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IT is Becoming Too Complex! 

Presenter
Presentation Notes
Enterprise Application Software needs to continuously evolve to adapt to changing business requirements - but the cost today can be prohibitive
This diagram represents the reality of application software for  a  typical IBM customer. The boxes represent applications, color coded depending on platform (mainframe, UNIX, windows, external interfaces). The links are data flows and dependencies. The complexity stems from the stratification of new systems on top of legacy ones, all designed as monolithic, rather than with a componentized, loosely-coupled architecture.

Now add, virtualization, optimization, SOA, software as services, identity theft, hacker attacks….
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Autonomic Computing and Agents 

 AC definition 
– “Computing systems that manage themselves 

in accordance with high-level objectives from 
humans.” Kephart & Chess, IEEE Computer 
2003 

– Self-configuring, self-healing, self-optimizing, 
self-protecting 

 
 Agents definition 

– “An encapsulated computer system, situated in 
some environment, and capable of flexible, 
autonomous action in that environment in order 
to meet its design objectives.” Jennings, et al, A 
Roadmap of Agent Research and Development, 
JAAMAS 1998  

 
 Autonomic elements ~ agents 
 Autonomic systems ~ multi-agent systems 
 
 
 

Kephart and Chess, The Vision of Autonomic 
Computing, IEEE Computing, January 2003. 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 



IBM Research 

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 4 

The focus of this talk 

 I start from two premises: 
–Autonomic systems are “Computing systems that manage 

themselves in accordance with high-level objectives from 
humans.” 

–Autonomic systems ~ multi-agent systems 
 
 Which leads to… 

 
 How do we get a (decentralized) Multi-Agent System to 

act in accordance with high-level objectives?  
 
 My claim 

–Objectives should be expressed in terms of utility 
–Utility is an essential piece of information that must be processed, 

transformed, and communicated by agents 
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Outline 

Autonomic Computing and Multi-Agent Systems 
 
Utility Functions 

–As means for expressing high-level objectives 
–As means for managing to high-level objectives 

 
Examples 

–Unity, and its commercialization 
–Power and performance objectives and tradeoffs 
–Applying utility concepts at the data center level 

 
Conclusions 
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How to represent high-level policies? 

 Utility functions map any 
possible state of a system 
to a scalar value 
 

 They can be obtained from 
– Service Level Agreement 
– preference elicitation 
– simple templates 

 
 They are a very useful 

representation for high-level 
objectives 
– Value can be transformed 

and propagated among 
agents to guide system 
behavior 

Possible 
State 

σ1 

Possible 
State 

σ2 

Possible 
State 

σ3 

a1 

a2 

a3 

Current 
State 

S 

U(RT) = 

Kephart and Walsh, Policy04 

V2 

V1 

V3 
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How to manage with high-
level policies? 
 Elicit utility function U(S) expressed 

in terms of service attributes S 
 

 Model how each attribute Si 
depends on controls C and 
observables O 

– Models expressed as S(C; O) 
– E.g., RT(routing weights, request rate) 
– Models from experiments, learning, 

theory 
 

 Transform from service utility U to 
resource utility U’ by substitution 

– U(S) = U(S(C; O)) = U’(C; O) 
 

 Optimize resource utility. As 
observable O changes, set C to 
values that maximize U’(C; O) 

– C*(O) = argmaxC U’(C; O) 
– U’*(O) = U’(C*(O); O) 

 

U(RT, RPO) 

Recovery 
Point 

Objective Response Time 

U 

Transform 

λ=0.01 

cpu 

Backup rate b 

U’ 

U’(cpu, b; λ) 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Note
A recovery point objective, or “RPO”, is defined by business continuity planning. It is the maximum targeted period in which data might be lost from an IT service due to a major incident. The RPO gives systems designers a limit to work to.

delosme
Note
The RTO (Recovery Time Objective)  and RPO are time intervals, typically expressed in number of hours, specified by the Business Continuity (BC) team to be the longest time the business can allow for without incurring significant risks or significant loss, allowing system designers to specify designs that are as cost effective as the RTO and RPO will permit.



