
Abrupt Behaviour Changes in Cellular
Automata under Asynchronous Dynamics

Damien Regnault

Complex Systems Institute
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Abstract. We propose an analysis of the relaxation time of the el-
ementary finite cellular automaton 214 (Wolfram coding) under α-
asynchronous dynamics (i.e. each cell independently updates with prob-
ability 0 < α 6 1 at each time step).
While cellular automata have been intensively studied under synchronous
dynamics (all cells update at each time step), much less work is available
about asynchronous dynamics. In particular, the robustness to asynchro-
nism is a feature which is far from being cleared up.
In a classifying attempt, Fates et al [2] have listed all the double-quiescent
elementary cellular automata under fully asynchronous dynamics (one
single cell is updated at each time step) according to their relaxation
time. This mathematical analysis confirmed the behaviours observed by
simulation, truly different from the synchronous dynamics. In a sequel
paper [1], they extended their analysis to this class of automata under
α-asynchronous dynamics. Moreover they exhibit new phenomena which
are impossible under fully asynchronous dynamics, the global behaviour
of most of the automata is the same under both α-asynchronism and full
asynchronism. However unlike [2], they did not complete the whole clas-
sification of relaxation times and left some conjectures concerning four
automata, among which automaton 214 which seems to have a specific
behavior under α-synchronous dynamics. Our work partially answers one
of those conjectures, and both illustrates the richness of the behaviours
involved by asynchronism on cellular automata and the challenge of their
mathematical prediction. Far from being a marginal case study, our anal-
ysis provides a very relevant example of the way the dynamics is affected
by asynchronism and of the mathematical tools which can be used to
predict the asymptotic behaviour of such complex models.

1 Introduction

The aim of this article is to analyze the asynchronous behavior of the unbounded
finite cellular automaton 214. Cellular automata are widely used to model sys-
tems involving a huge number of interacting elements such as agents in econ-
omy, particles in physics, proteins in biology, distributed systems, etc. In most of
these applications, in particular in many real system models, agents are not syn-
chronous. Depending on the transition rules, the behaviour of the system may



vary widely when asynchronism increases in the dynamics. More generally one
can ask how much does asynchronous in real system perturbs computation. In
spite of this lack of synchronism, real living systems are very resilient over time.
One might then expect the cellular automata used to model these systems to be
robust to asynchronism and to other kind of failure as well (such as misreading
the states of the neighbors). It turns out that the resilience to asynchronism
widely varies from one automata to another (e.g., [3,4]). Only few theoretical
studies exist on the influence of asynchronism. Most of them usually focus on
one specific cellular automata (e.g., [5,6,7]) and do not address the problem
globally. In 2003, Gács shows in [8] that it is undecidable to determining if in
a given automota, the sequences of changes of states followed by a given cell
is independent of the history of the updates. Related work on the existence of
stationary distribution on infinite configurations for probabilistic automata can
be found in [9].

We continue here a study begun in [2] and [1] on the effects of asynchrony
on the global evolution of the system given an arbitrary set of local rules, and in
particular how does asynchronicity affects its relaxation time. In [2], the authors
carried out a complete analysis of the class of one-dimensional double quiescent
elementary cellular automata (DQECA), where each cell has two states 0 and
1 which are quiescent (i.e., where each cell for which every cell in its neigh-
bourhood is in the same state, remains in the same state) and where each cell
updates according to its state and the states of its two immediate neighbours.
They study the behaviour of these automata under fully asynchronous dynamics,
where only one random cell is updated at each time step. They show that one
can classify the 64 DQECAs in six categories according to their relaxation times
under full asynchronism (either constant, logarithmic, linear, quadratic, expo-
nential or infinite) and furthermore that the relaxation time characterizes their
behaviour, i.e., that all automata with equivalent relaxation times present the
same kind of space-time diagrams. In [1], this study is extended to a continuous
range of asynchyronism from fully asynchronous dynamics to fully synchronous
dynamics: the α-asynchronous dynamics, with 0 < α 6 1. In this setting, each
cell is updated independently with probability α at each time step. When α
varies from 1 down to 0, the α-asynchronous dynamics evolves from the fully
synchronous regime to a more and more asynchronous regime. As α approaches
0, the probability that the updates involve at most one cell tends to 1, and the
dynamics gets closer and closer to a kind of fully asynchronous dynamics up to
a time rescaling by a factor 1/α.

