MCMAS v1.1: User Manual
Contents

1 Introduction .. 1
 1.1 Introduction ... 1
 1.2 For the impatient .. 1
 1.2.1 For the very impatient 2

2 Tutorial ... 3
 2.1 Tutorial ... 3
 2.1.1 How to describe a system of agents? 3
 2.1.2 A concrete example: the bit transmission problem and its encoding in ISPL 4
 2.1.3 Verification and simulation 7
 2.1.4 A more complex example: the protocol of the dining cryptographers 9

3 Reference .. 11
 3.1 Command line options 11
 3.2 ISPL syntax .. 13
 3.2.1 ISPL overview 13
 3.2.2 Counterexample/witness generation 18
 3.2.3 Reserved keywords 18
 3.2.4 The grammar 19
 3.3 The graphical interface 24
 3.4 Theoretical background: the semantics of interpreted systems 24
 3.4.1 Verification algorithms 30
Chapter 1

Introduction

1.1 Introduction

MCMAS is a Model Checker for Multi-Agent Systems (MAS). MCMAS takes in input a MAS specification and a set of formulae to be verified, and it evaluates the truth value of these formulae using algorithms based on Ordered Binary Decision Diagrams (OBDDs [1]). Whenever possible, MCMAS produces counterexamples for false formulae and witnesses for true formulae. MCMAS allows the verification of a number of modalities, including CTL operators, epistemic operators, operators to reason about correct behaviour and strategies, with or without fairness conditions.

MCMAS can also be used to run interactive, step-by-step simulations. Additionally, a graphical interface is provided as an Eclipse plug-in which includes a graphical editor with syntax recognition, a graphical simulator, and a graphical analyser for counterexamples.

Multi-Agent Systems are described in MCMAS using a dedicated programming language derived from the formalism of interpreted systems [4]. This language, called ISPL (Interpreted Systems Programming Language), resembles the SMV language in that it characterises agents by means of variables and represents their evolution using Boolean expressions.

The remainder of this document is organised as follows:

- Section 2.1 is a simple tutorial providing a short introduction to the formalism of interpreted systems, a flavour of ISPL and basic MCMAS commands.
- Section 3.1 describes the command line options for the MCMAS executable.
- Section 3.2 contains the complete ISPL syntax.
- Section 3.3 describes the graphical interface.
- Section 3.4 presents a detailed description of the theoretical background of MCMAS.

1.2 For the impatient

System requirements:

- Tested platforms: x86 compatible 32 bit or 64 bit processor; ppc and MacIntel.
- Operating system: Linux, Mac OS X, Windows using Cygwin;
- Compiler: flex 2.5.4 or higher, GNU bison 2.3 or higher, GNU g++ 4.0.1 or higher;
- Eclipse 3.2 or higher with Java 1.5/1.6 (optional, for the graphical interface).

Please feel free to contact us at mcmas@imperial.ac.uk if you want to run MCMAS on different architectures/configurations.

Installation steps
1. (Windows platform only) Install cygwin and the packages *g++*, *flex* and *bison* on Windows XP/Vista/7. Detailed instructions can be found from http://www.cygwin.com/.

2. Extract MCMAS sources with `tar` and type `make` and you should obtain the executable `mcmas`.

3. (Optional) Install Eclipse plug-in for the graphical editor by copying the file `org.mcmas.ui_1.0.0.jar` files to the `plugin/` directory of your Eclipse installation. Install Graphviz (http://www.graphviz.org/). Then run Eclipse with the option “-clean” for the first time and specify the paths to directories containing `mcmas` and `dot` (a program in Graphviz), and the bin directory in Cygwin if you use Windows, in the MCMAS preference.

Running `mcmas`

- `./mcmas -h` from the command line. See the examples in the `examples` directory.
- Graphical interface: start Eclipse; if the plugin has been recognised, you should be able to create a new ISPL project and create a new ISPL file.

1.2.1 For the very impatient

We might be able to provide a pre-compiled binary version for your system, please contact us at mcmas@imperial.ac.uk.

\(^1\) Please contact us if you want to compile MCMAS using Visual Studio, we have an experimental version of MCMAS for this.
Chapter 2

Tutorial

2.1 Tutorial

2.1.1 How to describe a system of agents?

Various techniques and languages exist to describe a system of agents. MCMAS adopts and extends the formalism of interpreted systems [4] using the dedicated ISPL language. We distinguish between two kinds of agents: “standard” agents, and the environment agent. The environment is used to describe boundary conditions and infrastructures shared by “standard” agents and it is modelled similarly to standard agents (see below). Not all models require an environment agent, which is therefore optional in ISPL.

In brief, in MCMAS each agent (including the environment) is characterised by:

1. A set of local states (for instance the states “ready” or “busy” for a receiver).
2. A set of actions (for instance “sendmessage” or “open channel”).
3. A rule describing which action can be performed by an agent in a given local state. We call this rule a protocol.
4. An evolution function, describing how the local states of the agents evolve based on their current local state and on other agents’ actions.

Local states. Local states are defined in terms of local variables: as an example, consider a printer with two sensors, one sensor for toner (which could be high or low), and one sensor for paper (which could be full or empty). In this case, the agent printer has four possible local states corresponding to all the possible combinations of values of toner and paper. Local states are private, i.e., each agent can observe only its own local states, and all the other parameters discussed below (protocol and evolution function) cannot refer to other agents’ local variables. The only exception is that all “standard” agents can “peek” at some variables of the environment. These variables in the environment that agent i can peek are called local observable variables to agent i. They can be referenced in agent i’s protocol and evolution function, and hence are part of extended local state of the agent. However, their value can only be changed by the environment, i.e., “standard” agent is only allowed to read their value. Additionally, the epistemic accessibility relation of an agent (see Section 3.4) is based on the agent’s extended local states. Intuitively, an agent “knows” something in a state of the system if this something is true in all the states of the system in which its extended local states remain the same. In the rest of the manual, we use the words “local state” to denote “extended local states”.

Actions. Each agent (including the environment) is allowed to perform some actions, for instance send a message. It is assumed that all actions performed are visible by all the other agents.

Protocols. Protocols describe which actions can be performed in a given local state. As local states are defined in terms of variables, the protocol for an agent is expressed as a function from variable assignments to actions. In ISPL protocols are not required to be exhaustive: it is sufficient to specify only the variable assignments relevant to the execution of certain actions, and introduce a catch-all assignment by means of the keyword **Others** (see below). Protocols are not required to be deterministic: it is possible to associate a set of

1Not to be confused with the notion of protocol in networking.
actions to a given variable assignment. In this case the action to be performed is selected non-deterministically in this set.

Evolution functions. The evolution function for an agent describes how variable assignments change as a result of the actions performed by all the other agents. For instance, the evolution function for a printer could prescribe that, if the current local state (or a variable composing the local state) is “ready” and an agent performs the action “send print job”, then the next local state of the printer is “busy”. Formally, the evolution function is a function returning a “next” assignment to the local variables of an agent as a function of the "current" set of assignments to local variables, the observable variables of the environment, and the actions performed by the agents. A global evolution function is computed by taking the conjunction of all the agents’ evolution functions.

The description of a MAS using ISPL is completed by the declaration of a set of initial states expressed as assignments to local variables. If more than one state satisfies the assignments, then the initial state is selected randomly. The system evolves from this set of initial states in accordance to the protocols and the evolutions functions, and this process is used to compute the truth value of formulae specified by the user. Fairness conditions can also be specified in ISPL, to rule out unwanted behaviour (e.g. a communication channel being continuously noisy or a printer being locked forever by a single agent).

In the next sections we will provide two concrete examples and their encoding in ISPL. We refer to Section 3.4 for a more formal definition of ISPL and its semantics.

2.1.2 A concrete example: the bit transmission problem and its encoding in ISPL

In the bit-transmission problem [4] a sender S wants to communicate the value of a bit to a receiver R, by using an unreliable communication channel (see Figure 2.1). In this example, the channel may drop messages, but cannot tamper messages; also, at any given time, the channel may transmit messages in one direction but not in the other.

One mechanism to achieve communication is as follows: S immediately starts sending the bit to R, and continues to do so until it receives an acknowledgement from R. R does nothing until it receives the bit; from then on, it sends messages acknowledging the receipt to S. S stops sending the bit to R when it receives the first acknowledgement from R, and the protocol terminates here.