IBM Research 

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 8 

Outline 

Autonomic Computing and Multi-Agent Systems 
 
Utility Functions 

–As means for expressing high-level objectives 
–As means for managing to high-level objectives 

 
Examples 

–Unity, and its commercialization 
–Power and performance objectives and tradeoffs 
–Applying utility concepts at the data center level 

 
Conclusions 
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Unity Data Center Prototype: Experimental setup 

U(#srv) 

Server Server Server Server Server Server Server Server 

U(#srv) 
U(#srv) 

Demand 
(HTTP req/sec) 

Trade3 

App 
Manager 

U(RT) WebSphere 5.1 

DB2 Batch 

App 
Manager 

U(#srvrs) 

Maximize 
Total SLA 
Revenue 

5 sec Trade3 
Resource 

Arbiter 

Chess, Segal, Whalley and White, Unity: Experiences with a Prototype Autonomic Computing System, ICAC 2004  

Trade3 

U(RT) 

App 
Manager 

WebSphere 5.1 

DB2 

Demand 
(HTTP req/sec) 

Trade3 

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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How App Mgr computes its external resource utility 

Trade3 

App 
Manager 

U(RT) WebSphere 5.1 

DB2 

Resource 
Arbiter 

Chess, Segal, Whalley and White, Unity: Experiences with a Prototype Autonomic Computing System, ICAC 2004  

λ 

U’’(srv) 

M
ax

 U
til

ity
 

Number of servers 

Elicit:  U(RT) 
 
 
Model:  U(RT(C; srv, λ)) 
 
Transform:  U’(C; srv, λ) = U(RT(C; srv, λ)) 
 
Optimize: 
 C*(srv, λ) = argmaxCU’(C; srv, λ)  
 

  
 U’’(srv, λ) = U’(C*(srv, λ); srv, λ) 
 

Optimal internal 
control settings 

External resource-
level utility 

Service-level utility  

Observable My controls Arbiter’s controls 

Internal resource-
level utility  

Patrascu, Boutilier et al. New 
Approaches to Optimization and 
Utility Elicitation in Autonomic 
Computing, AAAI 2005  

Alternative to generating 
full curve: utility elicitation 

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)


delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 

delosme
Texte surligné 



IBM Research 

SOAR 2010 Keynote © 2007 IBM Corporation June 7, 2010 11 

How the Arbiter determines optimal resource allocation 

Trade3 

Server Server Server Server Server Server Server Server 

Trade3 

App 
Manager 

U(RT) WebSphere 5.1 

DB2 

App 
Manager 

WebSphere 5.1 

DB2 

U(RT) 

Resource 
Arbiter 

U’1(srv1) 

M
ax

 U
til

ity
 

Number of servers 

U’2(srv2) 

M
ax

 U
til

ity
 

Number of servers 

Decision problem: 
Allocate resources 
    srv* = argmaxsrvΣU’’i(srvi) 
    Effectively maximizes ΣUi(Si) 

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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How we commercialized Unity 

Tivoli Intelligent Orchestrator 

U(S) 
WebSphere 
Extended 

Deployment 

V(n) 

If I give you n 
servers, how 
valuable will 
that be? 

If I give you n 
servers, how often 
will you exceed the 
response time 
goal? 

I need 
300M CPU 
cycles/sec 

The clean 
new way 

The confusing 
old way 

This was not 
actually that 
simple – product 
release cycles 
didn’t mesh, so 
we needed an 
evolutionary 
approach. 

Das et al., ICAC 2006 
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Outline 

Autonomic Computing and Multi-Agent Systems 
 
Utility Functions 

–As means for expressing high-level objectives 
–As means for managing to high-level objectives 

 
Examples 

–Unity, and its commercialization 
–Power and performance objectives and tradeoffs 
–Applying utility concepts at the data center level 

 
Conclusions 
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Utility functions for interacting power-performance agents 
 How to trade off power vs 

performance? 
– In an individual machine 

– In a rack of machines 

– In an entire data center 
 

 Formulate a joint power-
performance utility function 
U(performance, power) 
– Maximize U(sperf, spwr) 

– Often just U(sperf ) – ε pwr 
 

 How to optimize U? 
 

 How can semi-autonomous 
power and performance agents 
cooperatively optimize U?  
– Mediated through coordinator? 

– Direct bilateral interactions? 