The comparison between the fully asynchronous dynamics and the syn-
chronous dynamics in [2] shows that most of the studied automata have dras-
tically different behaviors. The comparison between the fully asynchronous dy-
namics and the α-asynchronous dynamics in [1] shows that new phenomena could
appear under α-asynchronous dynamics. Nevertheless after rescaling of the time,
most of the studied automata seem to have the same global behavior under these
two dynamics. The only automata where these phenomena change drastically its
behavior is automaton 194. Its relaxation time is O(n3) under fully asynchronous



dynamics, O( n
α2(1−α) ) under α-asynchronous dynamics and it diverge under syn-

chronous dynamics. Thus there is a speed up between fully asynchronous and
α-asynchronous dynamics because of a so called spawning phenomenon (see [1]).
The authors conjecture that four other automata have a specific behavior under
α-asynchronous dynamics. Cellular automaton 214 studied here is one of them.
It diverges (i.e., it never reaches a fixed point) under both fully asynchronous
dynamics and synchronous dynamics. Nevertheless, we prove here that cellular
automaton 214 converges to a fixed point in linear time under α-asynchronous
dynamics when α > 0.9999 and we also exhibit the phenomenon accountable for
this fast convergence. Now, this is the most explicit case to show the difference
between α-asynchronous dynamics and the two other dynamics.

Section 2 introduces the main definitions and presents our main result. Sec-
tion 3 presents the probabilistic tools developed in [1] that will be used for the
analysis in section 5. Section 4 gives the intuition behind the neighborhood masks
tree.

2 Definitions, Notations and Main Results

In this paper, we consider the elementary cellular automaton 214 on finite size
configurations with periodic boundary conditions. See [1] for complete defini-
tions.

Definition 1. An Elementary Cellular Automata (ECA) is given by its transi-
tion function {δ : {0, 1}3 → {0, 1}}. We denote by Q = {0, 1} the set of states.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic
boundary conditions x ∈ QU is a word indexed by U with letters in Q.

Definition 2. For a given pattern w ∈ Q∗, we denote by |x|w = #{i ∈ U :
xi+1 . . . xi+|w| = w} the number of occurrences of w in configuration x.

Definition 3. Here is the transition function of cellular automaton 214:
x y z 000 001 100 101 010 011 110 111

214(x, y, z) 0 1 1 0 1 0 1 1

We consider three kinds of dynamics for ECAs: the synchronous dynamics, the α-
asynchronous dynamics and the fully asynchronous dynamics. The synchronous
dynamics is the classic dynamics of cellular automata, where the transition func-
tion is applied at each (discrete) time step on each cell simultaneously.

Definition 4 (Synchronous Dynamics). The synchronous dynamics
Sδ : QU → QU of an ECA δ, associates deterministically to each configuration
x the configuration y, such that for all i ∈ U , yi = δ(xi−1, xi, xi+1).

Definition 5 (Asynchronous Dynamics). An asynchronous dynamics ASδ

of an ECA δ associates to each configuration x a random configuration y, such
that yi = xi for i 6∈ S, and yi = δ(xi−1, xi, xi+1) for i ∈ S, where S is a
random subset of U chosen by a daemon. We consider two types of asynchronous
dynamics:



– in the α-asynchronous dynamics, the daemon selects at each time step each
cell i in S independently with probability α where 0 < α 6 1. The random
function which associates the random configuration y to x according to this
dynamics is denoted ASα

δ .
– in the fully asynchronous dynamics, the daemon chooses a cell i uniformly at

random and sets S = {i}. The random function which associates the random
configuration y to x according to this dynamics is denoted ASF

δ .

For a given ECA δ, we denote by xt the random variable for the configuration
obtained after t applications of the asynchronous dynamics function ASδ on
configuration x, i.e., xt = (ASδ)t(x).

Definition 6 (Fixed point). We say that a configuration x is a fixed point
for δ under asynchronous dynamics if ASδ(x) = x whatever the choice of S is
(the cells to be updated). Fδ denotes the set of fixed points for δ.

