\vec{s}], \ldots, t_m[\vec{s}]) = (\Box \psi)(t_1[\vec{s}], \ldots, t_m[\vec{s}])$;
- $\phi = \forall x_{n+1} \psi$, then $\forall x_{n+1} \psi[\vec{s}] = \forall x_{k+1}(\psi[\vec{s}, x_{k+1}])$.

Note that substitution does not commute with the modal operator, therefore it is not the case that $(\Box \psi)(t_1, \ldots, t_m)$ is equivalent to $\Box(\psi[t_1, \ldots, t_m])$.

DEFINITION 9. A counterpart frame, or c-frame, is a tuple $F = (W, R, D, d, C)$ such that W is a non-empty set; $R \subseteq W^2$; for $w \in W$, $D(w)$ is a non-empty set and $d(w) \subseteq D(w)$; for $w R w'$, $C_{w, w'} \subseteq D(w) \times D(w')$.

In this paper we focus on the following classes of c-frames:

existentially faithful iff $w R w'$, $a \in d(w)$ and $C_{w, w'}(a, b)$, imply $b \in d(w')$

fictionally faithful iff $w R w'$, $a \in D(w) \setminus d(w)$ and $C_{w, w'}(a, b)$, imply $b \in D(w') \setminus d(w')$

everywhere-defined iff $w R w'$ and $a \in D(w)$, imply there is $b \in D(w')$ s.t. $C_{w, w'}(a, b)$

surjective iff $w R w'$ and $b \in d(w')$, imply there is $a \in d(w)$ s.t. $C_{w, w'}(a, b)$

functional iff $w R w'$, $C_{w, w'}(a, b)$ and $C_{w, w'}(a, b')$, imply $b = b'$

DEFINITION 10. A counterpart model for the language L_T based on a c-frame F, or c-model in short, is a couple $M = (\mathcal{F}, \mathcal{I})$ where \mathcal{I} is an interpretation of L_T such that (i) if P^m is an n-ary predicative constant and $w \in W$, then $I(P^m, w)$ is an n-ary relation on $D(w)$; (ii) $I(E, w) = d(w)$.

A finitary assignment of type n, or n-assignment, in a world w is an n-tuple \vec{a} of elements in $D(w)$. Let t be the n-term x_j, the valuation $\vec{a}(t)$ for the n-assignment \vec{a} is equal to a_j.

DEFINITION 11. The satisfaction relation \models for a world $w \in \mathcal{M}$, a typed formula $\phi : n$, and an n-assignment \vec{a} is defined as follows:

- $(\mathcal{M}^{\vec{a}}, w) \models P^m(t_1, \ldots, t_m)$ if $(\vec{a}(t_1), \ldots, \vec{a}(t_m)) \in I(P^m, w)$
- $(\mathcal{M}^{\vec{a}}, w) \models \neg \psi$ if $(\mathcal{M}^{\vec{a}}, w) \not\models \psi$
- $(\mathcal{M}^{\vec{a}}, w) \models \psi \rightarrow \psi'$ if $(\mathcal{M}^{\vec{a}}, w) \not\models \psi$ or $(\mathcal{M}^{\vec{a}}, w) \models \psi'$
- $(\mathcal{M}^{\vec{a}}, w) \models (\Box \psi)(t_1, \ldots, t_m)$ if for $w' \in W$, for $b_1, \ldots, b_m \in D(w')$,
 wRw' and $C_{w,w'}(\vec{a}(t_1), b_1) \implies (\mathcal{M}^{\vec{a}}, w') \models \psi$
- $(\mathcal{M}^{\vec{a}}, w) \models \forall x_{n+1} \psi$ if for every $a^* \in d(w)$, $(\mathcal{M}^{\vec{a}a^*}, w) \models \psi$

where $\vec{a} \cdot a^*$ is the $n + 1$-assignment (a_1, \ldots, a_n, a^*).

A typed formula $\phi : n$ is said to be true at a world w if it is satisfied by every n-assignment; ϕ is valid on a c-model \mathcal{M} if it is true at every world in \mathcal{M}; ϕ is valid on a c-frame \mathcal{F} if it is valid on every c-model based on \mathcal{F}.

4 Incompleteness of QML Systems

This section is devoted to the incompleteness proofs for systems $Q^E.K + BF$ and $Q^E.K + CBF + BF$, which are inspired to a similar result in [3]. We first show that $Q^E.K + BF$ is Kripke-incomplete, that is, there is no class of Kripke frames which validates all and only the theorems of $Q^E.K + BF$.

THEOREM 12. The system $Q^E.K + BF$ is Kripke-incomplete, i.e., every K-frame for $Q^E.K + BF$ validates $\neg \neg E$, but $Q^E.K + BF \not\vdash \neg \neg E$.

