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IT is Becoming Too Complex!

Electronics Retailer - Application diagram

LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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Presentation Notes
Enterprise Application Software needs to continuously evolve to adapt to changing business requirements - but the cost today can be prohibitive
This diagram represents the reality of application software for  a  typical IBM customer. The boxes represent applications, color coded depending on platform (mainframe, UNIX, windows, external interfaces). The links are data flows and dependencies. The complexity stems from the stratification of new systems on top of legacy ones, all designed as monolithic, rather than with a componentized, loosely-coupled architecture.

Now add, virtualization, optimization, SOA, software as services, identity theft, hacker attacks….
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Autonomic Computing and Agents

= AC definition

— “Computing systems that manage themselves
In accordance with high-level objectives from
humans.” Kephart & Chess, IEEE Computer
2003

— Self-configuring, self-healing, self-optimizing,
self-protecting

= Agents definition

— “An encapsulated computer system, situated in
some environment, and capable of flexible,
autonomous action in that environment in order
to meet its design objectives.” Jennings, et al, A
Roadmap of Agent Research and Development,
JAAMAS 1998

= Autonomic elements ~ agents

= Autonomic systems ~ multi-agent systems
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Systoems manage themselves according to an administrator's goals. New
components integrate as offortlassly as a new call establishes itself in the
human body. These ideas are not sclence fiction, but slaments of the grand
challenge to create selfmanaging computing systems.

nmid-October 2001, [BM released a manifesto

observing thar the main obstacle to further
I progress in the IT industry is a looming soft-

ware complexity crisis.! The company cited

applications and environments that weigh in
at tens of millions of lines of code and require
skilled IT professionals to install, configure, tune,
and maintain.

The manifesto pointed out that the difficulry of
managing today’s com puting systems goes well
beyond the adminiscration of individual sofrware
environments. The need to integrate several het-
£IORENEoUs COviromments into corporate-wide com-
puiting systems, and to extend thar beyond company
boundaries into the Inte met, infroduces new levels
of complexity. Computing systems® complexity
appears to be approaching the limits of human
capabilicy, yet the march toward increased inter-
connectiviey and integration rushes ahead unabated

This march could turn the dream of pervasive
com puting—irillions of compuring devices con-
nected to the Intemet—inte a nightmare, Pro-
gramm ing language innovati ons have extended the
size and complexity of systems that architects can
design, but relying solely on further innovations in
programming methods will not get us throgh the
present complexiey crisis.

As systems become more interconnected and
diverse, architects are less able to anticipare and
design interactions among com ponents, leaving
such issues to be deale with ar runtime. Scon sys-
tems will bacome too massive and complex for even
the most skilled system integrarors to install, con-

Fublished By the IEEE Ganputar Sockdy

figure, optimize, maintain, and merge. And there
will be no way to make timely, decisive responses to
the rapid stream of changing and conflicting
demands.

AUTONOMIC OPTION

The only option remaining is astosomic com-
priting—computing systems thar can manage them-
selves given high-level objectives from admini-
strators. When IBM's senior vice president of
rescarch, Paul Horn, introduced this idea to the
Maricnal Academy of Engincers at Harvard
University in a March 2001 keynote address, he
deliberately chose a term with a biclogical conno-
tation. The aurtonomic nervos system govems our
heart rate and body temperarure, thus freeing our
conscious brain from the burden of dealing wich
these and many other low-lkevel, yet vital, functions.

The term autonomic computing is emblematic of
a vast and somewhart rangled hicrarchy of natural
self-governing systems, many of which consist of
myriad interacting, self-govemning components that
in turn comprise large numbers of interacring,
autonomous, self-governing com ponents at the next
level down. The enomous range in scale, starting
withmolscular machines within cells and exrending
to human markets, societies, and the entire world
socioeconom y, mirrors that of com puting sysems,
which run from individual devices to the entire
Internet. Thus, we believe it will be profitable to
seck inspiration in the self-governance of social and
econom i systemsas well as purely biclogical ones.

Clearly then, autonomic computing is a grand

JanuEry 2005

Kephart and Chess, The Vision of Autonomic
Computing, IEEE Computing, January 2003.
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The focus of this talk

= | start from two premises:

—Autonomic systems are “Computing systems that manage
themselves in accordance with high-level objectives from
humans.”