Fact 1 if n is even then F214 = {0n, 1n, (01)n/2}, otherwise F214 = {0n, 1n}.
The configuration 0n cannot be reached from any other configurations whatever
the dynamics is.

The set of fixed points for the considered asynchronous dynamics is clearly
identical to {x : Sδ(x) = x} the set of fixed points of the synchronous dynamics.

Definition 7 (Relaxation Time). Given an ECA δ and a configuration x,
we denote by Tδ(x) the random variable for the time elapsed until a fixed point
is reached from configuration x under an asynchronous dynamics, i.e., Tδ(x) =
min{t : xt ∈ Fδ}. The relaxation time of ECA δ is maxx∈QU E[Tδ(x)].

We can now state our main theorem.

Theorem 2 (Main result). Under α-asynchronous dynamics when α >
0.9999, the relaxation time T214 of cellular automaton 214 is O( n

1−α ).

3 Lyapunov functions based on local neighbourhoods

The reader may find more detailed definitions in [1].

Definition 8 (Mask). A mask ṁ is a word on {0, 1, 0̇, 1̇} containing exactly
one dotted letter in {0̇, 1̇}. We say that the cell i in configuration x matches the
mask ṁ = m−k . . .m−1ṁ0m1 . . .ml if xi−k . . . xi . . . xi+l = m−k . . .m0 . . .ml.
We denote by m the undotted word m−k . . .m0 . . .ml.

Notation 1 In the next sections, some letters of a mask will receive a label ×
or ?. An unlabeled cell won’t change its state at the next time step even if it
updates. An ×-labeled will change its state at the next time if it updates. If the
cell is labeled ?, we don’t have enough information in the mask to decide if the
cell may change its state at the next time step.



Definition 9 (Masks basis). A masks basis B is a finite set of masks such
that for any configuration x and any cell i, there exists an unique ṁ ∈ B that
matches cell i.

A masks basis B can be represented by a binary tree where the masks of B
are the labels of the leaves.

Masks bases will be used to define Lyapunov weight functions from local
patterns. It provides an efficient tool to validate exhaustive case analysis.

Definition 10 (Local weight function). A local weight function f is a func-
tion from a masks basis B to Z. The local weight of the cell i in configuration x
given by f is F (x, i) = f(ṁ) where ṁ is the unique mask in B matching cell i.
The weight of a configuration x given by f is defined as F (x) =

∑
i F (x, i).

Fact 3 Given a local weight function f : B → Z, the weight of configuration x
is equivalently defined as: F (x) =

∑
ṁ∈B f(ṁ) · |x|m.

Notation 2 For a given random sequence of configurations (xt)t∈N and a weight
function F on the configurations, we denote by (∆F (xt))t∈N the random sequence
∆F (xt) = F (xt+1)− F (xt).

The next lemma provides upper bounds on stopping times for the markovian
sequence of configurations (xt)t∈N subject to a weight function F decreasing or
remaining constant on average (a Lyapunov function). Its proof can be found
in [2].

Lemma 1. Let m ∈ Z+ and ε > 0. Consider (xt) a random sequence of con-
figurations, and F a weight function such that (∀x) F (x) ∈ {0, . . . ,m}. Assume
that if F (xt) > 0, then E[∆F (xt)|xt] 6 −ε. Let T = min{t : F (xt) = 0} denote
the random variable for the first time t where F (xt) = 0. Then, E[T ] 6 m+F (x0)

ε .

4 Informal description of 214’s behaviour

Figure 1 shows the automaton 214 under asynchronous and fully asynchronous
dynamics.

Under fully asynchronous dynamics a configuration cannot reached a fixed
point from a non fixed point configuration. In fact under fully asynchronous
dynamics, the number of regions (which is also |xt|10 or |xt|01) cannot increase
and it decreases only when a cell is updated in the neighborhood 010 of 101.
So the number of regions is constant for a configuration evolving under fully
asynchronous dynamics of automaton 214.