To encode this example in the formalism of interpreted systems we first introduce an Environment agent, whose ISPL code is as follows:

```plaintext
Agent Environment
Vars:
    state : {S,R,SR,none};
end Vars
Actions = {S,SR,R,none};
Protocol:
    state=S: {S,SR,R,none};
    state=R: {S,SR,R,none};
    state=SR: {S,SR,R,none};
    state=none: {S,SR,R,none};
end Protocol
Evolution:
```

![Figure 2.1: The bit transmission problem.](image)
state=S if (Action=S);
state=R if (Action=R);
state=SR if (Action=SR);
state=none if (Action=none);
end Evolution
end Agent

In this case, the Environment does not have observable variables (consequently, this section does not appear in the code), and it only has one variable state representing the availability of the communication channel (e.g. SR represents the fact that both directions are open for communication). Thus, the Environment agent has 4 possible local states. The Environment can perform four actions (in this case we use the same names for local states and actions): transmit the message from Sender only, from both Sender and Receiver, from Receiver only, or don’t transmit any message. The protocol in this case simply prescribes that in every state any action can be chosen (non-deterministically) by the agent Environment. The Evolution function is defined as follows: take the first line below Evolution:, this is read as “the next state will be S if the (current) Action of the Environment is S”. Essentially, the evolution function simply records in the local state of the Environment the last action performed. In general, a line in the evolution function is triggered when the Boolean condition to the right of the if keyword becomes true.

We encode the agent Sender by means of the following ISPL code:

Agent Sender
Vars:
 bit: { b0, b1 }; -- The bit can be either zero or one
 ack: boolean; -- This is true when the ack has been received
end Vars
Actions = { sb0,sb1,nothing };
Protocol:
 bit=b0 and ack=false : {sb0};
 bit=b1 and ack=false : {sb1};
 ack=true : {nothing};
end Protocol
Evolution:
 (ack=true) if (ack=false) and
 (((Receiver.Action=sendack) and (Environment.Action=SR))
 or
 ((Receiver.Action=sendack) and (Environment.Action=R))
);
end Evolution
end Agent

Notice that this is a “standard” agent and no observable variables are present. Two variables are declared in the Vars section: an enumeration type bit encoding the value of the bit the Sender wants to send, and a Boolean variable ack encoding whether or not an acknowledgement has been received (comments can be added by escaping the commented text with the prefix --). Therefore, the Sender has four possible local states corresponding to all the possible combination of values of bit and ack. Three actions are declared for the sender: send bit 0, send bit 1, and do nothing. The Protocol section for the Sender defines how these actions are performed. In general, each line of the protocol starts with a Boolean condition on the values of the variables, followed by a colon, followed by a list of actions that are allowed when the Boolean condition is true. The lines of the protocol do not need to be exhaustive: if they are not, the special keyword Other needs to be used to specify what to do when none of the Boolean condition is true (for instance by introducing a “nothing” action as in this case). The evolution function in this case is straightforward: the Sender changes the value of the variable ack only if it is false and an acknowledgement is received from the Receiver (and the variable bit does not change its value); notice how other agents’ actions are scoped with the syntax construct AgentName.Action. If no scoping prefix is added, the value is intended to refer to the agent in which the condition is declared. As in the case of protocols, the list of Boolean conditions does not need to cover all possible cases: MCMAS assumes that, if none of the Boolean conditions is true, then the local state of the agent does not change.

We encode the agent Receiver by means of the following ISPL code:
Agent Receiver

Vars:
 state : { empty, r0, r1 };
end Vars

Actions = {nothing, sendack};

Protocol:
 state=empty : {nothing};
 (state=r0 or state=r1): {sendack};
end Protocol

Evolution:
 state=r0 if (((Sender.Action=sb0) and (state=empty) and
 (Environment.Action=SR)) or
 ((Sender.Action=sb0) and (state=empty) and
 (Environment.Action=S))) ;
 state=r1 if (((Sender.Action=sb1) and (state=empty) and
 (Environment.Action=SR)) or
 ((Sender.Action=sb1) and (state=empty) and
 (Environment.Action=S))) ;
end Evolution

Only one enumeration variable is declared for this agent, representing whether or not the bit has been received, and its value. Agent Receiver can perform two actions: either do nothing (if state is empty), or send an acknowledgement if a bit has been received. Receiver evolves to state r0 if it was in state empty and the sender is performing the action of sending bit 0, and the Environment is enabling transmission either in both direction (Environment.Action=SR), or at least from the sender (Environment.Action=S). The evolution to state r1 is similar.

After the declaration of Environment and agents, five more sections are required to complete the ISPL input to MCMAS: Evaluation, InitStates, Groups, Fairness, and the list of formulae to be verified:

Evaluation
 recbit if ((Receiver.state=r0) or (Receiver.state=r1));
 recack if ((Sender.ack = true));
 bit0 if ((Sender.bit=b0));
 bit1 if ((Sender.bit=b1));
 envworks if (Environment.state=SR);
end Evaluation

InitStates
 ((Sender.bit=b0) or (Sender.bit=b1)) and
 (Receiver.state=empty) and (Sender.ack=false) and
 (Environment.state=none) ;
end InitStates

Groups
 g1 = {Sender,Receiver};
end Groups

Fairness
 envworks;
end Fairness

Formulae
 AF(K(Sender,K(Receiver,bit0) or K(Receiver,bit1)));
 AG(recack -> K(Sender,(K(Receiver,bit0) or K(Receiver,bit1))));
end Formulae
The Evaluation section introduces the Boolean variables that are used in Fairness conditions and in the formulae to be verified. These Boolean variables are defined by Boolean expressions over the local states of the agents. For instance, the proposition recbit is true if the local state of the Receiver is \(r_0 \) or \(r_1 \).

The section InitStates declares the set of initial states by using a Boolean expression over local states. In this case, there are two possible initial states, one where the bit value is \(b_0 \) and one where the bit value is \(b_1 \), and with \(\text{ack}=\text{false} \) and all the other local states for Receiver and Environment set to their empty value.

The section Groups allows for the definition of groups of agents, that can be used in the verification of group modalities in the Formulae section.

The section Fairness contains a list of Boolean expressions: intuitively, it is required that all the formulae listed in this section must be true infinitely often along all executions. For instance, in the example above it is required that the proposition envworks is true infinitely often, meaning that the environment cannot avoid the state \(\text{SR} \) forever.

Note. If no group modality is required by any formula, the group section may be left empty, or the entire section can be removed from the ISPL code. This same applies to fairness section as well.

The section Formulae contains the list of formulae to be verified. Formulae are built using CTL temporal operator, epistemic operators, operators to reason about correct behaviour and strategies. In the example listed above, the first formula is read as “along all paths, at some point in the future the sender will know that the receiver knows that the bit value is either \(0 \) or \(1 \)”. This formula is true in this particular case (see below) because of the fairness condition envworks. If this fairness condition is commented out, then the formula becomes false (because the Environment could forbid communication indefinitely). The second formula claims that “it is always true that, if an acknowledgement was received, then the sender knows that the receiver knows the value of the bit”. This formula is true even if the fairness condition is removed.

The example presented in this section and additional formulae can be found in the text file examples/bit_transmission_protocol.ispl in the source distribution of MCMAS.

2.1.3 Verification and simulation

In this section we present how to run MCMAS from the command line to perform verification and simulation of the example presented in the previous section.

The minimal MCMAS execution consists in the invocation of the executable followed by the name of the ispl file to be verified:

```
$ ./mcmas examples/bit_transmission_protocol.ispl
************************************************************************
MCMAS v1.1
This software comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Please check http://www-lai.doc.ic.ac.uk/mcmas/ for the latest release.
Report bugs to <mcmas@imperial.ac.uk>
************************************************************************
examples/bit_transmission_protocol.ispl has been parsed successfully.
Global syntax checking...
Done
Encoding BDD parameters...
Building partial transition relation...
Building OBDD for initial states...
Building reachable state space...
Checking formulae...
Building set of fair states...
Verifying properties...
  Formula number 1: (AF K(Sender, (K(Receiver, bit0) || K(Receiver, bit1)))), is TRUE in the model
  Formula number 2: (AG (recack -> K(Sender, (K(Receiver, bit0) || K(Receiver, bit1)))))), is TRUE in the model
done, 2 formulae successfully read and checked
execution time = 0
number of reachable states = 18
```
In this case, if the syntax is correct, MCMAS simply outputs the result of the evaluation of the formulae found in the \texttt{Formulae} section of the ISPL file. MCMAS performs a detailed syntax check of the input file and the verification process is not invoked if a syntax error is present. In case of errors, MCMAS terminates with a warning and details of the error. As an example, if the semicolon in the definition of \texttt{state} in the agent \texttt{Environment} is deleted, MCMAS terminates with the following error:

```bash
./mcmas examples/bit_transmission_protocol.ispl
```

```
examples/bit_transmission_protocol.ispl:9.16: syntax error, unexpected LCB, expecting COLON
examples/bit_transmission_protocol.ispl has syntax error(s).
```

A number of options are available to compute counterexamples, to increase the verbosity level, etc. These options are explained in detail in Section 3.1.