Performance 
Mgr 

sperf spwr 

System 

Power 
Mgr 

On/Offi 
Freqi 

System 

Placement P 
Routing weights wi 

Kephart, Chan, Das, Levine, Tesauro, Rawson, Lefurgy. Coordinating Multiple 
Autonomic Managers to Achieve Specified Power-Performance Tradeoffs. ICAC 2007. 
(Emergent phenomena can occur when autonomic managers don’t communicate effectively.) 

Hanson et al. Autonomic Manager for Power, NOMS 2010 

Steinder, Whalley, Hanson, Kephart, Coordinated Management of Power Usage and 
Runtime Performance, NOMS 2008 

Das, Kephart, Lefurgy, Tesauro, Levine, Chan Autonomic Multi-agent Management of 
Power and Performance in Data Centers, AAMAS 2008 

? 
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Power-aware dynamic server consolidation 

n, 
RT, 
λ  

n, pwr, 
#cycles 

System 

Power Mgr 

On/Offi 
n*, Placement P* 
(VMs→hosts) 

Model: 
Pwr(n) 

Pwr(n) 

Maximize U(RT, pwr) Goal: Save power by 
dynamically migrating 
VMs so as to occupy 
fewer servers without 
sacrificing performance 
too much. Turn unused 
servers off.   

Steinder, Whalley, Hanson, Kephart, Coordinated Management of Power 
Usage and Runtime Performance, NOMS 2008 

Perf Mgr 

Model: 
RT(P, n, λ) 

Optimize: 
U’(P, n) 
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Experimental results 
(3 different utility functions) 

1. Always meet SLAs 

2. Always maximize 
performance 

3. Permit 10% performance  
degradation for 10% power 
savings 

Conclusions. Substantial power 
savings (up to 65%) can be 
attained without violating SLA. 

Results are significantly affected 
by utility function choice. 

Response time 

Response time 

Response time 

Response time 

Power Savings 
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Outline 

Autonomic Computing and Multi-Agent Systems 
 
Utility Functions 

–As means for expressing high-level objectives 
–As means for managing to high-level objectives 

 
Examples 

–Unity, and its commercialization 
–Power and performance objectives and tradeoffs 
–Applying utility concepts at the data center level 

 
Conclusions 
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The Physical Infrastructure that Supports IT is Complex! 

H2O 
Ice 

Pumps 

Chiller 
Computer 
Room Air 
Conditioners 

Utility 

Central UPS 

Power Distribution Units 

Facility Network 

DC Power 

Low Voltage 
600VAC Eqpt 

Generator 
Parallel or  
Transfer Eqpt 

Utility, 
Rates, Incentives  
Substation 
Communicating  
Revenue Meter 
 

CHP Fuel Cell, MicroTurbine  
or Turbine Power 

Cooling Monitoring and Control 

Cooling 
Tower 

Medium Voltage 
>600VAC Eqpt 

$ 

Utility 

Alternative 
Power 

Utility 

Compute 
• Main Frames 
• Volume Servers 
• Blade Servers 

Storage 
• SATA Disk 
• Tape 
• Blended 

 

Network 
• Corporate Networks 
• VoIP 
• Integrated Blade/Switch 

In-Row Power 
• Modular UPS 
• Rack Mount PDUs 

 
In Row Cooling 
• Rear Door Heat Exchanger 
• Liquid Cooling Racks 
• Overhead Cooling 

IT and Networks 

Security… UPS 
Battery 

IT 

Raised Floor 
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Trading off energy vs. temperature in a data center 

 Cooling costs can account for ~50% of a data center’s energy 
consumption, due to zealous overcooling 

 
 Let’s try using a utility function U(E, T) to manage the energy-

temperature tradeoff 
– Elicitation not trivial – we tried several forms, both multiplicative and additive 

 

Picture goes here 

UE(E) UT(T) 

U(E,T) =  UE(E) + UT(T) 

Presenter
Presentation Notes
The optimal control settings and resultant energy and temperature are driven by the choice of utility 
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From utility to optimization  

 Elicit U(E, {T}) 
 

 Model E(θ1, θ2) and T(θ1, θ2)  
– Via experiments varying fan 

speeds  

– Could also run CFD calculations 
 

 Transform utility to U’(θ1, θ2) 
 