Now we consider the α-asynchronous dynamics as shown in figure 2.
First, as shown in figure 2(b) the automaton may converge to the fixed

point 0n. According to simulations, the relaxation time appears to be linear
of the size of n and is conjectured to be O( n

α2(1−α) ). Second, the number of re-
gions can increase or decrease because of two new phenomena that have already



(a) Synchronous dynamics (b) Totally asynchronous dynamics

Fig. 1. BCF under different dynamics

be observed in [1]: the spawning phenomenon and the annihilation phenomenon
(see fig. 3). Indeed a pattern 1001 may evolve to 1111 (the number of regions de-
crease) and a pattern 0011 may evolve to 0101 (the number of regions increase).
Thus the only way to decrease the number of regions is the annihilation phe-
nomenon. So the key pattern is 1001. Unfortunately, if we consider the evolution
pattern 10011:

with probability pattern 10
×
0
×
1
×
1 evolves to distance to fixed point seems to

α3 11101 not vary
α2(1− α) 11001 not vary
α2(1− α) 10101 increase
α2(1− α) 11111 decrease
α(1− α)2 10111 not vary
α(1− α)2 11011 not vary
α(1− α)2 10001 increase
(1− α)3 10011 not vary

The difficulty of the proof is that a 0-region in the pattern 10011 has the
same probability, α2(1−α), to spawn a new 0-region or to disappear and it could
also evolve with probability α(1− α)2 to 10001 (a pattern where the spawning
phenomenon is no more possible). So considering only the number of regions
yields a non negative expectation. We have to deal with two problems with the
pattern 10011: the evolution towards 10001 and the fact that the probability
to increase or decrease by one the number of regions is the same. For the first
one, we do not have an answer yet. So we consider α large enough so that this
phenomenon is negligible. Now, we assume α > 0.9999, the bound is not tight
and could be improve by tuning further the constants.

Our aim is to propose an answer to the second problem. Considering figure
3, one can notice that the 0-regions are close to each other.



(a) α = 0.25 (b) α = 0.5

(c) α = 0.7 (d) α = 0.9

Fig. 2. BCF under different α-dynamics

Now considering the evolution of the pattern 10010 (∗ means here 0 or 1):
with probability pattern 10

×
0
×
10

?
evolves to distance to fixed point seems to

α2 1111∗ decrease
α(1− α) 1101∗ slightly increase
α(1− α) 1011∗ slightly increase
(1− α)2 1001∗ slightly increase if ∗ = 1

Because of the presence of a second 0-region, no new 0-region can spawn
from the first one and the most likely evolution lead to the annihilation of the
first 0-region. When a 0-region disappear in such a case, we will say that there
is a collision between the two 0-regions:

Definition 11. We say that there is a collision when the first 0-region in a
pattern 10010 disappear because of an annihilation phenomenon.

More importantly, if a pattern 10011 evolves to 10101, the two 0-regions are
very close. So the probability that they collide does not seem to be negligible. If
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Fig. 3. explanation of the different phenomena

we can prove this than we can find local weights such that the variation of the
local weights for a pattern 10011 is negative.

So we are interested in the evolution of a pattern 10101 and we would like
to show that the probability that two 0-regions collide is not negligible. We
have chosen α so that the probability that at least two cells do not update in
the considered patterns is negligible (as we later show in section 5). So we can
consider that the pattern 10101 evolves almost under synchronous dynamics,
and that sometimes one cell doesn’t update. Figure 4 shows the evolution of a
pattern 10101 when there is no collision with other 0-regions. The black arrows
show the most likely evolution (all cells update) and the dotted arrows show the
evolution when one cell doesn’t update. The weight of the leftmost 0-region is
written over it.

So, the most likely evolution of the pattern 10101 is to hit pattern 1011101.
After this, there will have a back and forth between this pattern and the pattern
10011001 until a cell does not update. Depending on which cell updates, it may
evolve to a configuration where the probability of collision is too small to be
considered or it may evolve to pattern 1011001 or 10011101. In this case, it
leads to a new back and forth between these two configurations until a cell does
not update. Depending on which cell update, it may evolve to a configuration
where the probability of collision is too small to be considered or it may evolve to
pattern 100101 or 101101. From these patterns, the most likely evolution leads
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Fig. 4. evolution of the pattern 10101

to a collision between the two 0-regions. Now in the next section, we prove that
the chosen weights define a function F which expected variation is negative at
time step.

