
© 2009 IBM Corporation

IBM Research

LCCC 2011 December 6, 2011

The Utility of Utility:
Policies for Autonomic Computing

Jeff Kephart (kephart@us.ibm.com)
IBM Thomas J Watson Research Center
Hawthorne, NY, USA

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 2

IT is Becoming Too Complex!

Presenter
Presentation Notes
Enterprise Application Software needs to continuously evolve to adapt to changing business requirements - but the cost today can be prohibitive
This diagram represents the reality of application software for a typical IBM customer. The boxes represent applications, color coded depending on platform (mainframe, UNIX, windows, external interfaces). The links are data flows and dependencies. The complexity stems from the stratification of new systems on top of legacy ones, all designed as monolithic, rather than with a componentized, loosely-coupled architecture.

Now add, virtualization, optimization, SOA, software as services, identity theft, hacker attacks….

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 3

Autonomic Computing and Agents

 AC definition
– “Computing systems that manage themselves

in accordance with high-level objectives from
humans.” Kephart & Chess, IEEE Computer
2003

– Self-configuring, self-healing, self-optimizing,
self-protecting

 Agents definition

– “An encapsulated computer system, situated in
some environment, and capable of flexible,
autonomous action in that environment in order
to meet its design objectives.” Jennings, et al, A
Roadmap of Agent Research and Development,
JAAMAS 1998

 Autonomic elements ~ agents
 Autonomic systems ~ multi-agent systems

Kephart and Chess, The Vision of Autonomic
Computing, IEEE Computing, January 2003.

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 4

The focus of this talk

 I start from two premises:
–Autonomic systems are “Computing systems that manage

themselves in accordance with high-level objectives from
humans.”

–Autonomic systems ~ multi-agent systems

 Which leads to…

 How do we get a (decentralized) Multi-Agent System to

act in accordance with high-level objectives?

 My claim

–Objectives should be expressed in terms of utility
–Utility is an essential piece of information that must be processed,

transformed, and communicated by agents

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 5

Outline

Autonomic Computing and Multi-Agent Systems

Utility Functions

–As means for expressing high-level objectives
–As means for managing to high-level objectives

Examples

–Unity, and its commercialization
–Power and performance objectives and tradeoffs
–Applying utility concepts at the data center level

Conclusions

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 6

How to represent high-level policies?

 Utility functions map any
possible state of a system
to a scalar value

 They can be obtained from
– Service Level Agreement
– preference elicitation
– simple templates

 They are a very useful

representation for high-level
objectives
– Value can be transformed

and propagated among
agents to guide system
behavior

Possible
State

σ1

Possible
State

σ2

Possible
State

σ3

a1

a2

a3

Current
State

S

U(RT) =

Kephart and Walsh, Policy04

V2

V1

V3

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 7

How to manage with high-
level policies?
 Elicit utility function U(S) expressed

in terms of service attributes S

 Model how each attribute Si
depends on controls C and
observables O

– Models expressed as S(C; O)
– E.g., RT(routing weights, request rate)
– Models from experiments, learning,

theory

 Transform from service utility U to
resource utility U’ by substitution

– U(S) = U(S(C; O)) = U’(C; O)

 Optimize resource utility. As
observable O changes, set C to
values that maximize U’(C; O)

– C*(O) = argmaxC U’(C; O)
– U’*(O) = U’(C*(O); O)

U(RT, RPO)

Recovery
Point

Objective Response Time

U

Transform

λ=0.01

cpu

Backup rate b

U’

U’(cpu, b; λ)

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Note
A recovery point objective, or “RPO”, is defined by business continuity planning. It is the maximum targeted period in which data might be lost from an IT service due to a major incident. The RPO gives systems designers a limit to work to.

delosme
Note
The RTO (Recovery Time Objective) and RPO are time intervals, typically expressed in number of hours, specified by the Business Continuity (BC) team to be the longest time the business can allow for without incurring significant risks or significant loss, allowing system designers to specify designs that are as cost effective as the RTO and RPO will permit.