—Autonomic systems ~ multi-agent systems

= Which leads to...

= How do we get a (decentralized) Multi-Agent System to
act in accordance with high-level objectives?

= My claim
—ODbjectives should be expressed in terms of utility

—Utility is an essential piece of information that must be processed,
transformed, and communicated by agents

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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Outline

= Autonomic Computing and Multi-Agent Systems

= Utility Functions
—As means for expressing high-level objectives

—As means for managing to high-level objectives

= Examples
—Unity, and its commercialization
—Power and performance objectives and tradeoffs
—Applying utility concepts at the data center level

= Conclusions

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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How to represent high-level policies? et iEtis

= Utility functions map any
possible state of a system
to a scalar value

= They can be obtained from
— Service Level Agreement

— preference elicitation
—simple templates

= They are a very useful
representation for high-level
objectives

—Value can be transformed -

and propagated among
agents to guide system
behavior

| LCCC Workshop on Control-of Computing Systems
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How to manage with high-
level policies?
= Elicit utility function U(S) expressed

in terms of service attributes S u .. _
« Model how each attribute S, . M =l
depends on and Recovery
Point
~ Models expressed as S(€ @ Response Time Objective

 E.g. RT(routing weights, (EGUESHED

— Models from experiments, learning, Transform 1
theory

= Transform from service utility U to
resource utility U’ by substitution

-y =Usc; o) =u €O

* Optimize resource iy s
opservanie cnanges, set Cto

values that maximize U’ (C; O)
—-= argmax. U’ (C; O)
~-@8)- v’ (c+0); 0)

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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delosme
Note
A recovery point objective, or “RPO”, is defined by business continuity planning. It is the maximum targeted period in which data might be lost from an IT service due to a major incident. The RPO gives systems designers a limit to work to.

delosme
Note
The RTO (Recovery Time Objective)  and RPO are time intervals, typically expressed in number of hours, specified by the Business Continuity (BC) team to be the longest time the business can allow for without incurring significant risks or significant loss, allowing system designers to specify designs that are as cost effective as the RTO and RPO will permit.
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Outline

= Autonomic Computing and Multi-Agent Systems

= Utility Functions
—As means for expressing high-level objectives

—As means for managing to high-level objectives

= Examples
—Unity, and its commercialization

—Power and performance objectives and tradeoffs
—Applying utility concepts at the data center level

= Conclusions

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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Unity Data Center Prototype: Experimental setup

Maximize
Demand Total SLA Demand
(HTTP req/sec) Revenue (HTTP reg/sec)
"Trade3 2 ol
Resource
Arbiter

U(#srv) U(#srv)
b U(#srv)
e

App
| & |

Manager
\_ Trade3

A\ 4

App

Manager Manager

Batch

Trade3

Chess, Segal, Whalley and White, Unity: Experiences with a Prototype Autonomic Computing System, ICAC 2004
| SOAR 2010 Keynote

June 7, 2010
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Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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How App Mgr computes its external resource utility

. e . Resource
full curve: utility elicitation Arbiter

Alternative to generating 4 J

Patrascu, Boutilier et al. New
Approaches to Optimization and iy s T T T T T e T T T T T T T T T
Utility Elicitation in Autonomic .
Computing, AAAI 2005

, U~ (srv)

1] 5 10 15 20

Observable

Model: '/

Max Ut

Number of servers

/
r ) | [ransform: U’ . srv,@ = U(RT(C; srv, A))
A Manager
[ uen | Optimize:
\ Trade3 - .srv,. = argmax.U’ (C; srv, A)

EXtelgxl/le Lﬁﬁict);rce- U (Srv’. =U .SFV, A); Srv, )\)

l

l
l l
l I
l l
l l
l l
l l
l l
l
| Internal resource- :
I level utility I
l l
l l
l l
l l
l l
l l
l l
l I

Chess, Segal, Whalley and White, Unity: Experiences with a Prototype Autonomic Computing System, ICAC 2004

| SOAR 2010 Keynote June 7, 2010 © 2007 IBM Corporation
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WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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How the Arbiter determines optimal resource allocation