In section 2 we remarked that $Q^E.K + BF \not\models \neg \neg E$. In order to show that $Q^E.K + BF$ does not prove $\neg \neg E$ we need two lemmas. By the first one if a formula $\phi \in \mathcal{L}$ is a theorem in $Q^E.K + BF$, then its translation $\tau_n(\phi) \in \mathcal{L}_T$ as defined below holds in a suitable c-frame. By the second lemma this suitable c-frame does not validate $\neg \neg E(x_n) \rightarrow \Box \neg \neg E(x_n)$, i.e., the translation of $\neg \neg E$ according to τ_n. By contraposition we obtain that $Q^E.K + BF$ does not prove $\neg \neg E$.

Following [3, 6] we define a translation function from untyped to typed first-order modal languages.

DEFINITION 13. Let $\phi \in \mathcal{L}$ be an untyped formula and define $g(\phi)$ as the maximum k such that x_k occurs in ϕ. For $n \geq g(\phi)$, the formula $\tau_n(\phi) \in \mathcal{L}_T$ of type n is inductively defined as follows:

- $\tau_n(P^m(t_1, \ldots, t_m)) := P^m(t_1, \ldots, t_m)$
- $\tau_n(\neg \psi) := \neg \tau_n(\psi)$
- $\tau_n(\Box \psi) := \Box \tau_n(\psi)$
- $\tau_n(\forall x_{n+1} \psi) := \forall x_{n+1} \tau_n(\psi)[x_1, \ldots, x_{n+1}, x_{n+1}, \ldots, x_n]$

By the first lemma theoremhood in $Q^E.K + BF$ implies validity in everywhere-defined, surjective, functional c-frames, modulo the translation function τ_n.

LEMMA 14. Let $\phi \in \mathcal{L}$, $n \geq g(\phi)$ and let \mathcal{F} be an everywhere-defined, surjective, and functional c-frame, then

$Q^E.K + BF \vdash \phi$ implies $\mathcal{F} \models \tau_n(\phi)$
The proof of this lemma requires the following auxiliary result, in which the assumptions of everywhere-definiteness and functionality are essential.

LEMMA 15. If \(\phi \) is a formula in \(\mathcal{L} \), \(\mathcal{F} \) is an everywhere-defined and functional c-frame, and \(x_{i_1}, \ldots, x_{i_m} \) are free for \(x_1, \ldots, x_m \) in \(\phi \), then

\[
\mathcal{F} \models \tau_m(\phi)[x_{i_1}, \ldots, x_{i_m}] \iff \tau_n(\phi[x_{i_1}, \ldots, x_{i_m}])
\]

If \(Q^E.K+BF \) proves \(\neg E \), then any everywhere-defined, surjective, and functional c-frame models \(\tau_n(\neg E) \). But the latter fact is negated by the next lemma.

LEMMA 16. There exists an everywhere-defined, surjective, and functional c-frame \(\mathcal{F} \) such that \(\mathcal{F} \not\models \neg E(x_n) \rightarrow \Box \neg E(x_n) : n \).

Proof. Consider the c-frame \(\mathcal{F} \), where \(W = \{w, w'\} \); \(R = \{(w, w')\} \); \(D(w) = \{a, a'\}, D(w') = \{b\}; d(w) = \{a\}, d(w') = \{b\}; C_{w,w'} = \{(a, b), (a', b)\} \).

By definition \(\mathcal{F} \) is everywhere-defined, surjective, and functional, but \(\neg E \) fails in \(\mathcal{F} \) as it is not fictionally faithful. Consider a c-model \(\mathcal{M} \) based on \(\mathcal{F} \) and an n-assignment \(\vec{a} \) such that \(a_n = a' \) and \((\mathcal{M}^E, w) \models \neg E(x_n) \).

We have that \(C_{w,w'}(a', b) \) and \(b \in d(w') \), so \((\mathcal{M}^E, w) \models \Box E(x_n) \). Thus, \((\mathcal{M}^E, w) \models \neg E(x_n) \wedge \Box E(x_n) \) and \(\mathcal{F} \not\models \neg E \).

By lemmas 14 and 16 the system \(Q^E.K+BF \) does not prove \(\neg E \), which is nonetheless valid on every \(K \)-frame for \(Q^E.K+BF \). As a result, theorem 12 holds.

Note that also the system \(Q^E.K+CBF+BF \) is Kripke-incomplete, as lemma 14 holds also for \(Q^E.K+CBF+BF \) with respect to existentially faithful, everywhere-defined, surjective, and functional c-frames. Further, the c-frame in lemma 16 is also existentially faithful.

THEOREM 17. The system \(Q^E.K+CBF+BF \) is Kripke-incomplete, i.e., \(Q^E.K+CBF+BF \not\models N \neg E \), but \(Q^E.K+CBF+BF \not\models Q^E.K+CBF \not\models \neg E \).

Acknowledgements. I would like to thank the reviewers for useful comments on a earlier version of this paper.

BIBLIOGRAPHY