One important feature of MCMAS is the possibility of running simulations. The simulation environment is started with the option \texttt{-s} from the command line:

```bash
./mcmas -s examples/bit_transmission_protocol-2.ispl
```

```
examples/bit_transmission_protocol-2.ispl has been parsed successfully.
Global syntax checking... Done
Encoding BDD parameters...

------- Initial state -------
Agent Environment
  state = S
Agent Sender
  ack = false
  bit = b0
Agent Receiver
  state = empty

Is this the initial state? [Y(es), N(ext), E(xit)]:
```

MCMAS stops at this point waiting for input from the user. It is possible to go through all the possible initial states with the keys N (Next) and P (Previous). User Y to select an initial state:

```
------- Initial state -------
Agent Environment
  state = S
```
Agent Sender
 ack = false
 bit = b0
Agent Receiver
 state = empty

Is this the initial state? [Y(es), N(ext), E(xit)]: Y

Enabled transitions:
1 : Environment : none; Sender : sb0; Receiver : nothing
2 : Environment : SR; Sender : sb0; Receiver : nothing
3 : Environment : R; Sender : sb0; Receiver : nothing
4 : Environment : S; Sender : sb0; Receiver : nothing

Please choose one, or type 0 to backtrack or -1 to quit:

When a state is chosen, MCMAS outputs the possible transition from that state. Transitions can be chosen by typing the corresponding number (in the example below transition number two is chosen):

Please choose one, or type 0 to backtrack or -1 to quit:
2

--------- Current state ---------
Agent Environment
 state = SR
Agent Sender
 ack = false
 bit = b0
Agent Receiver
 state = r0

Enabled transitions:
1 : Environment : S; Sender : sb0; Receiver : sendack
2 : Environment : R; Sender : sb0; Receiver : sendack
3 : Environment : SR; Sender : sb0; Receiver : sendack
4 : Environment : none; Sender : sb0; Receiver : sendack

Please choose one, or type 0 to backtrack or -1 to quit:

When a transition is chosen, MCMAS displays the new state and the transitions available in the new state. Notice that it is always possible to backtrack using 0, or to exit using -1.

2.1.4 A more complex example: the protocol of the dining cryptographers

The protocol of the dining cryptographers was introduced in [2]. The original wording from [2] is as follows:

“Three cryptographers are sitting down to dinner at their favourite three-star restaurant. Their waiter informs them that arrangements have been made with the maitre d’hôtel for the bill to be paid anonymously. One of the cryptographers might be paying for the dinner, or it might have been NSA (U.S. National Security Agency). The three cryptographers respect each other’s right to make an anonymous payment, but they wonder if NSA is paying. They resolve their uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the cryptographer on his right, so that only the two of them can see the outcome. Each cryptographer then states aloud whether the two coins he can see – the one he flipped and the one his left-hand neighbour flipped – fell on the same side or on different sides. If one of the cryptographers is the payer, he states the opposite of what he sees. An odd number of differences uttered at the table indicates that a cryptographer is paying; an even number indicates that NSA is paying (assuming that the dinner was paid for only once). Yet if a cryptographer is paying, neither of the other two learns anything from the utterances about which cryptographer it is.”[2]

Notice that similar versions of the protocol can be defined for any number of cryptographers greater than three.
We model an instance of this example with three cryptographers by introducing three agents \(C_i \) \((i = \{1, 2, 3\}) \) to model the three cryptographers, in addition to the environment agent.

The environment is used to select non-deterministically the identity of the payer and the results of the coin tosses. We introduce three variables for the environment, one for each coin. Also, we introduce an observable variable to record the result of the utterances (even or odd):²

Agent Environment

\[
\begin{align*}
\text{Obsvars:} & \\
\text{numberofodd} : \{ \text{none, even, odd} \}; & \\
\text{end Obsvars} & \\
\text{Vars:} & \\
\text{coin1} : \{ \text{head, tail} \}; & \\
\text{coin2} : \{ \text{head, tail} \}; & \\
\text{coin3} : \{ \text{head, tail} \}; & \\
\text{end Vars} & \\
\end{align*}
\]

It is assumed that the environment can perform only one action, the null action. Therefore, the protocol \(P_E \) is simply mapping every local state to the null action by means of the Other keyword. The evolution function of the environment determines the evolution of the observable variable only to record the result of the utterances.

The local states of a cryptographer are composed by four variables representing, respectively, whether the cryptographer is the payer, the value of the coins, and whether the coins are equal or different. Each cryptographer can perform one of three actions: say “equal”, say “different”, or do nothing. These actions are performed in accordance with the protocol derived from the informal description above. The evolution function for the cryptographers simply updates the variable recording whether or not the coins that can be seen are equal.

There are 32 possible initial states, corresponding to the possible combinations of coin tosses and payers. In this example no fairness condition is required and MCMAS can be used to check the characteristic properties of this example: if there is an odd number of utterances, then someone at the table paid the bill. In this case, it is also true that a cryptographer did not pay for the dinner, the this cryptographer knows that a cryptographer paid for it, but he does not know who is the actual payer. This is captured by the following formula:

\[
(\text{odd and } \neg c_1\text{paid}) \rightarrow (K(\text{DinCrypt1},(c_2\text{paid or c3paid}))) \text{ and } \\
\neg K(\text{DinCrypt1},c_2\text{paid}) \text{ and } \neg K(\text{DinCrypt1},c_3\text{paid}));
\]

where \(c_1\text{paid} \) is an atomic proposition which is true if the first cryptographer paid the dinner (and similarly for 2 and 3), and \(\text{odd} \) is an atomic proposition true when there is an odd number of utterances. Conversely, an even number of utterances implies that all the cryptographers know that the company paid for the dinner. The following formula captures that the first cryptographer knows this fact:

\[
(\text{even} \rightarrow (K(\text{DinCrypt1},\neg c_2\text{paid}) \text{ and } K(\text{DinCrypt1},\neg c_3\text{paid})));
\]

The ISPL code for this example (making use of Lobsvars variables) can be found in the source distribution under the directory examples.

²In this example, all agents modelling cryptographers can observe this variable. It is a shortcut to define a local observable variable for all standard agents. See 3.2.1 for more detail.
3.1 Command line options

The command line options are displayed by running MCMAS with the \(-h\) option:

```
$ ./mcmas -h
************************************************************************
MCMAS v1.1
This software comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Please check http://www-lai.doc.ic.ac.uk/mcmas/ for the latest release.
Report bugs to <mcmas@imperial.ac.uk>
************************************************************************
Usage: mcmas [OPTIONS] FILE
Example: mcmas -v 3 -u myfile.ispl
```

Options:
- \(-s\) Interactive execution
- \(-v\) Number verbosity level (1 -- 5)
- \(-u\) Print BDD statistics
- \(-e\) Number Choose the way to generate reachable state space (1 -- 3, default 1)
- \(-o\) Number Choose the way to order BDD variables (1 -- 4, default 2)
- \(-g\) Number Choose the way to group BDD variables (1 -- 3, default 3)
- \(-d\) Number Choose the point to disable dynamic BDD reordering (1 -- 3, default 3)
- \(-nocache\) disable internal BDD cache
- \(-k\) Check deadlock in the model
- \(-a\) Check arithmetic overflow in the model
- \(-c\) Number Choose the way to display counterexamples/witness executions (1 -- 3)
- \(-p\) Path Choose the path to store files for counterexamples
- \(-f\) Number Choose the level of generating ATL strategies (1 -- 4)
- \(-l\) Number Choose the level of generating ATL counterexamples (1 -- 2)
- \(-w\) Try to choose new states when generating ATL strategies
- \(-n\) Disable comparison between an enumeration type and its strict subset
- \(-h\) This screen

The full list of available options are explained as follows.
• -s: this option invokes the interactive mode execution (see previous section).

• -v Number: this option is used to modify the verbosity level. It is particularly useful to detect the bottlenecks in large examples and to investigate unexpected behaviours of MCMAS or bugs.

• -u: this option is used to print statistics on OBDDs at the end of the execution. Using this option, it is possible to estimate memory consumption and the compression level. This options works even if MCMAS is terminated by `ctrl+c`.

• -e Number: this option is used to switch between different strategies for the computation of the transition relation and reachable states. Option 1, 2 and 3 differ on how reachable states are computed internally.