WAS XD 1 and 2 Resource Utility Rescaled

o e e e e
I Decision problem: I g
I Allocate resources : % ‘
: Srv’ = argmaxg,, ZU”;(srv;) P
_______________ — Servers to WAS XD 1
Resource
. ) WF»S XD F_ie_so_ur_ch_lIil@ty_ o Arblter
5 . U’y (srvy) | 5
x | x
@ -1 | ]
= | =
[i] a5 10 15 20

Number of servers

/7

[ )
App
Manager
\_ Trade3

| SOAR 2010 Keynote
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8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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The confusing
old way

i

i
f{;ifap

i
i
i

How we commercialized Unity

Das et al., ICAC 2006

Tivoli Intelligent Orchestrator

If | give you n 4 | A
servers, how often If I give you n
will you exceed the servers, how
response time valuable will
goal? that be?
| need
300M CPU
cycles/sec V(n)
A 4
0 WebSphere
) Extended
Deployment

This was not
actually that
simple — product
release cycles
didn’t mesh, so

'

LCCC Workshop on Control-of Computing Systems

Deember 6, 2011

© 2009 IBM Corporation
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Outline

= Autonomic Computing and Multi-Agent Systems

= Utility Functions
—As means for expressing high-level objectives

—As means for managing to high-level objectives

= Examples
—Unity, and its commercialization

—Power and performance objectives and tradeoffs
—Applying utility concepts at the data center level

= Conclusions

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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Utility functions for(interacting power-performance agents

How to trade off power vs
performance?

— In an individual machine
— In a rack of machines

— In an entire data center

Formulate a joint power-
performance utility function
U(performance, power)

— Maximize U(S .1, Spwr)

— Often just U(s,.¢) — € pwr
How to optimize U?

How can semi-autonomous
power and performance agents
cooperatively optimize U?

— Mediated through coordinator?
— Direct bilateral interactions?

| LCCC Workshop on Control-of Computing Systems

f?

Performance -« >
Mgr
H A
e e
Sperf] | Riacement ® on/of; i Sy
: ;Routmg weights w; Freq, . |
: v !

Kephart, Chan, Das, Levine, Tesauro, Rawson, Lefurgy. Coordinating Multiple
Autonomic Managers to Achieve Specified Power-Performance Tradeoffs. ICAC 2007.
(Emergent phenomena can occur when autonomic managers don’t communicate effectively.)

Hanson et al. Autonomic Manager for Power, NOMS 2010

Steinder, Whalley, Hanson, Kephart, Coordinated Management of Power Usage and
Runtime Performance, NOMS 2008

Das, Kephart, Lefurgy, Tesauro, Levine, Chan Autonomic Multi-agent Management of
Power and Performance in Data Centers, AAMAS 2008

Deember 6, 2011 © 2009 IBM Corporation
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Power-aware dynamic server consolidation

Goal: Save power by Maximize U(RT, pwr)
dynamically migrating
VMSs so as to occupy Perf Mgr Power Mgr

fewer servers without PwI(n)
sacrificing performance

too much. Turn unused

Optimize:
servers off. U’ (P, n)
T ; LA
n, : b
RT ! n*, Placement P* On/Off; n, pwr,
| - |

(VMs—hosts) . 1 #cycles
A v
System
—_—
Steinder, Whalley, Hanson, Kephart, Coordinated Management of Power

Usage and Runtime Performance, NOMS 2008

LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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Experimental results
(3 different utility functions)

1. Always meet SLAS

2. Always maximize
performance

3. Permit 10% performance
degradation for 10% power
savings

Conclusions. Substantial power
savings (up to 65%) can be
attained without violating SLA.

Results are significantly affected
by utility function choice.

Power savings (%)

1600 : :
1200 (no power saving) Application A ——— Application B ------- Application C -=+----- J
‘ -
800 Response time
400 bt O S B .
0 r.—f"’ﬁ'rrrn""'rrrrﬁ-. |
1600
d0=0, k=30D .
1200 - 5 : Response time
800 = Mgt oo ‘ TR _‘_,,‘,-,'.'_“_M.ﬁ.m"?_q_'__‘;r:;_"__‘_fg_, ...... o
400 - .""' A 5_ "." peamaea W ek 3 N N v i PRI
DT e il N Vo gt Y | S |l oy e 2
0
1600 r50=1, k=300 _
1200 Response time
800 7 B 8
400 b i ik B N iy
Mﬁﬂm_: T ot J
0
1600
d0=1, k=20 .
1200 - * Response time
800 F i .
H it |
400 bty A it ) L .
MM—J‘“—AM:_.;“-——*‘:. o . RTLITEN Ll A b -
0!
60 120 Time (mim 1 240
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Outline