 Optimize U’(θ1, θ2) 
– Set fan speeds to (θ1, θ2)*  

Time (minutes) 

(θ1, θ2) 

T(θ1, θ2) 

E(θ1, θ2) 

Experimental measurements 

CRAC fan speeds 
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How Optimal Fan Speeds Depend upon Tmax 

U 

T 

Esaved 

U 

T 

θ*1 

θ*2 

Esaved 

θ*2 

θ*1 

α = 0.01 α = 0.1 

If (Tmax < 76F) 
 (θ1, θ2)* = (60%, 60%) 
 
 
If (76 < Tmax < 84F) 
 (θ1, θ2)* = (0%, >60%) 
 
 
If (Tmax > 84F) 
 (θ1, θ2)* = (0%, 60%) 
 
 

Energy savings = 10 to 12% 

Presenter
Presentation Notes
Figure 7: Multiplicative utility function sensitivity analysis of fan speeds (%) and utility (10^3*$/yr) vs. Tmax. (a) alpha = 0.5 (b)  alpha = 2.5.

If T_max > 85, optimal fan speeds = 60, 0
Max Energy Savings /yr = ((2 CRACS at 100%  - 1 CRAC at 60%) + Savings in Chiller ) for 24*365 hrs =  (12.56 – 1.5) kWh * 24 * 365 * 5.5/4.5 (chiller) = 117773 kWh/yr
Max U(E,T) = max U(E) = pi * Max Energy Savings /yr = $ 9800/yr

Else if  T_max > 78, optimal fan speeds = 60, 60
Max Energy Savings /yr = ((2 CRACS at 100%  - 2 CRAC at 60%) + Savings in Chiller ) for 24*365 hrs =  (12.56 – 3) kWh * 24 * 365 * 5.5/4.5 (chiller) = 99831 kWh/yr
Max U(E,T) = max U(E) = pi * Max Energy Savings /yr = $ 8286/yr
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Snorkels 

Snorkels change the model T(θ1, θ2); so the transformation to U’(θ1, θ2) changes. 
 
(θ1, θ2)* shifts from (60%, 60%) to (0%, 60%) for extra savings (12% →14%) 

Presenter
Presentation Notes
Figure 9: Snorkels installed on the bottom half of racks.
Figure 10: Effect of snorkels upon rack inlet temperature.
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Conclusions 
 Utility functions help achieve the central goal of autonomic computing 

– “Computing systems that manage themselves in accordance with high-level objectives 
from humans.” 

– Theoretically well-grounded 
– Proven to work in practice in many domains 
 

 Humans express objectives in terms of value 
 

 Value is propagated, processed, and transformed by agents 
– Guides agent’s internal decisions 
– Guides agent’s communication with others 

 
 Key technologies needed include 

– Utility function elicitation 
– Learning 
– Modeling / what-if modeling 
– Optimization 
– Agent communication, mediation 
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The next frontier? An autonomic data center economy 

Lubin, Kephart, Das and Parkes. Expressive Power-
Based Resource Allocation for Data Centers. IJCAI 2009. 
(Exploring market-based resource allocation for data centers.) 
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Backup 
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Multiplicative Utility Functions 

 Administrator wishes to minimize overall energy consumption 
subject to a constraint on temperature 

– E.g. T(x) < Tmax at all positions x. 
 

 Consider the multiplicative form: U(E,T) = UE(E) UT(T(x))  
– Energy utility UE(E) = π (E – E0), where π is $/(kW-year) 
– Temperature utility UT(T(x)) is a dimensionless step function, with the entire 

temperature distribution T(x) as its argument 

 

Picture goes here 

UE(E) UT(T) 

U(E,T) 
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Dimensionless Temperature Utility Function 
Practical Considerations 

 Let’s think about UT(T(x)) a little more 
– U = 1 if T(x) < Tmax for all x 
– U = 0 otherwise 

 

 But we can’t measure T(x) for all x 
 

 One solution: just consider a finite set of measurements {T(xi)} 
– Set could be readings from all temperature sensors 

– Or just the reading from a single representative temperature sensor i 

– Or just the maximum temperature in a region of interest (maybe entire DC) 