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 8

Outline

Autonomic Computing and Multi-Agent Systems

Utility Functions

–As means for expressing high-level objectives
–As means for managing to high-level objectives

Examples

–Unity, and its commercialization
–Power and performance objectives and tradeoffs
–Applying utility concepts at the data center level

Conclusions

delosme
Texte surligné

IBM Research

SOAR 2010 Keynote © 2007 IBM Corporation June 7, 2010 9

Unity Data Center Prototype: Experimental setup

U(#srv)

Server Server Server Server Server Server Server Server

U(#srv)
U(#srv)

Demand
(HTTP req/sec)

Trade3

App
Manager

U(RT) WebSphere 5.1

DB2 Batch

App
Manager

U(#srvrs)

Maximize
Total SLA
Revenue

5 sec Trade3
Resource

Arbiter

Chess, Segal, Whalley and White, Unity: Experiences with a Prototype Autonomic Computing System, ICAC 2004

Trade3

U(RT)

App
Manager

WebSphere 5.1

DB2

Demand
(HTTP req/sec)

Trade3

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)

IBM Research

SOAR 2010 Keynote © 2007 IBM Corporation June 7, 2010 10

How App Mgr computes its external resource utility

Trade3

App
Manager

U(RT) WebSphere 5.1

DB2

Resource
Arbiter

Chess, Segal, Whalley and White, Unity: Experiences with a Prototype Autonomic Computing System, ICAC 2004

λ

U’’(srv)

M
ax

 U
til

ity

Number of servers

Elicit: U(RT)

Model: U(RT(C; srv, λ))

Transform: U’(C; srv, λ) = U(RT(C; srv, λ))

Optimize:
 C*(srv, λ) = argmaxCU’(C; srv, λ)

 U’’(srv, λ) = U’(C*(srv, λ); srv, λ)

Optimal internal
control settings

External resource-
level utility

Service-level utility

Observable My controls Arbiter’s controls

Internal resource-
level utility

Patrascu, Boutilier et al. New
Approaches to Optimization and
Utility Elicitation in Autonomic
Computing, AAAI 2005

Alternative to generating
full curve: utility elicitation

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

SOAR 2010 Keynote © 2007 IBM Corporation June 7, 2010 11

How the Arbiter determines optimal resource allocation

Trade3

Server Server Server Server Server Server Server Server

Trade3

App
Manager

U(RT) WebSphere 5.1

DB2

App
Manager

WebSphere 5.1

DB2

U(RT)

Resource
Arbiter

U’1(srv1)

M
ax

 U
til

ity

Number of servers

U’2(srv2)

M
ax

 U
til

ity

Number of servers

Decision problem:
Allocate resources
 srv* = argmaxsrvΣU’’i(srvi)
 Effectively maximizes ΣUi(Si)

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 12

How we commercialized Unity

Tivoli Intelligent Orchestrator

U(S)
WebSphere
Extended

Deployment

V(n)

If I give you n
servers, how
valuable will
that be?

If I give you n
servers, how often
will you exceed the
response time
goal?

I need
300M CPU
cycles/sec

The clean
new way

The confusing
old way

This was not
actually that
simple – product
release cycles
didn’t mesh, so
we needed an
evolutionary
approach.

Das et al., ICAC 2006

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 13

Outline

Autonomic Computing and Multi-Agent Systems

Utility Functions

–As means for expressing high-level objectives
–As means for managing to high-level objectives

Examples

–Unity, and its commercialization
–Power and performance objectives and tradeoffs
–Applying utility concepts at the data center level

Conclusions

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 14

Utility functions for interacting power-performance agents
 How to trade off power vs

performance?
– In an individual machine

– In a rack of machines

– In an entire data center

 Formulate a joint power-
performance utility function
U(performance, power)
– Maximize U(sperf, spwr)

– Often just U(sperf) – ε pwr

 How to optimize U?