= Autonomic Computing and Multi-Agent Systems

= Utility Functions
—As means for expressing high-level objectives

—As means for managing to high-level objectives

= Examples
—Unity, and its commercialization

—Power and performance objectives and tradeoffs
—Applying utility concepts at the data center level

= Conclusions

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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The Physical Infrastructure that Supports IT is Complex!

Monitoring and Control

Power Battery

Utility Facility Alternative  UPS Network  IT  Security...

Utility

-:;1___

Utility,
Rates, Incentives
Substation

Communicating
Revenue Meter

Parallel or '
Transfer Eqpt

Medium Voltage

CHP Fuel Cell, MicroTurbine

or Turbine ' Power

" _ >600VAC Eqpt
'é § ﬂi Low Voltage

600VAC Eqpt

Cooling

Chille

Raised

# b
? 0 Ty

DC Power

| LCCC Workshop on Control-of Computing Systems
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Trading off energy vs. temperature in a data center

= Cooling costs can account for ~50% of a data center’ s energy
consumption, due to zealous overcooling

= Let’s try using a utility function U(E, T) to manage the energy-
temperature tradeoff

— Elicitation not trivial — we tried several forms, both multiplicative and additive

10000

]
5000
-2000 —
=]
ey = =
o oBOO0} = & .
& % 4000 i
= 5 =
Eﬂm 4000 b =
= o 6000 =
E
2l U (E) . 5000
E | U-(T)
] ' : ' ' : -10000 i - - : -
o 2 4 B E 10 12 B0 65 0 78 B 85 50
Energy(kWh)/st w1t Temperature (F) 100 18

Energy(kWh)/yr
Temperature (F)

U(E,T) = Ue(E) + U(T)

LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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From utility to optimization

o CRAC fan speeds
= Elicit U(E, {T}) .

5 100 ' W ‘ —»:—Cl H

o | —— Q2

= Model E(8,, 8,) and T(8,, 6,) (61, 0y) ¢ = N
_V|a expe“ments Varylng fan 00 " 200 400 600 800 mloo 1200 1400 1600 1800 2000
Speeds r oo

— Could also run CFD calculations (b) |
T(el, 922 1000 12I()0 14:2)0 16‘00 18:1)0 2000

= Transform utility to U (8,, 6,) |
(@

- Optimize U’ (91, 92) \ 1000 1200 1400 1600 1800 2000

— Set fan speeds to (6,, 6,)* ; +

E(el, 62) f mw M aﬁ;‘;mi

Time (minutes)

Experimental measurements

LCCC Workshop on Control-of Computing Systems
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How Optimal Fan Speeds Depend upon T, .,

If (T

If (76 < T,,,, < 84F) 60
(84, 8,)* = (0%, >60%)

.
40 F
If (T > 84F) 0}
(8,, 8,)* = (0%, 60%) ol
10
\ .
75

100 .
o < 76F) (ol W -
(6, 8,)* = (60%, 60%)

—+— max UE T"10%%
= 61'3-'-’:-

—— 62':}"-:-

—4—E saved * 10%wWh
—4F— maxT

E

saved

Energy savings = 10 to 12%

LCCC Workshop on Control-of Computing Systems
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Figure 7: Multiplicative utility function sensitivity analysis of fan speeds (%) and utility (10^3*$/yr) vs. Tmax. (a) alpha = 0.5 (b)  alpha = 2.5.