5 proof

5.1 Analysis

We now assume that α > 0.9999. We consider the following variant. We use the
masks basis and local weight function f given on figure 5. We have:

F (x) = 64|xt|10010 + 74|xt|101101 + 91|xt|1011001 + 91|xt|10011101
+(99− 2α)|xt|10011001 + 99|xt|1011101 + 99|xt|10101 + 99|xt|101001
+99|xt|1001101 + 100(|xt|101111 + |xt|1011100 + |xt|1011000 + |xt|101000
+|xt|1001111 + |xt|10011100 + |xt|10011000 + |xt|1000 + |xt|000 + |xt|0001).

For each configuration x, F (x) ∈ {0, 1, . . . , 100n} and F (x) = 0 if and only
if x = 1n.



0

1

10

100

00

000

001

0001

1001

100

100

0

1000

1001

100

101

1011

1010

10100

10101 99

101000

101001 99

100

10110

10111

101110

101111 100

1011100

1011101

100

99

101100

101101 74

1011000

1011001 91

100

0

10010

10011

64 100110

100111

1001110

1001111 100

10011100

10011101

100

91

1001100

1001101 99

10011001

10011000 100

99-2(1-alpha) masks f(ṁ)
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Fig. 5. Weight function for BCF.
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Lemma 2. For all non-fixed point configuration xt and configurations where
there isn’t only isolated 0, E[∆F (xt)] 6 −0.3(1 − α). For configurations with
only isolated 0, E[∆F (xt)] 6 0.

Proof. By linearity of expectation: E[∆F (x)] =
∑n−1

i=0 E[∆F (x, i)]. We evaluate
the variation of F (x, i) using the masks basis of Figure 6.

Consider that at step t, cell i matches:
– mask 1

?
1̇, 10

×
0
×
1̇0

?
: F (xt, i) = 0. With probability 1 at the step t + 1, cell i

matches mask 1̇. So F (xt+1, i) = 0. Thus, ∆F (xt, i) 6 0.
– mask 0

?
0̇0

?
, 10̇10

×
00

?
, 10̇1

×
10
×
00

?
, 10̇1

×
110

×
0
?
, 10̇1

×
111: F (xt, i) = 100.

Thus, E[(∆F (xt, i)] 6 0.
– mask 10̇1

×
10
×
0
×
10

?
: F (xt, i) = 91. Thus, E[(∆F (xt, i)] 6 9.

– mask 10̇10
×
0
×
10

?
: F (xt, i) = 99. Thus, E[(∆F (xt, i)] 6 1.

– mask 101̇
?
: F (xt, i) = 0. With probability 1 at the step t + 1, cell i matches

mask 1̇ or 100̇1. So F (xt+1, i) = 0. Thus, E[(∆F (xt, i)] = 0.
– mask 10̇101

?
: With probability 1 at the step t+1, cell i matches mask 10̇101

or 10̇1001. Thus, E[(∆F (xt, i)] = 0.
– mask 10̇

×
00

?
: F (xt, i) = 100. With probability α at the step t + 1, cell i

matches mask 1̇ and F (xt+1, i) = 0. Thus, E[(∆F (xt, i)] 6 −100α 6 −99.
– mask 0

?
00̇
×
1
?

(and 0
?
00
×
1̇
?

together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1)

> (1− α)2 0̇1 6 0 = 0

> α(1− α) 1̇1 = −100 = 0

6 α(1− α) 0̇0 6 0 6 100

6 α2 1̇0 = −100 6 100

(The two last cases are possible only if the state of cell i + 2 is 1.)
Thus, E[∆F (xt, i) + ∆F (xt, i + 1)] 6 0.

– mask 10̇
×
0
×
10

?
(and 10

×
0̇
×
10

?
together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) + ∆F (xt, i + 1)

α2 1̇1 = −64

1− α2 other 6 36

Since α > 0.9999, E[∆F (xt, i)+∆F (xt, i+1)] 6 −64α2 +36(1−α2) 6 −50.
– mask 10̇1

×
101

?
:

With probability At the step t + 1, cell i matches mask and ∆F (xt, i)

= α 10̇010 = −10

6 α(1− α) 10̇11001 = 17

> 1− α(2− α) 10̇1101 = 0

(The secund case is possible only if the state of cell i + 5 is 1.)
Since α > 0.9999, E[∆F (xt, i)] 6 −10α + 17α(1− α) 6 −2.