 How can semi-autonomous
power and performance agents
cooperatively optimize U?
– Mediated through coordinator?

– Direct bilateral interactions?

Performance
Mgr

sperf spwr

System

Power
Mgr

On/Offi
Freqi

System

Placement P
Routing weights wi

Kephart, Chan, Das, Levine, Tesauro, Rawson, Lefurgy. Coordinating Multiple
Autonomic Managers to Achieve Specified Power-Performance Tradeoffs. ICAC 2007.
(Emergent phenomena can occur when autonomic managers don’t communicate effectively.)

Hanson et al. Autonomic Manager for Power, NOMS 2010

Steinder, Whalley, Hanson, Kephart, Coordinated Management of Power Usage and
Runtime Performance, NOMS 2008

Das, Kephart, Lefurgy, Tesauro, Levine, Chan Autonomic Multi-agent Management of
Power and Performance in Data Centers, AAMAS 2008

?

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 15

Power-aware dynamic server consolidation

n,
RT,
λ

n, pwr,
#cycles

System

Power Mgr

On/Offi
n*, Placement P*
(VMs→hosts)

Model:
Pwr(n)

Pwr(n)

Maximize U(RT, pwr) Goal: Save power by
dynamically migrating
VMs so as to occupy
fewer servers without
sacrificing performance
too much. Turn unused
servers off.

Steinder, Whalley, Hanson, Kephart, Coordinated Management of Power
Usage and Runtime Performance, NOMS 2008

Perf Mgr

Model:
RT(P, n, λ)

Optimize:
U’(P, n)

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 16

Experimental results
(3 different utility functions)

1. Always meet SLAs

2. Always maximize
performance

3. Permit 10% performance
degradation for 10% power
savings

Conclusions. Substantial power
savings (up to 65%) can be
attained without violating SLA.

Results are significantly affected
by utility function choice.

Response time

Response time

Response time

Response time

Power Savings

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 17

Outline

Autonomic Computing and Multi-Agent Systems

Utility Functions

–As means for expressing high-level objectives
–As means for managing to high-level objectives

Examples

–Unity, and its commercialization
–Power and performance objectives and tradeoffs
–Applying utility concepts at the data center level

Conclusions

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 18

The Physical Infrastructure that Supports IT is Complex!

H2O
Ice

Pumps

Chiller
Computer
Room Air
Conditioners

Utility

Central UPS

Power Distribution Units

Facility Network

DC Power

Low Voltage
600VAC Eqpt

Generator
Parallel or
Transfer Eqpt

Utility,
Rates, Incentives
Substation
Communicating
Revenue Meter

CHP Fuel Cell, MicroTurbine
or Turbine Power

Cooling Monitoring and Control

Cooling
Tower

Medium Voltage
>600VAC Eqpt

$

Utility

Alternative
Power

Utility

Compute
• Main Frames
• Volume Servers
• Blade Servers

Storage
• SATA Disk
• Tape
• Blended

Network
• Corporate Networks
• VoIP
• Integrated Blade/Switch

In-Row Power
• Modular UPS
• Rack Mount PDUs

In Row Cooling
• Rear Door Heat Exchanger
• Liquid Cooling Racks
• Overhead Cooling

IT and Networks

Security… UPS
Battery

IT

Raised Floor

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 19

Trading off energy vs. temperature in a data center

 Cooling costs can account for ~50% of a data center’s energy
consumption, due to zealous overcooling

 Let’s try using a utility function U(E, T) to manage the energy-

temperature tradeoff
– Elicitation not trivial – we tried several forms, both multiplicative and additive

Picture goes here

UE(E) UT(T)

U(E,T) = UE(E) + UT(T)

Presenter
Presentation Notes
The optimal control settings and resultant energy and temperature are driven by the choice of utility

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 20

From utility to optimization

 Elicit U(E, {T})