If T_max > 85, optimal fan speeds = 60, 0
Max Energy Savings /yr = ((2 CRACS at 100%  - 1 CRAC at 60%) + Savings in Chiller ) for 24*365 hrs =  (12.56 – 1.5) kWh * 24 * 365 * 5.5/4.5 (chiller) = 117773 kWh/yr
Max U(E,T) = max U(E) = pi * Max Energy Savings /yr = $ 9800/yr

Else if  T_max > 78, optimal fan speeds = 60, 60
Max Energy Savings /yr = ((2 CRACS at 100%  - 2 CRAC at 60%) + Savings in Chiller ) for 24*365 hrs =  (12.56 – 3) kWh * 24 * 365 * 5.5/4.5 (chiller) = 99831 kWh/yr
Max U(E,T) = max U(E) = pi * Max Energy Savings /yr = $ 8286/yr
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Snorkels

85 . ‘ : — .
I Installed 1/2 height 1 Replaced 1/2 height
| snorkel at top of rack ! snorkel with full-length
80 ! : snorkel .
1

g 75 : -
g I = Sensor 1 (7 ft)
e I e Senisor 2 (5 ft)
© 70r I S i
T : = Sensor 3 (3 ft)
Q.
e Senisor 4 (1 ft)

£ 1
@65t I 1
}_

|

|

|

60 - ! I n
55 I 1 1 I 1 1
0 100 200 300 400 500

Time (minutes)

Snorkels change the model T(8,, 8,); so the transformation to U’ (6,, 6,) changes.

(84, 6,)" shifts from (60%, 60%) to (0%, 60%) for extra savings (12% —14%)

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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Figure 9: Snorkels installed on the bottom half of racks.
Figure 10: Effect of snorkels upon rack inlet temperature.
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Conclusions

= Utility functions help achieve the central goal of autonomic computing

— “Computing systems that manage themselves in accordance with high-level objectives
from humans.”

— Theoretically well-grounded
— Proven to work in practice in many domains

= Humans express objectives in terms of value

= Value is propagated, processed, and transformed by agents
— Guides agent’ s internal decisions

— Guides agent’ s communication with others

= Key technologies needed include
— Utility function elicitation

— Learning

— Modeling / what-if modeling

— Optimization

— Agent communication, mediation

| LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation
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The next frontier? An autonomic data center economy

Market

Demand Buyers Bids Goods Asks| Sellers

!

Constraints 7"@ nts
: Hardware
A Sys Admin

Costs

Allocation i Energy
Prices & goft LEONSiraints Hard Costs

Figure 1: The Data Center Market Model

Lubin, Kephart, Das and Parkes. Expressive Power-
Based Resource Allocation for Data Centers. IJCAI 2009.
(Exploring market-based resource allocation for data centers.)
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Backup
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Multiplicative Utility Functions

UL (E) ($/yr)

= Administrator wishes to minimize overall energy consumption
subject to a constraint on temperature

— E.g. T(X) < T, at all positions x.

= Consider the multiplicative form: U(E,T) = U(E) U+(T(x))
— Energy utility Ug(E) = T (E — E,), where T is $/(kW-year)

— Temperature utility U-(T(x)) is a dimensionless step function, with the entire
temperature distribution T(x) as its argument

10000

1 _ UE,T) .-
8000 +
08}
6000 s
= 0B} )
;[_ &
4000 04 ~
B
Eﬂ T =t
2000 + . ool i
Ue(E) | UM N\,
0 . . . s . . . j
a 2 4 B B 10 12 " 20 40 B0 a0 100
Energy(KWh)/yr x 10 Temperature (F)

Temperature (F)

LCCC Workshop on Control-of Computing Systems Deember 6, 2011 © 2009 IBM Corporation




| IBM Research

Dimensionless Temperature Utility Function
Practical Considerations

Let’ s think about U(T(x)) a little more
— U =1if T(X) < T4 for all x
— U = 0 otherwise

But we can 't measure T(x) for all x

One solution: just consider a finite set of measurements {T(x;)}
— Set could be readings from all temperature sensors

— Or just the reading from a single representative temperature sensor |
— Or just the maximum temperature in a region of interest (maybe entire DC)

Example if we use many or all temperature sensors:
— We can represent U.(T(x)) as the product of scalar step functions

= U(T(x)) = 11; Uri(T)
—Upi(T) = 1Lif T; < T a; O otherwise
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Sanity check

= Case A: T, > T, for all 10 sensors
~U(T(x))=0*0*0*0*0*0*0*0*0*0=0

= Case B: T, > T, for just sensor #10
SUT()=1*1*1*1*1*1*1*1*1*0=0

= Since U4(T(x)) is 0 in Case A and B, utility U(E, T)
= 0 in both

= Yet most admins would prefer Case B to Case Al

= How could we modify the utility function to prefer B
over A?