• -o Number: this option is used to switch between different strategies for BDD ordering.

• -g Number: this option groups BDD variables to speed up dynamic BDD reordering: option 1 group two adjacent BDD variables; option 2 groups BDD variables for each ISPL variable; option 3 groups BDD variables based on ISPL variables and each agent’s actions, which is the default choice.

• -d Number: this option disables dynamic reordering on BDD variable during the verification process when Number > 0: option 1 disable the reordering in the whole process; option 2 disables the reordering after transition relation is built; option 3 switches off the reordering after reachable states are computed, which is the default choice.

• -nobddcache: this option disables the internal BDD cache. In general, the internal BDD cache reduces the running time. But in some rare cases, it can slow down the verification.

• -k: this option searches for a deadlock state in the model, where no agents can make progress. If combined with option -c, a witness execution is generated from an initial state to the deadlock state.

• -a: this option searches for a state in which an arithmetic overflow can occur, i.e., the value assigned to a bounded integer variable is beyond the upper or lower bound of the variable. A witness execution is generated if combined with -c.

• -c Number: this option is used to compute counterexamples (for false universal formulae) and witnesses (for true existential formulae). For each formula for which such computation is possible, option 1 prints a textual representation on screen; option 2 emits two files: “formulaN.dot” encoding the graphical representation of the counterexample/witness path, and “formulaN.info” file containing a detailed description of the states in the path, where N is the number of the formula; option 3 produces both the textual and graphical representations.

• -p String: this option allows users to choose a specific directory to store the graphical representations for counterexamples/witness executions. The default location is the current directory.

• -f Number: this option chooses the level of generating ATL strategies: option 1 generates all strategies for the outermost ATL operator; option 2 recursively generates all strategies for all ATL operators; option 3 generates only one strategy for the outermost ATL operator; option 4 recursively generates one strategy for all ATL operators.

• -l: this option forces MCMAS to generate a counterexample for an ATL formula, which is not built by -c options because the counterexample is an execution tree.

• -w: this option force MCMAS to choose a new state that is not visited before when possible at each step of the generation of ATL strategies.

• -n: this option disallows MCMAS to compare two enumeration types one of which is a strict subset of the other.
3.2 ISPL syntax

In this section we present the formal syntax of ISPL. Section 3.2.1 provides an overview of the language. Section 3.2.3 lists the reserved keywords which cannot be used as identifiers. Section 3.2.4 reports the formal grammar of ISPL using a bison-like syntax. See Section 2.1.2 for an informal description of the various components of an ISPL file.

3.2.1 ISPL overview

A multi-agent system specified in ISPL is composed of an Environment agent and a set of normal agents. Each agent has a set of local variables and the Environment also has a set of observable variables, which can be “observed” by other agents. The local states of an agent, each of which contains a valuation of its local variables (and observable variables if the agent is the Environment), are partitioned into two sets: the set of green states and the set of red states. The two sets are used to check correct behaviour properties. Every agent also has a set of actions, a protocol function and an evolution function.

The ISPL specification also contains the definition of initial states, propositions, groups, fairness formulae and formulae to be checked.

Below is the general structure of a model.

Semantics = MultiAssignment (MA) | SingleAssignment (SA)
Agent Environment
 Obsvars:
 ...
 end Obsvars
 Vars:
 ...
 end Vars
 RedStates:
 ...
 end RedStates
 Actions = {...};
 Protocol:
 ...
 end Protocol
 Evolution:
 ...
 end Evolution
end Agent

Agent TestAgent
 Lobsvars = {...};
 Vars:
 ...
 end Vars
 RedStates:
 ...
 end RedStates
 Actions = {...};
 Protocol:
 ...
 end Protocol
 Evolution:
 ...
 end Evolution
end Agent
Note that all the strings in the structure above (except \texttt{TestAgent}, which is the name of a normal agent) are reserved keywords. More agents could be defined similarly to \texttt{TestAgent}. The following sections explain the details of each section of an ISPL file.

Definition of variables

Currently, ISPL allows three types of variables: Boolean, enumeration and bounded integer. Suppose x, y and z are variables of Boolean, enumeration and bounded integer respectively. They are defined as follows:

$x : \text{boolean};$
$y : \{a, b, c\};$
$z : 1 .. 4;$

Note that the value of x can be \texttt{true} or \texttt{false}, the value of y is one of a, b and c, and the value of z can be 1, 2, 3, or 4. The lower bound and the upper bound of z are 1 and 4 respectively. The definition of a local/standard variable and the definition of an observable variable are the same. A comparison over Boolean variables or enumeration variables can only be an equality test, e.g., $x = \text{true}$, $y = a$, $x != \text{false}$ or $y != b$. Bit operations "~" (not), "&" (and), "|" (or), "^" (xor) are allowed for Boolean variables, e.g., $\neg x$ or x^x;

Arithmetic operations "=" (equality), ">" (less than), ">=" (greater than) are allowed for bounded integers, e.g., $z < 2$ or $z >= z * 2 - 3$. Two enumeration variables are comparable if they have the same type, or one has the type that is a subset of the type of the other. An enumeration type is a subset of another type if all enumeration values of the former are included in the latter.

Definition of local observable variables

The local observable variables for an agent are defined in the section \texttt{Lobsvars}:

\begin{verbatim}
Lobsvars = \{ x, y, z\};
\end{verbatim}

if x, y and z are standard variables of the environment. If a variable in the environment can be observed by all agents, there is a way to obtain compact ISPL code: define the variable in a special section \texttt{Obsvars}, instead of \texttt{Vars}, in the environment and then removed from all agents' \texttt{Lobsvars} section.

Definition of red states

The red states of a “standard” agent are represented by a Boolean formula over its local variables and local observable variables. For the environment, the red states are defined over its local variables. That is, all the local states that satisfy the formula are red, while the other local states are green. Allowed Boolean operators are \texttt{and}, \texttt{or} and \texttt{!} (for \texttt{not}). For example,
\[x = \text{true and } (! (\text{Environment}.y = \text{a}) \text{ or } z > 3) \]
is an acceptable Boolean formula for red states, assuming y is defined as a local observable variable.

Definition of actions

All actions of an agent are defined in the section *Actions*:

\[\text{Actions} = \{ \text{a1}, \text{b2}, \text{c3} \}; \]

Definition of protocol function

A line in a protocol function is composed of a condition, which is a Boolean formula over local states, and a list of actions. The condition represents all local states that satisfy the condition and the list of actions allowed to be performed in local states specified by the condition. In this example:

\[x = \text{true and } \text{Environment}.z < 2 : \{ \text{a1}, \text{a3} \}; \]

\[x = \text{true and } \text{Environment}.z < 2 \]
is the condition and \(\{ \text{a1}, \text{a3} \} \) is the list of actions. The conditions appearing in different lines do not need to be mutually exclusive, i.e., the conjunction of any two conditions does not need to be false. If this is the case, the agent has non-deterministic behaviour and all actions are considered possible by MCMAS.

For an agent that has many local states, it might be unrealistic or even impossible to specify actions for every state. MCMAS includes the reserved keyword *Other*:

\[\text{Other} : \{ \text{action-list} \}; \]

This item is optional, but it must be the last one in a protocol function if it is used. The keyword *Other* encodes all states except those specified in any line appearing before it. This keyword is also useful if the same set of actions is allowed in all local states. In this case, simply let the *Other* item be the only one in the protocol function.

Definition of the evolution function

There are two ways in ISPL to define evolution functions. The first way is chosen by defining the following statement

\[\text{Semantics} = \text{MultiAssignment}; \]

before the definition of the environment. To choose the second, replace *MultiAssignment* by *SingleAssignment* in the above statement. If no statement appears, the first way is used by default. Note that *MultiAssignment* can be abbreviated to *MA* and *SingleAssignment* abbreviated to *SA*.

1. **MultiAssignment**. A line in an evolution function consists of a set of assignments of local variables and an *enabling condition*, which is a Boolean formula over local variables, observable variables of the Environment, and actions of all agents. An item is *enabled* in a state if its enabling condition is satisfied in that state.

The left hand side (LHS) of an assignment is a local variable being assigned to a new value and the right hand side (RHS) is a truth value or a Boolean local/observable variable if LHS is a Boolean variable, an enumeration value or an enumeration local/observable variable if LHS is an enumerate variable, or an arithmetic expression if LHS is a bounded integer variable. An arithmetic expression can contain local variables and observable variables of bounded integer type. An observable variable must have a prefix “Environment”, such as *Environment*.x. Multiple assignments can be connected by the keyword *and*.