 Model E(θ1, θ2) and T(θ1, θ2)
– Via experiments varying fan

speeds

– Could also run CFD calculations

 Transform utility to U’(θ1, θ2)

 Optimize U’(θ1, θ2)
– Set fan speeds to (θ1, θ2)*

Time (minutes)

(θ1, θ2)

T(θ1, θ2)

E(θ1, θ2)

Experimental measurements

CRAC fan speeds

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 21

How Optimal Fan Speeds Depend upon Tmax

U

T

Esaved

U

T

θ*1

θ*2

Esaved

θ*2

θ*1

α = 0.01 α = 0.1

If (Tmax < 76F)
 (θ1, θ2)* = (60%, 60%)

If (76 < Tmax < 84F)
 (θ1, θ2)* = (0%, >60%)

If (Tmax > 84F)
 (θ1, θ2)* = (0%, 60%)

Energy savings = 10 to 12%

Presenter
Presentation Notes
Figure 7: Multiplicative utility function sensitivity analysis of fan speeds (%) and utility (10^3*$/yr) vs. Tmax. (a) alpha = 0.5 (b) alpha = 2.5.

If T_max > 85, optimal fan speeds = 60, 0
Max Energy Savings /yr = ((2 CRACS at 100% - 1 CRAC at 60%) + Savings in Chiller) for 24*365 hrs = (12.56 – 1.5) kWh * 24 * 365 * 5.5/4.5 (chiller) = 117773 kWh/yr
Max U(E,T) = max U(E) = pi * Max Energy Savings /yr = $ 9800/yr

Else if T_max > 78, optimal fan speeds = 60, 60
Max Energy Savings /yr = ((2 CRACS at 100% - 2 CRAC at 60%) + Savings in Chiller) for 24*365 hrs = (12.56 – 3) kWh * 24 * 365 * 5.5/4.5 (chiller) = 99831 kWh/yr
Max U(E,T) = max U(E) = pi * Max Energy Savings /yr = $ 8286/yr

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 22

Snorkels

Snorkels change the model T(θ1, θ2); so the transformation to U’(θ1, θ2) changes.

(θ1, θ2)* shifts from (60%, 60%) to (0%, 60%) for extra savings (12% →14%)

Presenter
Presentation Notes
Figure 9: Snorkels installed on the bottom half of racks.
Figure 10: Effect of snorkels upon rack inlet temperature.

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 23

Conclusions
 Utility functions help achieve the central goal of autonomic computing

– “Computing systems that manage themselves in accordance with high-level objectives
from humans.”

– Theoretically well-grounded
– Proven to work in practice in many domains

 Humans express objectives in terms of value

 Value is propagated, processed, and transformed by agents
– Guides agent’s internal decisions
– Guides agent’s communication with others

 Key technologies needed include

– Utility function elicitation
– Learning
– Modeling / what-if modeling
– Optimization
– Agent communication, mediation

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

delosme
Texte surligné

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 24

The next frontier? An autonomic data center economy

Lubin, Kephart, Das and Parkes. Expressive Power-
Based Resource Allocation for Data Centers. IJCAI 2009.
(Exploring market-based resource allocation for data centers.)

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011

Backup

25

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 26

Multiplicative Utility Functions

 Administrator wishes to minimize overall energy consumption
subject to a constraint on temperature

– E.g. T(x) < Tmax at all positions x.