= One solution: soften the temperature constraint ...
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[Jonnn]|

Modifying U-(T) to express a soft constraint

Soft Temperature Utility Function
1.1

Soften the scalar step function U ;(T;) os |
) /I: 08 |
Uri(T) = 1/(1 + e-(a(Tmax—T)) ;l;—;ﬁj'
Temp of Sensor #10
A” 10 Sensors at Same O; _ 9 other sensors at 75F ——— 1 9 Sensors at 75F. Vary
temperature L + temp of sensor #10
£ CaseA Case B P
\I::Dd ]
D 03
m .~ |Soft step function favors

Temp of Sensor #10 Case B over Case A
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Further variations on U(T)

ASHRAE specifies both a
minimum and a maximum
temperature

We can represent the scalar
temperature utility as a
two-sided soft step
function

LCCC Workshop on Control-of Computing Systems

s Fqn. 13

Eqn. 14
Eqn. 15
= = = ASHRAET
min

= = = ASHRAET
max

0.8 -
‘as 0.6 -
E
04l a =2
ASHRAE
02r recommendations
0 I/ | | \
60 65 70 75 80 85 90

Temperature (F)

Deember 6, 2011

© 2009 IBM Corporation



Presenter
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Figure 1: Multiplicative temperature utility functions derived from ASHRAE recommendations. Soft step functions use  alpha = 2.
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Additive Utility Functions

= Administrator explicitly considers economic costs of energy
consumption and temperature-induced equipment lifetime reduction

= This suggests an alternative additive form: U(E,T) = Ug(E) + U(T(x))
— Energy utility U(E) = 1T (E — E,)

— Temperature utility U(T(x)) must now have same dimension: cost/yr

U(E,T

w10

10000 . . . . , .
- S :
5000 | 05+
" _ -2000 E o4
h e
S 6000 - - ¥ 05+
Z &%, 4000 —
o Q H s
E’m 4000 b @’-1.5~-
= o 6000 =
E, |
2000 U E ] -B000 252
E U-(T) :
80 ' : 10
0 . L L : L -10000 - - : : :
0 2 4 6 8 10 12 =] 5 70 75 80 85 90 a0
Energy(kWh)/st w1t Temperature (F) 100 18

Energy(kWh)/yr
Temperature (F)
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Cost-based Temperature Utility Function
Practical Considerations

Lifetime vs. Temperature

Lifetime

= Somehow U.(T(x)) must capture the
cost of running equipment at x at
temperature T(x)

w

=]
w

Lifetime(T)

= Cost of device I per year is C,/L(T) -

Device Temperature

— C, = purchase cost

—L(T) = lifetime if run consistently at
temperature T | | Val‘ueVS-Tfmperatur‘e

T T
Valug ——

— Inverse width a hard to ascertain from
published data — widely different reports

o o O

» Seagate drive lifetime reduced 4x for 35C
increase in T

» Google reports little degradation until 40C

Value ($ * 1000)

= U({T}) = Zi C. (1/Ly — 1/L(T)) Device Temperature
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Power-aware load balancing

Goal: Save power by routing Maximize U(RT, pwr)
web traffic to minimal number
of app servers w/o sacrificing Perf Mgr Power Mgr
performance too much. - Pwr(n)
| Optimize:
W, U’ (w, n; A)
* : K
Web requests n, E | n*, w* ro
HTTP RT, ! . (load-balancing ~ On/Off; M PWF
Server A E ; weights) i ;#Cycles

Das, Kephart, Lefurgy, Tesauro, Levine, Chan Autonomic
Multi-agent Management of Power and Performance in Data
Centers, AAMAS 2008
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Experimental Results

Elicit utility function
— U(RT) = 1/0 if SLA met/unmet

— U(RT, Pwr) = U(RT) — & Pwr

Model (offline experiments)
— RT (n; &), Pwr (n; 1)

Transform
— U (n; ) = U (RT (n; 1), Pwr (n; 1))

Optimize (pre-computed policy)
— n*(A) = argmax, U" (n; &)

A few extra tweaks
— Use forecasted A to compute n*(\)

— Add extra to n* a bit to account for
latencies (several minutes)