In an enabling condition, all observable variable must have the prefix “Environment”. A proposition over actions is of the form *XXX*.Action = *xxx*, where *XXX* is the name of an agent and *xxx* is one of its actions.

This is a possible line of an evolution function:

\[x=\text{true and } z=\text{Environment}.z+1 \text{ if } y=b \text{ and } \text{TestAgent}.\text{Action}=\text{a1}; \]
Table 3.1: ISPL snippet for different semantics.

<table>
<thead>
<tr>
<th>Agent Environment</th>
<th>Evolution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vars: a: 1..3; end Vars</td>
<td>b = 3 if b = 2;</td>
</tr>
<tr>
<td>Actions = {none};</td>
<td>b = 4 if b = 3;</td>
</tr>
<tr>
<td>Protocol: Other: {none}; end Protocol</td>
<td>b = 2 if b = 4;</td>
</tr>
<tr>
<td>Evolution:</td>
<td>a = 2 if a = 1;</td>
</tr>
<tr>
<td>a = 2 if a = 1;</td>
<td>a = 3 if a = 2;</td>
</tr>
<tr>
<td>a = 3 if a = 2;</td>
<td>a = 1 if a = 3;</td>
</tr>
<tr>
<td>a = 1 if a = 3;</td>
<td>c = 2 if c = 3;</td>
</tr>
<tr>
<td>end Evolution</td>
<td>c = 3 if c = 2;</td>
</tr>
</tbody>
</table>

end Agent

Agent TestAgent

Vars: a: 1..3; b: 2..4; c: 2..3; end Vars
Actions = {none}; end Protocol
Protocol: Other: {none}; end Protocol
Evolution:

a = 2 if a = 1;

a = 3 if a = 2;

a = 1 if a = 3;
end Evolution

end Agent

Evaluation

End States

Environment.a=TestAgent.a and

!(TestAgent.a = TestAgent.b) and

!(TestAgent.b=TestAgent.c);

end InitStates

Formulae

EF a_b;

end Formulae

This is read as: “in the next step, the value of x is true and the value of z is equal to the (current) value of z for the Environment if the current value of y is b and TestAgent is performing action a1”

2. SingleAssignment. This way is similar to the first one except that only one assignment is allowed in each evolution line.

Although the deference on syntax in these two ways seems trivial, it has big impact on the generation of the transition relation. In MultiAssignment, all evolution items in the same function are mutually excluded, which means that if an item is enabled in a state, its execution updates the set of variables according its set of assignment and keeps all other local variables unchanged. In SingleAssignment, evolution items in one function are partitioned into groups such that two items belong to the same partition if and only if they update the same variable. The execution of an item only updates the variable according its assignment. In the meantime, other local variables can be updated by items in other partitions.

The example in Table 3.1 demonstrates the subtle difference between two semantics. Consider the following initial state:

(Environment.a = 2, TestAgent.a = 2, TestAgent.b = 3, TestAgent.c = 2).

In MultiAssignment, it has three possible successor states:

(Environment.a = 3, TestAgent.a = 3, TestAgent.b = 3, TestAgent.c = 2),

(Environment.a = 3, TestAgent.a = 2, TestAgent.b = 3, TestAgent.c = 3),

(Environment.a = 3, TestAgent.a = 2, TestAgent.b = 4, TestAgent.c = 2).

This means variables a, b and c are updated separately. In SingleAssignment, it has only one successor state:

(Environment.a = 3, TestAgent.a = 3, TestAgent.b = 4, TestAgent.c = 3),

which means a, b and c are updated simultaneously. Further, the formula in the example is true with MultiAssignment, while false with SingleAssignment.

Definition of evaluation function

An evaluation function consists of a group of atomic propositions, which are defined over global states. Each atomic proposition is associated with a Boolean formula over local variables of all agents and observable variables.
in the Environment. The proposition is evaluated to true in all the global states that satisfy the Boolean formula. Every variable involved in the formula has a prefix indicating the agent the variable belongs to. An example of defining an atomic proposition is shown below:

\[
\text{happy if } \text{Environment}.x = \text{true and TestAgent}.z < \text{Environment}.z;
\]

where \text{happy} is an atomic proposition and \text{if} is a keyword.

Definition of initial states

Initial states are defined by a Boolean formula over variables, exactly like a Boolean formula for an atomic proposition. However, each proposition in the Boolean formula has only the following forms:

\[
\text{XXX}.x = \text{xxx}
\]

where XXX is a normal agent or the Environment, x is a variable of XXX and xxx is a truth value, an enumeration value or an integer, depending on the type of the variable; or

\[
\text{XXX}.x = \text{YYY}.y
\]

where XXX and YYY are normal agents or the Environment, x is a variable of XXX and y is a variable of YYY. In the latter form, x and y must have the same type and domain. For simplicity, arithmetic expressions are not allowed in the first form. The following are two examples:

\[
\text{Environment}.x = \text{false and Environment}.y = a \text{ and TestAgent}.x = \text{true and TestAgent}.z = 1;
\]

\[
\text{Environment}.x = \text{TestAgent}.x;
\]

Definition of groups

Groups are used in formulae involving group modalities. A group includes one or more agents, including the Environment, such as

\[
g1 = \{ \text{TestAgent, Environment} \};
\]

Definition of fairness formulae

A fairness formula is a Boolean formula over atomic propositions defined in Section 3.2.1. Besides Boolean operators \text{and}, \text{or} and \text{!}, operator \text{– >} is also allowed in fairness formulae and in formulae defined in Section 3.2.1. Below is an example:

\[
\text{happy and ! dead};
\]

where \text{happy} and \text{dead} are atomic propositions. Notice that this section can contain a list of formulae.

Definition of formulae to be checked

A formula to be verified is defined over atomic proposition. It can have one of the following forms:

\[
\text{formula ::= (formula) }\|
\text{formula and formula }\|
\text{formula or formula }\|
\text{! formula }\|
\text{formula – > formula }\|
\text{AG formula }\|
\text{EG formula }\|
\text{AX formula }\|
\text{EX formula }\|
\text{AF formula }\|
\text{EF formula }\|
\text{A (formula U formula)}
\]
In the above definition, AgentName is the name of a normal agent or the Environment, GroupName is the name of a group defined in Section 3.2.1, AtomicProposition is an atomic proposition defined in Section 3.2.1 or a build-in atomic proposition: AgentName.GreenStates or AgentName.RedStates for every agent, where RedStates holds on all red states of the agent and GreenStates on all green states.

Notes

1. All sections in the Environment can be left empty if they are not needed;
2. Section RedStates in any normal agent can be left empty if all local states are green;
3. Section Groups can be left empty if no group is used by any formula being checked;
4. Section Fairness can be left empty if fairness conditions are not required.
5. All empty sections, even the environment, can be removed.

3.2.2 Counterexample/witness generation

When a formula beginning with A quantifier does not hold in a model, a counterexample execution will be presented to demonstrate how the formula is violated in the model. Similarly, a witness execution will be computed if a formula beginning with E quantifier holds in a model. MCMAS can compute counterexample/witness executions for mixed A and E in the following cases:

- Subformulas with E quantifier can appear in a formula beginning with A. However, MCMAS treats such a subformula as a whole, i.e., it will stop at a state where the subformula holds. For example, if AF EG φ does not hold, a circular path in which AF ¬φ holds in every state will be computed, but MCMAS does not generate path(s) for AF φ. On the other hand, if AF AG φ does not hold, a circular path will be computed as before. Then for each state in the path, a new path starting at the state is computed showing EF ¬φ.
- Subformulas with A quantifier can appear in a formula beginning with E. For instance, EF AG φ. If this formula holds, a path leading to a state where AG φ is returned by MCMAS. Consider EF EG φ as a comparison. MCMAS will compute a path in a lasso shape, in which φ holds in every state of the loop.
- MCMAS is able to compute a counterexample for a Boolean combination of formulas beginning with A or a witness for a Boolean combination of formulas beginning with E.