– mask 10̇1
×
1101

?
:



With probability At the step t + 1, cell i matches mask and ∆F (xt, i)

> (1− α)2 10̇11101 = 0

6 α(1− α) 10̇11100 = 1

> α(1− α) 10̇01101 = 0

6 α2 10̇011001 = −2(1− α)

If the state of cell i+6 is 0, then the second and fourth cases are impossible
so E[∆F (xt, i)] = 0. Otherwise, since α > 0.9999, E[∆F (xt, i)] = α(1−α)−
2α2(1− α) 6 0.
Thus, E[∆F (xt, i)] 6 0.

– mask 10̇10
×
0
×
1
×
1:

With probability At the step t + 1, cell i matches mask and ∆F (xt, i)

α3 10̇11101 = 0

α2(1− α) 10̇10101 = 0

α2(1− α) 10̇11111 = 1

α2(1− α) 10̇110011 = −8

(1− α)2(1 + 2α) autre 6 1

Since α > 0.9999, E[∆F (xt, i)] 6 −7α2(1−α)+(1−α)2(1+2α) 6 −5(1−α).
– mask 10̇1

×
10
×
0
×
1
×
1:

With probability At the step t + 1, cell i matches mask and ∆F (xt, i)

α4 10̇011101 = 0

α3(1− α) 10̇010101 = −27

α3(1− α) 10̇011111 = 9

α3(1− α) 10̇011001 6 8

α3(1− α) 10̇111101 = 9

(1− α)2(1 + 2α + 3α2) autre 6 9

Since α > 0.9999, then E[∆F (xt, i)] 6 −α3(1−α)+9(1−α)2(1+2α+3α2) 6
−0.8(1− α).

– mask 10̇
×
0
×
1
×
111(and 10

×
0̇
×
1
×
111, 10

×
0
×
1̇
×
111 together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1) and ∆F (xt, i + 2)

α3 11̇10111 = −100 = 0 6 100

α2(1− α) 10̇10111 = −1 = 0 6 100

α2(1− α) 11̇11111 = −100 = 0 = 0

α2(1− α) 11̇001111 = −100 = 100 = 0

(1− α)2(1 + 2α) other 6 0 6 100 6 100

Since α > 0.9999, then E[∆F (xt, i)+∆F (xt, i+1)+∆F (xt, i+2)] 6 −α2(1−
α) + 200(1− α)2(1 + 2α) 6 (1− α)(−α2 + 600(1− α)) 6 −0.3(1− α).

– mask 10̇
×
0
×
1
×
10
×
00

?
(and 10

×
0̇
×
1
×
10
×
00

?
, 10

×
0
×
1̇
×
10
×
00

?
together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1) and ∆F (xt, i + 2)

α3 11̇101 = −100 = 0 6 100

α2(1− α) 10̇101 = −1 = 0 6 100

α2(1− α) 11̇111 = −100 = 0 = 0

α2(1− α) 11̇001 = −100 6 100 = 0

(1− α)2(1 + 2α) other 6 0 6 100 6 100

As above, E[∆F (xt, i) + ∆F (xt, i + 1) + ∆F (xt, i + 2)] 6 −0.3(1− α).



– mask 10̇
×
0
×
1
×
101

?
(and 10

×
0̇
×
1
×
101

?
, 10

×
0
×
1̇
×
101

?
together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1) and ∆F (xt, i + 2)

α3 11̇1010 = −99 = 0 = 99

α2(1− α) 10̇1010 = 0 = 0 = 99

α2(1− α) 11̇111 = −99 = 0 = 0

α2(1− α) 11̇0010 = −99 = 64 = 0

(1− α)2(1 + 2α) other 6 1 6 100 6 100

Since α > 0.9999, then E[∆F (xt, i) + ∆F (xt, i + 1) + ∆F (xt, i + 2)] 6
−35α2(1−α)+201(1−α)2(1+2α) 6 (1−α)(−35α2+603(1−α)) 6 −15(1−α).