— Heuristics to ensure that we don’ t
turn servers on and off too often

| LCCC Workshop on Control-of Computing Systems
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At the right, we have overlaid the base case (no power management, represented in red) with (in green) the measured # servers on (second chart from bottom), the response time (third chart) and the consumed power (top chart). Note that (more or less) the number of servers on goes as low as 5 servers during periods of low workload intensity, and rises to all 9 when the workload intensity is high. The resulting response time is in general a little higher than when all servers are on, but not by very much, and it is still quite a lot lower than the SLA threshold, so performance remains entirely acceptable. But looking at the top chart, we see a large decrease in the consumed power when the workload intensity is less than peak, and if we average over Thursday and Friday it comes out to a 21% savings. Although not represented here, we have run the NASA workload into the weekend (Saturday) and found a 45% savings on that day. From the data, Thursday and Friday are very much like other weekdays, and very consistent throughout the two months, and Saturdays are very similar to Sundays, with little week-to-week variation. Thus we would expect on average a 27% power savings per week using our technique.

How much power can be saved in this way? In the first place, the amount of power that can be saved is fundamentally dependent on the workload’s peak:average ratio. Some workloads are flatter than the NASA workload, and the opportunities for savings are less, while some are much greater than 2:1, so the opportunities are greater. Second, there are some additional techniques that we have not yet implemented that should push the percentages somewhat higher.

This technique sounds simple, but there are some serious research challenges that had to be overcome to implement it. First, what does it really mean to say that servers are “not needed”? There is a fundamental question here: how does an administrator express their tradeoffs between performance and power. We have a very general approach that entails the use of utility functions, which are commonly used in economics and artificial intelligence to represent human preferences.  Second, with those preferences in hand, how do we manage to them; in other words how do we make intelligent choices about how many servers can be turned off, and which ones? Servers can take several minutes to become operational after they have been turned off (3 to 5 minutes in our experiments), so we can not simply observe the current workload – we must predict the workload over the next 5-10 minutes. This requires time-series forecasting techniques that err on the side of caution, but are not overly conservative. Moreover, we have developed new machine learning techniques that learn models of how performance and power consumption depend on environmental parameters like workload intensity, and control parameters like the number and type of servers that are on. Optimization that is tied to the terms of the SLA also plays a critical role. Finally, there is a real engineering challenge of gracefully choreographing the power-on and power-off of servers – in particular, integrating a server that has been turned off into a running distributed system and handling any failures that might occur in the process. 
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Multiplicative Utility-Function-Driven Cooling
T .. =80.6F a=2.0

x10°
Energy saved 1% 100
(KWhiyr) 3 & 12 Boﬁ . Max Temp (F)
& 10
£ o0 8 60
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o
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0 0
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Figure 6: (a) Energy saved (kWh/yr), (b) maximum temperature (F), (c) temperature utility, and (d) overall utility ($/yr) as a function of fan speeds for Tmax = 80.6F and  alpha = 2.0.
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Tesauro et al., AAAI 2005

Alternative Approach: Machine Learning
Resource %

Arbiter
Reward Action

' V) _.‘

' n (# servers)
\ = App Mgr can use reinforcement
learning (RL) to compute external
resource utility
demand

V(A, n)
_ — State = A
4 A _ i =
Trade3 App Mar Action = n # servers
— Reward = V(RT) SLA payment

Utility

v (T

It learns long-range value function

k - ) V(state, action) = V(A, n)

It reports V(n) for current or
predicted value of A

n RT
Deember 6, 2011 © 2009 IBM Corporation
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Data Center results:
good asymptotic performance, but

poor performance during long training period
method scales poorly with state space size
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Does Reinforcement Learning work?
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Commercializing Unity

Maimi
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WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)
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Utility-based Interactions between WXD and TIO: Step 1

Resource Allocations: n

WebSphere
XD 5.1

Utility(current n) @ Onewal
WXD Output

Original
WXD 5.1

= TIO cannot make well-founded resource allocation decisions
= WS XD can’t articulate its needs to TIO
= PoB not commensurate with utility

Resource
- Needs(speed)

Objective
Analyzer

Resource
Needs in PoB(n)

OA Qutput

TIO Transform

Resource
Needs in Fitness(n)