 
 Example if we use many or all temperature sensors: 

– We can represent UT(T(x)) as the product of scalar step functions 

– UT(T(x)) = ∏i UT,i(Ti) 

– UT,i(Ti) = 1 if Ti < Tmax ; 0 otherwise 
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Sanity check 
 Case A: Ti > Tmax for all 10 sensors 

– UT(T(x)) = 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 = 0 

 Case B: Ti > Tmax for just sensor #10 
– UT(T(x)) = 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 0 = 0 

 

 Since UT(T(x)) is 0 in Case A and B, utility U(E, T) 
= 0 in both 
 
 Yet most admins would prefer Case B to Case A! 

 
 How could we modify the utility function to prefer B 

over A? 
 
 One solution: soften the temperature constraint … 
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Modifying UT(T) to express a soft constraint 

Soften the scalar step function UT,i(Ti)  

All 10 sensors at same 
temperature 

9 sensors at 75F; vary 
temp of sensor #10  

Temp of Sensor #10 

Temp of Sensor #10 

Soft step function favors 
Case B over Case A 

UT,i(Ti) = 1/(1 + e-(α(Tmax – Ti)))  α  = 2  

U
T(

T)
 

U
T(

T)
 Case A Case B 
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Further variations on UT(T) 

 

ASHRAE 
recommendations 

α  = 2  

ASHRAE specifies both a 
minimum and a maximum 
temperature 

 

We can represent the scalar 
temperature utility as a 
two-sided soft step 
function 

Presenter
Presentation Notes
Figure 1: Multiplicative temperature utility functions derived from ASHRAE recommendations. Soft step functions use  alpha = 2.
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Additive Utility Functions 

 Administrator explicitly considers economic costs of energy 
consumption and temperature-induced equipment lifetime reduction 

 
 This suggests an alternative additive form: U(E,T) = UE(E) + UT(T(x))  

– Energy utility UE(E) = π (E – E0) 

– Temperature utility UT(T(x)) must now have same dimension: cost/yr  

 

Picture goes here 

UE(E) UT(T) 

U(E,T) 
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Cost-based Temperature Utility Function 
Practical Considerations 

 Somehow UT(T(x)) must capture the 
cost of running equipment at x at 
temperature T(x) 

 

 Cost of device i per year is Ci/L(T) 
– Ci = purchase cost 

– L(T) = lifetime if run consistently at 
temperature T 

– Inverse width α hard to ascertain from 
published data – widely different reports 

• Seagate drive lifetime reduced 4x for 35C 
increase in T 

• Google reports little degradation until 40C 

 
 UT({Ti}) = ∑i Ci (1/L0 – 1/L(Ti)) 
 

α  = 0.1  
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Power-aware load balancing 

Perf Mgr 

n, 
RT, 
λ  

n, pwr, 
#cycles 

System 

Power Mgr 

On/Offi 
n*, w* 
(load-balancing 
weights) 

Model: 
Pwr(n) 

Model: 
RT(w, n; λ) 

Optimize: 
U’(w, n; λ) 

Pwr(n) 

Maximize U(RT, pwr) Goal: Save power by routing 
web traffic to minimal number 
of app servers w/o sacrificing 
performance too much.   

DB2 

WebSphere 

App. Server 

WebSphere 

App. Server 

HTTP 

 Server 

WebSphere 

App. Server 

Web requests 

w1 

w2 

w3 

Das, Kephart, Lefurgy, Tesauro, Levine, Chan Autonomic 
Multi-agent Management of Power and Performance in Data 
Centers, AAMAS 2008 
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Experimental Results 
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Trade6 workload; 
NASA traffic 

SLA 

Response time 

Power 

# servers 

Avg Power Savings = 27% 
No SLA violation 

 Elicit utility function 
– U(RT) = 1/0 if SLA met/unmet 
– U(RT, Pwr) = U(RT) – ε Pwr 
 

 Model (offline experiments) 
– RT (n; λ), Pwr (n; λ) 
 

 Transform 
– U’ (n; λ) = U (RT (n; λ), Pwr (n; λ)) 

 
 Optimize (pre-computed policy) 

– n*(λ) = argmaxn U’ (n; λ)  
 