– mask 10̇
×
0
×
1
×
110

×
0
?
(and 10

×
0̇
×
1
×
110

×
0
?
, 10

×
0
×
1̇
×
110

×
0
?

together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1) and ∆F (xt, i + 2)

α3 11̇101 = −100 = 0 6 100

α2(1− α) 10̇101 = −1 = 0 6 100

α2(1− α) 11̇111 = −100 = 0 = 0

α2(1− α) 11̇001 = −100 6 100 = 0

(1− α)2(1 + 2α) other 6 0 6 100 6 100

Since α > 0.9999, then E[∆F (xt, i)+∆F (xt, i+1)+∆F (xt, i+2)] 6 −α2(1−
α) + 200(1− α)2(1 + 2α) 6 (1− α)(−α2 + 600(1− α)) 6 −0.3(1− α).

– mask 10̇
×
0
×
1
×
1101

×
1(and 10

×
0̇
×
1
×
1101

×
1, 10

×
0
×
1̇
×
1101

×
1 together):

With probability At the step t + 1, cell i matches mask ∆F (xt, i) ∆F (xt, i + 1) ∆F (xt, i + 2)

α4 11̇1011001 = −91 = 0 = 91

α3(1− α) 10̇1011001 = 8 = 0 = 91

α3(1− α) 11̇1111001 = −91 = 0 = 0

α3(1− α) 11̇0011001 = −91 6 99 = 0

α3(1− α) 11̇101101 = −91 = 0 = 74

(1− α)2(1 + 2α + 3α2) other 6 9 6 100 6 100

Since α > 0.9999, then E[∆F (xt, i)+∆F (xt, i+1)+∆F (xt, i+2)] 6 −α2(1−
α)+209(1−α)2(1+2α+3α2) 6 (1−α)(−α2 +1254(1−α)) 6 −0.8(1−α).

– mask 10̇
×
0
×
1
×
11010

?
(and 10

×
0̇
×
1
×
11010

?
, 10

×
0
×
1̇
×
11010

?
together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1) and ∆F (xt, i + 2)

α3 11̇101101 = −91 = 0 = 74

α2(1− α) 10̇101101 = 8 = 0 = 74

α2(1− α) 11̇111 = −91 = 0 = 0

α2(1− α) 11̇001101 = −91 = 99 = 0

(1− α)2(1 + 2α) other 6 9 6 100 6 100

Since α > 0.9999, then E[∆F (xt, i)+∆F (xt, i+1)+∆F (xt, i+2)] 6 −17α3−
α2(1− α) + 209(1− α)2(1 + 2α) 6 −16.

– mask 10̇
×
0
×
1
×
10
×
0
×
1
×
1(and 10

×
0̇
×
1
×
10
×
0
×
1
×
1, 10

×
0
×
1̇
×
10
×
0
×
1
×
1 together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) ∆F (xt, i + 1) ∆F (xt, i + 2)

α6 11̇1011101 = −99 + 2(1− α) = 0 = 99

α5(1− α) 10̇1011101 6 1 = 0 = 99

α5(1− α) 11̇1111101 6 −98 = 0 = 0

α5(1− α) 11̇0011101 6 −98 = 91 = 0

α5(1− α) 11̇1010101 6 −98 = 0 = 99

α5(1− α) 11̇1011111 6 −98 = 0 = 100

α5(1− α) 11̇1011001 6 −98 = 0 = 91

(1− α)2(1 + 2α + 3α2 + 4α3 + 5α4) other 6 2 6 100 6 100



Since α > 0.9999, then E[∆F (xt, i)+∆F (xt, i+1)+∆F (xt, i+2)] 6 +2α6(1−
α)− 9α5(1− α) + 202(1− α)2(1 + 2α + 3α2 + 4α3 + 5α4) 6 −5(1− α).