TIO Fitness

current spped w3
= k)

finess(n)

(=]

012345678
n (servers)

0
012345678

n (servers)
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Utility-based Interactions between WXD and TIO: Step 2

Resource Allocations: n

WebSphere Objective
Analyzer

Resource -
Fithess(n
Utility(n) PoB(n) ()

RT Silver
0

AT Gold 200

b) Intermediate (commercially available)

Uti“ty(current n) ; WXD Qutput 1 QA Output TIO Transform ) TIO Fitness
: T T
- | 3 - o e
; E o £ i
Intermedlate 2_"‘”' u +§" - gu L *g 1] O W TIO 31
WXD 6.0.2 5| * & =1, °
0 2 : : 2
012345678 012345678 0.0 035 085 10 012345678
n (servers) n (servers) POB(n) n (servers)

= WS XD research team added ResourceUtil interface of WXD
= We developed a good heuristic for converting ResourceUtil to PoB in Objective Analyzer

=Interpolate discrete set of ResourceUtil points and map to PoB
» This PoB better reflects WS XD’ s needs

Deember 6, 2011 © 2009 IBM Corporation
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Utility-based Interactions between WXD and TIO: Step 3

Resource Allocations: n

TIO 3.2
WebSphere Objective Policy
Analyzer
Resource Resource Resource
Utility(n) Utility(n) Utility(n)
AT Gold 200 c:l Expenmmm].
Utility(current n) XD Output _OAOuput _~ TIOTransform o TVOFitness

_D..S’..-----u---“"""‘ . IDHP_I_.Q“D......... ] 0“9“_;9_“0_....,...
= 8" = - = E - ]

New go F- - 2‘1}.‘? .................. -.-Eu w30 f ---------------- . Modified
Modified WXD 6.0.2 3|, 51 g = TI0 3.1
-1 E’ -1 b -1 ! -1 EP
012345678 012345678 -1 0.0 1 012 3456T7S8

n (servers) n (zervers) utility U(n) n (servers)

We modified TIO to use ResourceUtil(n) directly instead of PoB(n)

Most mathematically principled basis for TIO allocation decisions

It enables TIO to be in perfect synch with the goals defined by WS XD
Basic scheme can work, not just for XD, but for any other entity that
may be requesting resource, provided that it can estimate its own utilities
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Commercializing Unity

= Barriers are not just technical in nature

Das et al., ICAC 2006

= Strong product line legacies must be respected; otherwise

— Difficult for the vendor
— Risk alienating existing customer base

= Solution: Infuse agency/autonomicity gradually into existing products

— Demonstrate value incrementally at each step

= We worked with colleagues at IBM Research and IBM Software
Group to implement the Unity ideas in two commercial products:

— Application Manager: IBM WebSphere Extended Deployment (WXD)
— Resource Arbiter: IBM Tivoli Intelligent Orchestrator (T10)

LCCC Workshop on Control-of Computing Systems
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Visions of Autonomic Computing

Star Trek: The Next Generation

Hal 9000, 2001

o

Machines will take
over all
management tasks,
rendering humans
superfluous

Machines will free people to

Terminator
_ % I manage systems at a higher
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Sometimes people think that autonomic computing means assuming all management tasks from humans. This is wrong! There are plenty of cautionary tales by well-known science fiction authors that speak to the dangers of full automation. And customers don’t want this, either…
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Finding the optimal control parameters

cpu [

URT, RPO) IR

b*=0.875
cpu*=2.49
U*=152.7
RT*=99.58

cpu

b*=1.199
Cpu*=3.65

. U*=137.4

RT*=95.44
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Even if service-level utility
remains fixed, resource-
level utility depends upon
environment.

Thus system responds to
environmental changes.

b*=2.053
cpu*=8.58
U*=75.9
RT*=88.69

cpu

A=0.05
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Multi-agent management of performance and power

= We have explored using utility functions to manage
performance and power objectives and tradeoffs in multiple
scenarios

= Two separate agents: Performance and Power

= Various control parameters, various coordination and
communication mechanisms

—Power controls: clock frequency & voltage, sleep modes, ...
—Performance controls: routing weights, # servers, VM placement ...
—Coordination: unilateral, bilateral, mediated, ...

= Examples
—Energy-aware load balancing
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