 A few extra tweaks 
– Use forecasted λ to compute n*(λ) 
– Add extra to n* a bit to account for 

latencies (several minutes) 
– Heuristics to ensure that we don’t 

turn servers on and off too often 
 

Presenter
Presentation Notes
At the right, we have overlaid the base case (no power management, represented in red) with (in green) the measured # servers on (second chart from bottom), the response time (third chart) and the consumed power (top chart). Note that (more or less) the number of servers on goes as low as 5 servers during periods of low workload intensity, and rises to all 9 when the workload intensity is high. The resulting response time is in general a little higher than when all servers are on, but not by very much, and it is still quite a lot lower than the SLA threshold, so performance remains entirely acceptable. But looking at the top chart, we see a large decrease in the consumed power when the workload intensity is less than peak, and if we average over Thursday and Friday it comes out to a 21% savings. Although not represented here, we have run the NASA workload into the weekend (Saturday) and found a 45% savings on that day. From the data, Thursday and Friday are very much like other weekdays, and very consistent throughout the two months, and Saturdays are very similar to Sundays, with little week-to-week variation. Thus we would expect on average a 27% power savings per week using our technique.

How much power can be saved in this way? In the first place, the amount of power that can be saved is fundamentally dependent on the workload’s peak:average ratio. Some workloads are flatter than the NASA workload, and the opportunities for savings are less, while some are much greater than 2:1, so the opportunities are greater. Second, there are some additional techniques that we have not yet implemented that should push the percentages somewhat higher.

This technique sounds simple, but there are some serious research challenges that had to be overcome to implement it. First, what does it really mean to say that servers are “not needed”? There is a fundamental question here: how does an administrator express their tradeoffs between performance and power. We have a very general approach that entails the use of utility functions, which are commonly used in economics and artificial intelligence to represent human preferences.  Second, with those preferences in hand, how do we manage to them; in other words how do we make intelligent choices about how many servers can be turned off, and which ones? Servers can take several minutes to become operational after they have been turned off (3 to 5 minutes in our experiments), so we can not simply observe the current workload – we must predict the workload over the next 5-10 minutes. This requires time-series forecasting techniques that err on the side of caution, but are not overly conservative. Moreover, we have developed new machine learning techniques that learn models of how performance and power consumption depend on environmental parameters like workload intensity, and control parameters like the number and type of servers that are on. Optimization that is tied to the terms of the SLA also plays a critical role. Finally, there is a real engineering challenge of gracefully choreographing the power-on and power-off of servers – in particular, integrating a server that has been turned off into a running distributed system and handling any failures that might occur in the process. 
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Multiplicative Utility-Function-Driven Cooling 
Tmax = 80.6F, α = 2.0 

Energy saved 
(kWh/yr) Max Temp (F) 

Temp utility 
(max of all T) 

U(E, T) ($/yr) 

(60%, 60%) 

Savings: 

9.1 kWh,$8K/yr 

(~12%) 

Presenter
Presentation Notes
Figure 6: (a) Energy saved (kWh/yr), (b) maximum temperature (F), (c) temperature utility, and (d) overall utility ($/yr) as a function of fan speeds for Tmax = 80.6F and  alpha = 2.0.
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Alternative Approach: Machine Learning 

n (# servers) 

U
til
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V(n) 

U(RT) 

WebSphere 5.1 

DB2 

Trade3 App Mgr 

RT 

V 

n 

RL 
V(λ, n) 

Server Server Server 

Resource 
Arbiter 

 App Mgr can use reinforcement 
learning (RL) to compute external 
resource utility 

– State = λ   demand 
– Action = n   # servers 
– Reward = V(RT) SLA payment 

 
 It learns long-range value function 

V(state, action) = V(λ, n) 
 

 It reports V(n) for current or 
predicted value of λ 

Tesauro et al., AAAI 2005 

λ 

System 

Agent 

Action Reward 

State 

Presenter
Presentation Notes
Data Center results:
good asymptotic performance, but

poor performance during long training period
method scales poorly with state space size




IBM Research 

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 37 

Does Reinforcement Learning work? 