3.2.3 Reserved keywords

"--", "*"
"Semantics"
"MultiAssignment"
"SingleAssignment"
"MA"
"SA" "Agent"
"RedStates"
"GreenStates"
"Actions"
"Action"
"Protocol"
"Evolution"
"Evaluation"
"InitStates"
"Groups"
"Fairness"
"Formulae"
"end"
"Environment"
"Obsvars"
"Lobsvars"
"Vars"
"boolean"
"true"
3.2.4 The grammar

/* Interpreter System */
is ::= semantics? environment? agents+ evaluation istates groups? fairformulae? formulae

/* AGENT ENVIRONMENT */
environment ::= Agent Environment obsvardef? envvardef? enreddef? envactiondef envprotdef envevdef end Agent

/* Observable variables */
obsvardef ::= Obsvars : onevardef* end Obsvars
onevardef ::= ID : boolean ;
 | ID : integer .. integer ;
 | ID : { enumlist } ;
enumlist ::= ID | enumlist, ID
integer ::= NUMBER | - NUMBER

/* Non-observable variables in Environment */
eenvvardef ::= Vars : onevardef* end Vars

/* Definition of red states */
enreddef ::= RedStates : (enlboolcond ;) ? end RedStates

/* Definition of red states */
reddef ::= RedStates : (lboolcond ;) ? end RedStates

/* ACTIONS in Environment */
envactiondef ::= Actions = { ID* } ;

/* PROTOCOL in Environment */
enprotdeflist ::= enprotline | enprotdeflist enprotline
enprotline ::= enlboolcond : { ID+ } ;
otherbranch ::= Other : { ID+ } ;

/* Boolean conditions for protocols in environment */
enlboolcond ::= (enlboolcond)
 | enlboolcond and enlboolcond
 | enlboolcond or enlboolcond
 | ! enlboolcond
 | expr4 logicop expr4
/* Boolean conditions for protocols */
lboolcond ::= (lboolcond)
 | lboolcond and lboolcond
 | lboolcond or lboolcond
 | ! lboolcond
 | expr5 logicop expr5

/* Bit expression for Environment */
expr4 ::= expr4 | term4
 | expr4 ^ term4
 | term4

term4 ::= term4 & factor4
 | factor4

factor4 ::= ~ element4
 | element4

element4 ::= (expr4)
 | expr1

/* Arithmetical expression for Environment */
expr1 ::= expr1 + term1
 | expr1 - term1
 | term1

term1 ::= term1 * element1
 | term1 / element1
 | element1

element1 ::= (expr1)
 | varvalue1

logicop ::= < | <= | > | >= | = | !=

/* Variable values (not allow prefix like ID. ID) */
varvalue1 ::= boolvalue | ID | integer

boolvalue ::= true | false

/* EVOLUTION DEFINITION for Environment */
envevdef ::= Evolution : envevline* end Evolution

envevline ::= boolresult if eboolcond ;

boolresult ::= (boolresult)
 | boolresult and boolresult
 | ID = expr4

/* Boolean conditions for Environment’s evolution function */
eboolcond ::= (eboolcond)
 | eboolcond and eboolcond
 | eboolcond or eboolcond
 | ! eboolcond
 | expr4 logicop expr4
 | Action = ID
 | ID . Action = ID

/* Agents */
agents ::= agent | agents agent

agent ::= Agent ID lobsvardf? vardef reddef? actiondef protdef evdef end Agent

/* LOCAL OBSERVABLE VARIABLES */
lobsvardf ::= Lobsvars = { ID* } ;
/* Non-observable variables */
vardef ::= Vars : onevardef+ end Vars

/* ACTIONS */
actiondef ::= Actions = { ID+ } ;

/* PROTOCOL */
protdef ::= Protocol : protdeflist end Protocol
| Protocol : protdeflist otherbranch end Protocol
| Protocol : otherbranch end Protocol
protdeflist ::= protline | protdeflist protline
protline ::= lboolcond : { enabledidlist } ;

/* EVOLUTION DEFINITION for normal agents*/
evdef ::= Evolution : evline+ end Evolution
evline ::= boolresult1 if gboolcond ;
gboolcond ::= (gboolcond)
| gboolcond and gboolcond
| gboolcond or gboolcond
| ! gboolcond
| expr5 logicop expr5
| Action = ID
| ID . Action = ID
| Environment . Action = ID
boolresult1 ::= (boolresult1)
| boolresult1 and boolresult1
| ID = expr5

/* Bit expression for Environment */
expr5 ::= expr5 | term5
| expr5 & term5
| term5

term5 ::= term5 & factor5
| factor5
factor5 ::= " element5
| element5

element5 ::= (expr5)
| expr2

/* Arithmetical expression for normal agents */
expr2 ::= expr2 * term2
| expr2 * term2
| term2

term2 ::= term2 * element2
| term2 / element2
| element2

element2 ::= (expr2)
| varvalue2

/* Variable values (add Environment.ID) */
varvalue2 ::= boolvalue | ID | Environment . ID | integer

/* EVALUATION */
evaluation ::= Evaluation evaline+ end Evaluation
evaline ::= ID if evaboolcond ;
evaboolcond ::= (evaboolcond)
| evaboolcond and evaboolcond
| evaboolcond or evaboolcond
| ! evaboolcond
| expr6 logicop expr6

/* Bit expression for Environment */
expr6 ::= expr6 | term6
| expr6 ^ term6
| term6
term6 ::= term6 & factor6
| factor6
factor6 ::= ^ element6
| element6
element6 ::= (expr6)
| expr3

/* Arithmetical expression for evaluation function */
expr3 ::= expr3 + term3
| expr3 - term3
| term3
term3 ::= term3 * element3
| term3 / element3
| element3
element3 ::= (expr3)
| varvalue3

/* Variable values for evaluation function */
varvalue3 ::= boolvalue | ID | ID . ID | Environment . ID | integer

/* INITIAL STATES */
istates ::= InitStates isboolcond ; end InitStates
isboolcond ::= (isboolcond)
| isboolcond and isboolcond
| isboolcond or isboolcond
| ! isboolcond
| ID . ID = varvalue4
| Environment . ID = varvalue4
| ID . ID = ID . ID
| Environment . ID = ID . ID
| ID . ID = Environment . ID
| Environment . ID = Environment . ID

/* Groups */
groups ::= Groups groupline? end Groups
groupline ::= ID = { agentname+ } ;
agentname ::= Environment | ID

/* FAIRINESS FORMULAE */
fairformulae ::= Fairness ffformula* end Fairness
ffformula ::= (ffformula)
| ffformula and ffformula
| ffformula or ffformula
| ! ffformula
| ffformula -> ffformula
AG fformula
EG fformula
AX fformula
EX fformula
AF fformula
EF fformula
A (fformula U fformula)
E (fformula U fformula)
K (ID , fformula)
K (Environment , fformula)
GK (ID , fformula)
GCK (ID , fformula)
O (ID , fformula)
O (Environment , fformula)
DK (ID , fformula)
ID
ID . GreenStates
ID . RedStates
Environment . GreenStates
Environment . RedStates

/* FORMULAE TO CHECK */
formulae ::= Formulæ formlist end Formulæ
formlist ::= formula ; | formlist formula ;
formula ::= (formula)
| formula and formula
| formula or formula
| ! formula
| formula -> formula
| AG formula
| EG formula
| AX formula
| EX formula
| AF formula
| EF formula
| A (formula U formula)
| E (formula U formula)
| K (ID , formula)
| K (Environment , formula)
| GK (ID , formula)
| GCK (ID , formula)
| O (ID , formula)
| O (Environment , formula)
| DK (ID , formula)
| < ID > X formula
| < ID > F formula
| < ID > G formula
| < ID > (formula U formula)
| ID
| ID . GreenStates
| ID . RedStates
| Environment . GreenStates
| Environment . RedStates
3.3 The graphical interface

The graphical interface is installed by copying the file org.mcmas.ui_1.0.0.jar into the plugin/ directory under your Eclipse installation. The version available online has been tested with Eclipse 3.2, 3.3 and 3.4, with Java 1.5 and 1.6, and with Linux, Mac, and Windows operating systems. If you have problems with the plugin, please contact us.

Initial configuration: once the plugin is installed, it needs to be configured by specifying the directory locations of MCMAS, DOT (http://www.graphviz.org) and (optional, only if you are using MCMAS under windows) of Cygwin. This is done by accessing the general “Preferences” of Eclipse, as in Figure 3.1.

Once the plugin is installed correctly, it is possible to create a new MCMAS project using the wizard, by selecting File -> New -> Other, and then MCMAS project (see Figure 3.2).

The new project creates an empty file with the initial structure of an ISPL file. The file can be renamed and it should be completed with all the necessary information required by the grammar. Syntax errors are underlined and contextual help is provided to fix them (see Figure 3.3).

Verifications, simulations, and counter-examples analysis can be performed from this graphical interface:

Running a simulation. To run a simulation, select the desired method from the drop-down MCMAS menu (see Figure 3.4) (symbolic interactive mode is more appropriate for large examples). Click the appropriate tab under the editor window to access the correct pane and simply follow the instructions displayed to move forward and backward in a simulation.