 Consider the multiplicative form: U(E,T) = UE(E) UT(T(x))
– Energy utility UE(E) = π (E – E0), where π is $/(kW-year)
– Temperature utility UT(T(x)) is a dimensionless step function, with the entire

temperature distribution T(x) as its argument

Picture goes here

UE(E) UT(T)

U(E,T)

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 27

Dimensionless Temperature Utility Function
Practical Considerations

 Let’s think about UT(T(x)) a little more
– U = 1 if T(x) < Tmax for all x
– U = 0 otherwise

 But we can’t measure T(x) for all x

 One solution: just consider a finite set of measurements {T(xi)}
– Set could be readings from all temperature sensors

– Or just the reading from a single representative temperature sensor i

– Or just the maximum temperature in a region of interest (maybe entire DC)

 Example if we use many or all temperature sensors:

– We can represent UT(T(x)) as the product of scalar step functions

– UT(T(x)) = ∏i UT,i(Ti)

– UT,i(Ti) = 1 if Ti < Tmax ; 0 otherwise

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 28

Sanity check
 Case A: Ti > Tmax for all 10 sensors

– UT(T(x)) = 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 = 0

 Case B: Ti > Tmax for just sensor #10
– UT(T(x)) = 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 0 = 0

 Since UT(T(x)) is 0 in Case A and B, utility U(E, T)
= 0 in both

 Yet most admins would prefer Case B to Case A!

 How could we modify the utility function to prefer B

over A?

 One solution: soften the temperature constraint …

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 29

Modifying UT(T) to express a soft constraint

Soften the scalar step function UT,i(Ti)

All 10 sensors at same
temperature

9 sensors at 75F; vary
temp of sensor #10

Temp of Sensor #10

Temp of Sensor #10

Soft step function favors
Case B over Case A

UT,i(Ti) = 1/(1 + e-(α(Tmax – Ti))) α = 2

U
T(

T)

U
T(

T)
 Case A Case B

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 30

Further variations on UT(T)

ASHRAE
recommendations

α = 2

ASHRAE specifies both a
minimum and a maximum
temperature

We can represent the scalar
temperature utility as a
two-sided soft step
function

Presenter
Presentation Notes
Figure 1: Multiplicative temperature utility functions derived from ASHRAE recommendations. Soft step functions use alpha = 2.

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 31

Additive Utility Functions

 Administrator explicitly considers economic costs of energy
consumption and temperature-induced equipment lifetime reduction

 This suggests an alternative additive form: U(E,T) = UE(E) + UT(T(x))

– Energy utility UE(E) = π (E – E0)

– Temperature utility UT(T(x)) must now have same dimension: cost/yr

Picture goes here

UE(E) UT(T)

U(E,T)

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 32

Cost-based Temperature Utility Function
Practical Considerations

 Somehow UT(T(x)) must capture the
cost of running equipment at x at
temperature T(x)

 Cost of device i per year is Ci/L(T)
– Ci = purchase cost

– L(T) = lifetime if run consistently at
temperature T

– Inverse width α hard to ascertain from
published data – widely different reports

• Seagate drive lifetime reduced 4x for 35C
increase in T

• Google reports little degradation until 40C

 UT({Ti}) = ∑i Ci (1/L0 – 1/L(Ti))

α = 0.1

Li
fe

tim
e(

T)

Device Temperature

Va
lu

e
($

 *
 1

00
0)

Device Temperature

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 33

Power-aware load balancing

Perf Mgr

n,
RT,
λ

n, pwr,
#cycles

System

Power Mgr

On/Offi
n*, w*
(load-balancing
weights)

Model:
Pwr(n)

Model:
RT(w, n; λ)

Optimize:
U’(w, n; λ)

Pwr(n)

Maximize U(RT, pwr) Goal: Save power by routing
web traffic to minimal number
of app servers w/o sacrificing
performance too much.

DB2

WebSphere

App. Server

WebSphere

App. Server

HTTP

 Server

WebSphere

App. Server

Web requests

w1

w2

w3

Das, Kephart, Lefurgy, Tesauro, Levine, Chan Autonomic
Multi-agent Management of Power and Performance in Data
Centers, AAMAS 2008

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 34

Experimental Results

Thursday Friday

Time (minutes)

W
or

kl
oa

d
(#

 c
lie

nt
s)

R

es
po

ns
e

tim
e

(m
se

c)

se

rv
er

s
on

Po

w
er

(w

at
ts

)