Animation 
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Commercializing Unity 

U(#srvrs) 
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Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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Original 
WXD 5.1 

TIO 3.1 

Utility-based Interactions between WXD and TIO: Step 1 

WebSphere  
XD 5.1 

Objective  
Analyzer 

TIO  
Transform 

Resource Allocations: n 

Resource 
Needs(speed) 

Resource 
Needs in PoB(n) 

Policy 
 Engine 

TIO 3.1 

Resource 
Needs in Fitness(n) 

Utility(current n)  

  TIO cannot make well-founded resource allocation decisions 
  WS XD can’t articulate its needs to TIO 
  PoB not commensurate with utility 
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Intermediate 
WXD 6.0.2 

TIO 3.1 

Utility-based Interactions between WXD and TIO: Step 2 

WebSphere  
XD 6.0.2 

Objective  
Analyzer 

TIO  
Transform 

Resource Allocations: n 

PoB(n) 

Policy 
 Engine 

TIO 3.1 

Fitness(n) 

Utility(current n)  

   WS XD research team added ResourceUtil interface of WXD 
   We developed a good heuristic for converting ResourceUtil to PoB in Objective Analyzer 

Interpolate discrete set of ResourceUtil points and map to PoB 
  This PoB better reflects WS XD’s needs 

Resource 
Utility(n) 
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New  
Modified WXD 6.0.2 

Modified  
TIO 3.1 

Utility-based Interactions between WXD and TIO: Step 3  

WebSphere  
XD 6.0.2 

Objective  
Analyzer 

1 

Resource Allocations: n 

Policy 
 Engine 

TIO 3.2 

Utility(current n)  

Resource 
Utility(n) 

  We modified TIO to use ResourceUtil(n) directly instead of PoB(n) 
  Most mathematically principled basis for TIO allocation decisions 
  It enables TIO to be in perfect synch with the goals defined by WS XD 
  Basic scheme can work, not just for XD, but for any other entity that    
   may be requesting resource, provided that it can estimate its own utilities 

Resource 
Utility(n) 

Resource 
Utility(n) 
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Commercializing Unity 
 Barriers are not just technical in nature 

 
 Strong product line legacies must be respected; otherwise 

– Difficult for the vendor 
– Risk alienating existing customer base 
 

 Solution: Infuse agency/autonomicity gradually into existing products 
– Demonstrate value incrementally at each step 
 

 We worked with colleagues at IBM Research and IBM Software 
Group to implement the Unity ideas in two commercial products: 
– Application Manager: IBM WebSphere Extended Deployment (WXD) 
– Resource Arbiter: IBM Tivoli Intelligent Orchestrator (TIO) 

Das et al., ICAC 2006 
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Machines will take 
over all 
management tasks, 
rendering humans 
superfluous 

Visions of Autonomic Computing 

Hal 9000, 2001 

Terminator 

Wrong! 

Machines will free people to 
manage systems at a higher 
level 

Right! 

Star Trek: The Next Generation 

Presenter
Presentation Notes
Sometimes people think that autonomic computing means assuming all management tasks from humans. This is wrong! There are plenty of cautionary tales by well-known science fiction authors that speak to the dangers of full automation. And customers don’t want this, either…
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Finding the optimal control parameters 

U’(cpu, b; λ) 

U(RT, RPO) 

RT 

RPO 

λ=0.002 
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cpu 

b*=0.875 
cpu*=2.49 
U*=152.7 
RT*=99.58 

λ=0.01 

b 

cpu 

b*=1.199 
cpu*=3.65 
U*=137.4 
RT*=95.44 

λ=0.05 

b 

cpu 

b*=2.053 
cpu*=8.58 
U*=75.9 
RT*=88.69 

Even if service-level utility 
remains fixed, resource-
level utility depends upon 
environment. 
 
Thus system responds to 
environmental changes.  
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Multi-agent management of performance and power 

 We have explored using utility functions to manage 
performance and power objectives and tradeoffs in multiple 
scenarios 
 

 Two separate agents: Performance and Power 
 

 Various control parameters, various coordination and 
communication mechanisms 
–Power controls: clock frequency & voltage, sleep modes, … 
–Performance controls: routing weights, # servers, VM placement … 
–Coordination: unilateral, bilateral, mediated, … 

 

 Examples 
–Energy-aware load balancing 
–Energy-aware server consolidation 
–Optimal power capping 
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