Performing verification. Verification of the formulae in an ISPL file is performed by selecting “Launch verification” from the MCMAS drop down menu. The results of the verification are available by clicking on the “Model Checking” tab at the bottom of the editor window (see Figure 3.5).

Analysing counter-examples. It is possible to analyse witness and counterexample executions by clicking on “Show counterexample/witness” from the verification window. A directed graph illustrates the execution and a description of the states is available on the right-hand side of the window. Temporal transitions are represented by a black arrow labelled with the joint action performed. Epistemic transitions are represented by a red arrow labelled with the appropriate name of the agent (or group of agents) for the relation. When mouse cursor moves into a node in the graph, the corresponding state is shown in highlight. Some agents can be projected out from the state descriptions by unchecking the unwanted agents’ name and then clicking “apply”.

3.4 Theoretical background: the semantics of interpreted systems

This section is extracted from [5] and only slightly modified to introduce the notion of “public” (or “observable”) local states for the environment.

The formalism of *interpreted systems* was introduced in [4] to model a system of agents and to reason about the agents’ epistemic and temporal properties. In this formalism, each agent is modelled using a set of local states, a set of actions, a protocol, and an evolution function.

- The set of local states\(^1\) for an agent \(i\) is denoted by the symbol \(L_i\). Elements of \(L_i\) capture the “private” information of an agent and, at any given time, local states represent the state in which an agent is (e.g. \(\text{ready}\) and \(\text{busy}\) may be elements of \(L_i\)). Contrary to [4], it is assumed that the set \(L_i\) is finite (this is required by the model checking algorithms).

- The set of actions for an agent \(i\) is denoted by the symbol \(\text{Act}_i\). Elements of \(\text{Act}_i\) represent the possible actions that an agent is allowed to perform. Differently from local states, actions are “public”. Similarly to local states, here the set \(\text{Act}_i\) is assumed to be finite.

- The protocol for an agent \(i\) is denoted by the symbol \(P_i\). The protocol is a “rule” establishing which actions may be performed in each local state. The protocol \(P_i\) is modelled by a function \(P_i : L_i \rightarrow 2^{\text{Act}_i}\), assigning a set of actions to a local state. Intuitively, this set corresponds to the actions that are enabled in a given local state. Notice that this definition may enable more than one action to be performed for a given local state. When more than one action is enabled, it is assumed that an agent selects non-deterministically which action to perform.

\(^1\)Here we mean extended local states, which include “public” information in the environment that can be observed by the agent.
Figure 3.1: The MCMAS preference tab.
Figure 3.2: The MCMAS project wizard.
Figure 3.3: The ISPL editor for an empty file.

Figure 3.4: Running a simulation.

27
Figure 3.5: Verification results.

Figure 3.6: A counter-example.
• The evolution function for agent i is denoted by the symbol t_i (notice: [4] define a single evolution function t for all the agents, see discussion below). The evolution function determines how local states “evolve”, based on the agent’s local state, on other agents’ actions, and on the public local state of a special agent used to model the environment (see below). The evolution function is modelled by a function $t_i : L_i \times Act_1 \times \ldots \times Act_n \times Act_E \to L_i$, where n is the number of agents in the system.

A special agent E is used to model the environment in which the agents operate. Similarly to the other agents, E is modelled using a set of local states L_E; a set of actions Act_E, a protocol P_E, and an evolution function t_E. As mentioned above, part of the local states of E are “public”, i.e. $L_E = L_{Ep} \times L_{Eh}$, where L_{Ep} denotes the set of “public” local states of E for agent i, and L_{Eh} denotes the set of “private” local states of E. So all the remaining agents may have a different view of the environment to determine their protocol, temporal evolution, and the epistemic accessibility relations of the agents.

For all agents including the environment, the sets L_i and Act_i are assumed to be non-empty, and the number $n \in \mathbb{N}$ of agents is assumed to be finite. For convenience, the symbol Act denotes the Cartesian product of the agents’ actions, i.e., $Act = Act_1 \times \ldots \times Act_n \times Act_E$. An element $\alpha \in Act$ is a tuple of actions (one for each agent) and is referred to as a joint action. The Cartesian product of the agents’ local states is denoted by S, i.e., $S = L_1 \times \ldots \times L_n \times L_E$. An element $g \in S$ is called a global state: given a global state g, the symbol $l_i(g)$ denotes the local state of agent i in the global state g; we write $l_i(g)$ to denote the “public” component of $l_i(g)$ for agent i. It is assumed that, in every state, agents evolve simultaneously (notice that this requirement is similar to the definition of Moore synchronous game structures: see [5]).

The definition of a single evolution function $t : S \times Act \to S$ presented in [4] differs slightly from the definition of $n + 1$ evolution functions presented here. The two definitions are, in fact, equivalent: $t(g, a) = g'$ iff, for all $i \in \{1, \ldots, n\}, t_i(l_i(g), a) = l_i(g')$ and $t_E(l_E(g), a) = l_E(g')$ (the decomposition from a single t to $n + 1$ “local” transition functions is guaranteed to be possible by the assumptions on t). This choice is motivated by the fact that the definition of an evolution function for each agent helps to keep the description of the system compact.

Given a set of initial global states $I \subseteq S$, the protocols and the evolution functions generate a set of reachable global states $G \subseteq S$, obtained by all the possible runs of the system. A set of atomic propositions P and an evaluation relation $V \subseteq P \times S$ are introduced to complete the description of an interpreted system. Formally, given a set of n agents $\{1, \ldots, n\}$, an interpreted system is a tuple:

$$IS = \left\{ (L_i, Act_i, P_i, t_i)_{i \in \{1, \ldots, n\}}, (L_E, Act_E, P_E, t_E), I, V \right\}.$$

It has been shown in [4] that interpreted systems can provide a semantics to reason about time and epistemic properties, by means of the following language:

$$\phi ::= p \mid \neg \phi \mid \phi \lor \psi \mid EX\phi \mid EG\phi \mid E[\phi\psi] \mid Ki\phi \mid Ei\phi \mid Ci\phi \mid DI\phi \mid \langle\langle \Gamma \rangle\rangle X\phi \mid \langle\langle \Gamma \rangle\rangle G\phi \mid \langle\langle \Gamma \rangle\rangle [\phi\psi]$$

In this grammar, $p \in P$ is an atomic proposition, and the operators $EX, EG, and EU$ are the standard CTL operators [3]; the remaining CTL operators EF, AX, AG, AU, AF can be derived in a standard way. The formula $K_i\phi$ ($i \in \{1, \ldots, n\}$) is read as “agent i knows ϕ”. The symbol Γ denotes a group of agents. The formula $Ei\phi$ is read as “everybody in group Γ knows ϕ”; the formula $Ci\phi$ is read as “ϕ is common knowledge in group Γ” (intuitively, common knowledge of ϕ in a group of agents denotes the fact that everyone knows ϕ, and everyone knows that everybody else knows ϕ); the formula $DI\phi$ is read as “ϕ is distributed knowledge in group Γ” (intuitively, distributed knowledge in a group of agents is the knowledge obtained by “sharing” all agents’ knowledge). The formula $\langle\langle \Gamma \rangle\rangle X\phi$ is read as “the agents in group Γ can enforce a next state in which ϕ holds” or, equivalently, “group Γ has a strategy to enforce ϕ in the next state”. Similarly, $\langle\langle \Gamma \rangle\rangle G\phi$ is read as “group Γ has a strategy to enforce a sequence of states in which ϕ holds globally”, and $\langle\langle \Gamma \rangle\rangle [\phi\psi]$ is read as “group Γ can enforce a sequence of states in which ψ eventually holds, and ϕ holds until then”. As in the case of CTL, the operator F can be used as an abbreviation for $\langle\langle \Gamma \rangle\rangle [\top U\phi]$.

Given an interpreted system IS, it is possible to associate a Kripke model $[4] M_{IS} = (W, R_1, \sim_1, \ldots, \sim_n, V)$ to IS; the model M_{IS} can be used to interpret formulae of the grammar above. The model M_{IS} is obtained as follows:

• The set of possible worlds W is the set G of reachable global states (this is to avoid the epistemic accessibility of states which cannot reached using the temporal relation).
• The temporal relation $R_t \subseteq W \times W$ relating two worlds (i.e., two global states) is defined by the temporal transition t_i. Two worlds w and w' are such that wR_tw' iff there exists a joint action $a \in \text{Act}$ such that $t(g,a) = g'$, where t is the transition relation of IS obtained by the composition of the functions t_i, $i \in \{1, \ldots, n\}$, and t_E.