– mask 10̇
×
0
×
1
×
10
×
0
×
10

?
(and 10

×
0̇
×
1
×
10
×
0
×
10

?
, 10

×
0
×
1̇
×
10
×
0
×
10

?
together):

With probability At the step t + 1, cell i matches mask and ∆F (xt, i) and ∆F (xt, i + 1) and ∆F (xt, i + 2)

α3 11̇101 6 −98 = 0 6 100

α2(1− α) 10̇101 6 1 = 0 6 100

α2(1− α) 11̇111 6 −98 = 0 = 0

α2(1− α) 11̇001 6 −98 6 100 = 0

(1− α)2(1 + 2α) other 6 2 6 100 6 100

Since α > 0.9999, then E[∆F (xt, i)+∆F (xt, i+1)+∆F (xt, i+2)] 6 2α3 +
5α2(1− α) + 202(1− α)2(1 + 2α) 6 3.

Finally
∑n−1

i=0 E[∆F (xt, i)] 6 −99(|xt|1000) − 50(|xt|10010) + 9(|xt|10110010) +
(|xt|1010010) + 3(|xt|100110010) − 0.3(1 − α)(|xt|100111 + |xt|1001101 + |xt|10011000 +
|xt|100110011) 6 −0.3(1 − α)|xt|100. So, as long as xt is not a fixed point or a
configuration where all 0 are isolated, we have E[∆F (xt)] 6 −0.3(1−α)|xt|100 6
−0.3(1−α). And if xt is a configuration where all 0 are isolated then E[∆F (xt)] 6
0.

5.2 conclusion of the proof

Lemma 2 shows that F decrease on expectation for every configurations with at
least a pattern 100. But the variation of F is zero for configurations where all 0s
are isolated. Nevertheless if the configuration is not (01)n/2 any modification
done to these configurations leads to the creation of a pattern 1001. If the
configuration is (01)n/2 then the automaton has hit a fixed point, we neglige
this case in order to have an upper bound of the relaxation time. So if the
configuration reach the set of the configurations where all 0s are isolated which
are not (01)n/2, any change will get the configuration out of this set.

Now we consider the same automaton but we consider the sequence (yt)t>0

where yt = x2t instead of (xt)t>0 (We only consider one configuration over two).
Clearly the relaxation time in the later system is exactly twice as in the former
system. We compute the expected variation of F in this case. We conclude
that if yt is a non fixed-point configuration where all 0s are not isolated then
E[∆F (yt)] 6 −0.3(1−α). Otherwise if yt is a non fixed-point configuration where
all 0s are isolated, then with probability at least α at the time step t + 1 there
are a pattern 100 in x2t+1 and then E[∆F (yt)] 6 −0.3α(1− α) 6 −0.2(1− α).

Theorem 4. If α > 0.9999, any n-finite cyclic configuration under automaton
214 α-asynchronous dynamics converges a.s. to a fixed point. The relaxation
time is O

(
n

(1−α)

)
.

Proof. Using Lemma 1 and Lemma 2, any n-finite cyclic configuration under
automaton 214 α-asynchronous dynamics converges a.s. to a fixed point. The
relaxation time is O

(
n
α × 1

(1−α)

)
= O

(
n

(1−α)

)
.



6 conclusion

We have proven here that the relaxation time of automaton 214 under α-
asynchronous dynamics is O( n

1−α ) when α > 0.9999 while it diverges under
both synchronous and totally asynchronous dynamics. Thus this automaton has
a specific behavior under α-asynchronous dynamics. This result was obtained
by exhibiting the collision phenomenon and neglecting the transitions where at
most 2 cells does not update in the studied patterns. The bound we have found
is not tight, it can probably be improved. Also automaton 210 is conjectured to
have almost the same behavior. Slight modifications of the proof could probably
yield similar results for automaton 210. Automata 146 and 178 are the two
remaining automata that have only been studied experimentally in [1]. They
seem to exhibit a phase transition and as far as we know nothing has been done
theoretically to prove these results.

From a technical point of view, this study also shows that mathematical
analysis is possible. Shortening or automating the presented proof, and more
generally designing mathematical tools to predict the behaviour in such proba-
bilistic asynchronous dynamics, is an interesting issue.

Such prediction theorems and classifications would give precious information
to modellers using cellular automata and would stand as valuable tools in
addition to simulation
Note: the simulator used for the experiments is [10].
Acknowledgements: Thanks for Nicolas Schabanel and Éric Thierry for their
useful remarks that helped to improve the writing of the paper.
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