Trade6 workload;
NASA traffic

SLA

Response time

Power

servers

Avg Power Savings = 27%
No SLA violation

 Elicit utility function
– U(RT) = 1/0 if SLA met/unmet
– U(RT, Pwr) = U(RT) – ε Pwr

 Model (offline experiments)
– RT (n; λ), Pwr (n; λ)

 Transform
– U’ (n; λ) = U (RT (n; λ), Pwr (n; λ))

 Optimize (pre-computed policy)

– n*(λ) = argmaxn U’ (n; λ)

 A few extra tweaks
– Use forecasted λ to compute n*(λ)
– Add extra to n* a bit to account for

latencies (several minutes)
– Heuristics to ensure that we don’t

turn servers on and off too often

Presenter
Presentation Notes
At the right, we have overlaid the base case (no power management, represented in red) with (in green) the measured # servers on (second chart from bottom), the response time (third chart) and the consumed power (top chart). Note that (more or less) the number of servers on goes as low as 5 servers during periods of low workload intensity, and rises to all 9 when the workload intensity is high. The resulting response time is in general a little higher than when all servers are on, but not by very much, and it is still quite a lot lower than the SLA threshold, so performance remains entirely acceptable. But looking at the top chart, we see a large decrease in the consumed power when the workload intensity is less than peak, and if we average over Thursday and Friday it comes out to a 21% savings. Although not represented here, we have run the NASA workload into the weekend (Saturday) and found a 45% savings on that day. From the data, Thursday and Friday are very much like other weekdays, and very consistent throughout the two months, and Saturdays are very similar to Sundays, with little week-to-week variation. Thus we would expect on average a 27% power savings per week using our technique.

How much power can be saved in this way? In the first place, the amount of power that can be saved is fundamentally dependent on the workload’s peak:average ratio. Some workloads are flatter than the NASA workload, and the opportunities for savings are less, while some are much greater than 2:1, so the opportunities are greater. Second, there are some additional techniques that we have not yet implemented that should push the percentages somewhat higher.

This technique sounds simple, but there are some serious research challenges that had to be overcome to implement it. First, what does it really mean to say that servers are “not needed”? There is a fundamental question here: how does an administrator express their tradeoffs between performance and power. We have a very general approach that entails the use of utility functions, which are commonly used in economics and artificial intelligence to represent human preferences. Second, with those preferences in hand, how do we manage to them; in other words how do we make intelligent choices about how many servers can be turned off, and which ones? Servers can take several minutes to become operational after they have been turned off (3 to 5 minutes in our experiments), so we can not simply observe the current workload – we must predict the workload over the next 5-10 minutes. This requires time-series forecasting techniques that err on the side of caution, but are not overly conservative. Moreover, we have developed new machine learning techniques that learn models of how performance and power consumption depend on environmental parameters like workload intensity, and control parameters like the number and type of servers that are on. Optimization that is tied to the terms of the SLA also plays a critical role. Finally, there is a real engineering challenge of gracefully choreographing the power-on and power-off of servers – in particular, integrating a server that has been turned off into a running distributed system and handling any failures that might occur in the process.

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 35

Multiplicative Utility-Function-Driven Cooling
Tmax = 80.6F, α = 2.0

Energy saved
(kWh/yr) Max Temp (F)

Temp utility
(max of all T)

U(E, T) ($/yr)

(60%, 60%)

Savings:

9.1 kWh,$8K/yr

(~12%)

Presenter
Presentation Notes
Figure 6: (a) Energy saved (kWh/yr), (b) maximum temperature (F), (c) temperature utility, and (d) overall utility ($/yr) as a function of fan speeds for Tmax = 80.6F and alpha = 2.0.