• The epistemic accessibility relations $\sim_i \subseteq W \times W$ are defined by imposing the equality of the local components (for i and for the “public” part of E) of the global states. Formally, two worlds $w, w' \in W$ are such that $w \sim_i w'$ iff $l_i(w) = l_i(w')$ and $l_{E_{\pi},i}(w) = l_{E_{\pi},i}(w')$ (i.e., two worlds w and w' are related via the epistemic relation \sim_i when the local states of agent i in global states w and w' are the same [4], and the “public” or “observable” part of the Environment local states are the same).

• The evaluation relation $V \subseteq \text{AP} \times W$ is the evaluation relation of IS.

Similarly to [3], let $\pi = (w_0, w_1, \ldots)$ be an infinite sequence of worlds such that, for all i, $w_iR_tw_{i+1}$, and let $\pi(i)$ denote the i-th world in the sequence (the temporal relation is assumed to be serial and thus all computation paths are infinite). Let $R_E^E \subseteq W \times W$ denote the relation obtained by taking the union of the epistemic relations for the agents in Γ, i.e., $R_E^E = \bigcup_{i \in \Gamma} \sim_i$. Let R_D^D denote the intersection of the epistemic relations for the agents in Γ, i.e., $R_D^D = \bigcap_{i \in \Gamma} \sim_i$. It is written $M_{IS}, w \models \phi$ when a formula ϕ is true at a world w in the Kripke model M_{IS}, associated with an interpreted system IS. Satisfaction is defined inductively as follows:

$$
M_{IS}, w \models p \quad \text{iff} \quad (p, w) \in V,
$$

$$
M_{IS}, w \models \neg \phi \quad \text{iff} \quad M_{IS}, w \not\models \phi,
$$

$$
M_{IS}, w \models \phi_1 \lor \phi_2 \quad \text{iff} \quad M_{IS}, w \models \phi_1 \text{ or } M_{IS}, w \models \phi_2,
$$

$$
M_{IS}, w \models EX \phi \quad \text{iff} \quad \exists \text{ a path } \pi \text{ such that } \pi(0) = w, \text{ and } M_{IS}, \pi(1) \models \phi,
$$

$$
M_{IS}, w \models EG \phi \quad \text{iff} \quad \exists \text{ a path } \pi \text{ such that } \pi(0) = w, \text{ and } M_{IS}, \pi(i) \models \phi \text{ for all } i \geq 0,
$$

$$
M_{IS}, w \models E[\phi U \psi] \quad \text{iff} \quad \exists \text{ a path } \pi \text{ such that } \pi(0) = w, \text{ and there exists } k \geq 0 \text{ such that } M_{IS}, \pi(k) \models \psi, \text{ and } M_{IS}, \pi(j) \models \phi \text{ for all } 0 \leq j < k,
$$

where $\text{pre}_\Gamma(\phi)$

$$
M_{IS}, w \models K_i \phi \quad \text{iff} \quad \forall w' \in W, w \sim_i w' \text{ implies } M_{IS}, w' \models \phi,
$$

$$
M_{IS}, w \models E_{\Gamma} \phi \quad \text{iff} \quad \forall w' \in W, wR_E^E w' \text{ implies } M_{IS}, w' \models \phi,
$$

$$
M_{IS}, w \models C_{\Gamma} \phi \quad \text{iff} \quad \forall w' \in W, wR_D^D w' \text{ implies } M_{IS}, w' \models \phi,
$$

$$
M_{IS}, w \models D_{\Gamma} \phi \quad \text{iff} \quad \forall w' \in W, wR_E^E w' \text{ implies } M_{IS}, w' \models \phi,
$$

$$
M_{IS}, w \models \langle \Gamma \rangle X \phi \quad \text{iff} \quad w \in \text{pre}_\Gamma(\phi)
$$

$$
M_{IS}, w \models \langle \Gamma \rangle G \phi \quad \text{iff} \quad M_{IS}, w \models \phi \text{ and for all paths } \pi \text{ from } w \text{ and } \Gamma \text{ may perform joint actions along the paths } s.t. \text{ eventually } \psi \text{ will hold and } \phi \text{ holds along the paths until then.}
$$

is the set of states defined by $\text{pre}_\Gamma(\phi) = \{ w \in W \mid \exists a \in \text{Act}_{\Gamma} \text{ s.t. } \forall a' \in \text{Act}_{\Sigma,\Gamma} \text{ all temporal transitions labelled with the } <a, a'> \text{ lead to a state } w' \text{ s.t. } M_{IS}, w' \models \phi \}$.

Similarly to standard Kripke models, a formula ϕ is true in a model, written $M_{IS} \models \phi$, if $M_{IS}, w \models \phi$ for all $w \in W$.

A formula ϕ is true in an interpreted system IS, denoted by $IS \models \phi$, iff it is true in the associated Kripke model ([4], p. 111).

3.4.1 Verification algorithms

In this section we list the pseudo-algorithms for the verification of the non-temporal modalities. The algorithms extend the standard OBDD-based algorithms for CTL. We refer to the source code for the details of the implementation and to Figures from 3.7 to 3.12 for an overview.

1 A joint action a for a group of agents Γ is a tuple belonging to the set Act_{Γ}, where Act_{Γ} is the Cartesian product $\text{Act}_{\Gamma} = \prod_{i \in \Gamma} a_i$.

Given two joint actions $a \in \text{Act}_{\Gamma}$ and $a' \in \text{Act}_{\Sigma,\Gamma}$, $<a, a'> \in \text{Act}$ is the joint action obtained by the concatenation of a and a' (with the appropriate reordering of terms, if needed).
\begin{align*}
\text{mc}(K(\phi, i, IS)) & \{ \\
& X = \text{mc}(\neg \phi, IS); \\
& Y = \{ g \in G \mid \exists g' \in X \text{ s.t. } g \sim_i g' \} \\
& \hspace{1cm} \text{return } \neg Y \cap G; \\
\}
\end{align*}

Figure 3.7: Algorithm for the verification of $K_i(\phi)$.

\begin{align*}
\text{mc}(E(\phi, \Gamma, IS)) & \{ \\
& X = \text{mc}(\neg \phi, IS); \\
& Y = \{ g \in G \mid \exists g' \in X \text{ s.t. } g \sim_i g' \} \\
& \hspace{1cm} \text{return } \neg Y \cap G; \\
\}
\end{align*}

Figure 3.8: Algorithm for the verification of $E_\Gamma(\phi)$.

\begin{align*}
\text{mc}(D(\phi, \Gamma, IS)) & \{ \\
& X = \text{mc}(\neg \phi, IS); \\
& Y = \{ g \in G \mid \exists g' \in X \text{ s.t. } \forall i \in \Gamma, g \sim_i g' \} \\
& \hspace{1cm} \text{return } \neg Y \cap G; \\
\}
\end{align*}

Figure 3.9: Algorithm for the verification of $D_\Gamma(\phi)$.

\begin{align*}
\text{mc}(C(\phi, \Gamma, IS)) & \{ \\
& Y = \text{mc}(\neg \phi, IS); \\
& X = G; \\
& \text{while } (X \neq Y) \{ \\
& \hspace{1cm} X = Y; \\
& \hspace{1cm} Y = \{ g \in G \mid \exists g' \in X \text{ s.t. } g \sim_i g' \} \\
& \} \\
& \hspace{1cm} \text{return } \neg Y \cap G; \\
\}
\end{align*}

Figure 3.10: Algorithm for the verification of common knowledge ($C_\Gamma \phi$).

\begin{align*}
\text{mc}(O(\phi, i, IS)) & \{ \\
& X = \text{mc}(\neg \phi, IS); \\
& Y = \{ g \in G \mid \exists g' \in X \text{ s.t. } gR^O_i g' \} \\
& \hspace{1cm} \text{return } \neg Y \cap G; \\
\}
\end{align*}

Figure 3.11: Algorithm for the verification of correct behaviour ($O_i(\phi)$).

\begin{align*}
\text{mc}(\langle\langle \Gamma \rangle\rangle \ X(\phi, IS)) & \{ \\
& Y = \{ g \in G(\exists a \in \text{Act}_\Gamma, g' \in G) \text{ s.t. } (\forall b \in \text{Act}_1(\ldots,n) \setminus \Gamma).R_t(g, a).[t(g, (a \cup b), g')] \text{ and } g' \in \text{mc}(\phi, IS) \text{ and } (a \cup b) \text{ is consistent with the protocols in } g' \} \\
& \hspace{1cm} \text{return } Y; \\
\}
\end{align*}

Figure 3.12: Algorithm for the verification of a strategy for the “next” state (the algorithms for G and U are obtained as a fixed point in the standard way).
Bibliography