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 36

Alternative Approach: Machine Learning

n (# servers)

U
til

ity

V(n)

U(RT)

WebSphere 5.1

DB2

Trade3 App Mgr

RT

V

n

RL
V(λ, n)

Server Server Server

Resource
Arbiter

 App Mgr can use reinforcement
learning (RL) to compute external
resource utility

– State = λ demand
– Action = n # servers
– Reward = V(RT) SLA payment

 It learns long-range value function

V(state, action) = V(λ, n)

 It reports V(n) for current or
predicted value of λ

Tesauro et al., AAAI 2005

λ

System

Agent

Action Reward

State

Presenter
Presentation Notes
Data Center results:
good asymptotic performance, but

poor performance during long training period
method scales poorly with state space size

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 37

Does Reinforcement Learning work?

Animation

IBM Research

SOAR 2010 Keynote © 2007 IBM Corporation June 7, 2010 38

Commercializing Unity

U(#srvrs)

Trade3

Server Server Server Server Server Server Server Server

U(#srvrs)

Demand
(HTTP req/sec)

Trade3

App
Manager

U(RT) WebSphere 5.1

DB2

App
Manager

WebSphere 5.1

DB2

Maximize
Total SLA
Revenue

5 sec

U(RT)

Demand
(HTTP req/sec)

Trade3 Trade3
Resource

Arbiter
Tivoli

Intelligent
Orchestrator

Trade3

WebSphere
Extended

Deployment U(RT)

Trade3

WebSphere
Extended

Deployment U(RT)

Presenter
Presentation Notes
WebSphere and DB2 installed on each server machine
8-20 xSeries servers

One approach: Make the Resource Arbiter a global Q-Learner
Advantages:
Arbiter’s problem is a true MDP
Can rely on convergence guarantee
Main Disadvantage:
Arbiter’s state space is huge: cross product of all local state spaces
 Serious curse-of-dimensionality if many applications

Alternative Approach: Local RL
Each application does local TD(0) based on local state, local provisioning, and local reward  learns local value function
Each application conveys current V(resource) estimates to arbiter
Arbiter then acts to maximize sum of current value functions
Local learning should be much easier than global learning; but
No longer have a convergence guarantee
Related work: Russell & Zimdars, ICML-03. (local rewards only)

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 39

Original
WXD 5.1

TIO 3.1

Utility-based Interactions between WXD and TIO: Step 1

WebSphere
XD 5.1

Objective
Analyzer

TIO
Transform

Resource Allocations: n

Resource
Needs(speed)

Resource
Needs in PoB(n)

Policy
 Engine

TIO 3.1

Resource
Needs in Fitness(n)

Utility(current n)

 TIO cannot make well-founded resource allocation decisions
 WS XD can’t articulate its needs to TIO
 PoB not commensurate with utility

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 40

Intermediate
WXD 6.0.2

TIO 3.1

Utility-based Interactions between WXD and TIO: Step 2

WebSphere
XD 6.0.2

Objective
Analyzer

TIO
Transform

Resource Allocations: n

PoB(n)

Policy
 Engine

TIO 3.1

Fitness(n)

Utility(current n)

 WS XD research team added ResourceUtil interface of WXD
 We developed a good heuristic for converting ResourceUtil to PoB in Objective Analyzer

Interpolate discrete set of ResourceUtil points and map to PoB
 This PoB better reflects WS XD’s needs

Resource
Utility(n)

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 41

New
Modified WXD 6.0.2

Modified
TIO 3.1

Utility-based Interactions between WXD and TIO: Step 3

WebSphere
XD 6.0.2

Objective
Analyzer

1

Resource Allocations: n

Policy
 Engine

TIO 3.2

Utility(current n)

Resource
Utility(n)

 We modified TIO to use ResourceUtil(n) directly instead of PoB(n)
 Most mathematically principled basis for TIO allocation decisions
 It enables TIO to be in perfect synch with the goals defined by WS XD
 Basic scheme can work, not just for XD, but for any other entity that
 may be requesting resource, provided that it can estimate its own utilities

Resource
Utility(n)

Resource
Utility(n)

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 42

Commercializing Unity
 Barriers are not just technical in nature

 Strong product line legacies must be respected; otherwise

– Difficult for the vendor
– Risk alienating existing customer base

 Solution: Infuse agency/autonomicity gradually into existing products
– Demonstrate value incrementally at each step

 We worked with colleagues at IBM Research and IBM Software
Group to implement the Unity ideas in two commercial products:
– Application Manager: IBM WebSphere Extended Deployment (WXD)
– Resource Arbiter: IBM Tivoli Intelligent Orchestrator (TIO)

Das et al., ICAC 2006

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 43

Machines will take
over all
management tasks,
rendering humans
superfluous

Visions of Autonomic Computing

Hal 9000, 2001

Terminator

Wrong!

Machines will free people to
manage systems at a higher
level

Right!

Star Trek: The Next Generation

Presenter
Presentation Notes
Sometimes people think that autonomic computing means assuming all management tasks from humans. This is wrong! There are plenty of cautionary tales by well-known science fiction authors that speak to the dangers of full automation. And customers don’t want this, either…

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 44

Finding the optimal control parameters

U’(cpu, b; λ)

U(RT, RPO)

RT

RPO

λ=0.002

b

cpu

b*=0.875
cpu*=2.49
U*=152.7
RT*=99.58

λ=0.01

b

cpu

b*=1.199
cpu*=3.65
U*=137.4
RT*=95.44

λ=0.05

b

cpu

b*=2.053
cpu*=8.58
U*=75.9
RT*=88.69

Even if service-level utility
remains fixed, resource-
level utility depends upon
environment.

Thus system responds to
environmental changes.

IBM Research

LCCC Workshop on Control of Computing Systems © 2009 IBM Corporation Deember 6, 2011 45

Multi-agent management of performance and power

 We have explored using utility functions to manage
performance and power objectives and tradeoffs in multiple
scenarios

 Two separate agents: Performance and Power

 Various control parameters, various coordination and
communication mechanisms
–Power controls: clock frequency & voltage, sleep modes, …
–Performance controls: routing weights, # servers, VM placement …
–Coordination: unilateral, bilateral, mediated, …

 Examples
–Energy-aware load balancing
–Energy-aware server consolidation
–Optimal power capping

	The Utility of Utility:�Policies for Autonomic Computing
	IT is Becoming Too Complex!
	Autonomic Computing and Agents
	The focus of this talk
	Outline
	How to represent high-level policies?
	How to manage with high-level policies?
	Outline
	Unity Data Center Prototype: Experimental setup
	How App Mgr computes its external resource utility
	How the Arbiter determines optimal resource allocation
	How we commercialized Unity
	Outline
	Utility functions for interacting power-performance agents
	Power-aware dynamic server consolidation
	Experimental results�(3 different utility functions)
	Outline
	The Physical Infrastructure that Supports IT is Complex!
	Trading off energy vs. temperature in a data center
	From utility to optimization
	How Optimal Fan Speeds Depend upon Tmax
	Snorkels
	Conclusions
	The next frontier? An autonomic data center economy
	Backup
	Multiplicative Utility Functions
	Dimensionless Temperature Utility Function�Practical Considerations
	Sanity check
	Modifying UT(T) to express a soft constraint
	Further variations on UT(T)
	Additive Utility Functions
	Cost-based Temperature Utility Function�Practical Considerations
	Power-aware load balancing
	Experimental Results
	Multiplicative Utility-Function-Driven Cooling�Tmax = 80.6F, α = 2.0
	Alternative Approach: Machine Learning
	Does Reinforcement Learning work?
	Commercializing Unity
	Utility-based Interactions between WXD and TIO: Step 1
	Utility-based Interactions between WXD and TIO: Step 2
	Utility-based Interactions between WXD and TIO: Step 3
	Commercializing Unity
	Visions of Autonomic Computing
	Finding the optimal control parameters
	Multi-agent management of performance and power

