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Abstract. We analyze the dynamics of a two-dimensional cellular au-
tomaton, 2D Minority, for the Moore neighborhood (eight neighbors per
cell) under fully asynchronous dynamics (where only one random cell up-
dates at each time step). Even if 2D Minority seems a simple rule, from
the experience of Ising models and Hopfield nets, it is known that mod-
els with negative feedback are hard to study. This automaton actually
presents a rich variety of behaviors, even more complex than what was
observed and analyzed in a previous work on 2D Minority for the von
Neumann neighborhood (four neighbors per cell) [1], including particles
and a wider range of stable configurations. Nevertheless our work sug-
gests that predicting the behavior of this automaton although difficult is
possible, opening the way to analyze the class of totalistic automata.

1 Introduction

Cellular automata are attractive models for complex systems in various fields,
like physics, biology or social sciences. Their relevance is supported by many
observations of natural phenomena which closely match the dynamics of some
cellular automaton, as illustrated by Fig. 1. An example of challenging issue
in biology is to predict the expression of genes in a set of cells which share
the same gene regulatory network. Cellular automata can be used to model
such systems [2, 3]. For example consider the simple gene regulatory networks
where a gene exerts a feedback inhibition of its expression. The state of a cell is
whether it expresses this gene or not. Assuming that each cell starts expressing
the gene when less than half of its neighbors (including itself) express it, and
that otherwise it stops expressing it, leads to the Minority rule [4]. If cells are
assembled into a two-dimensional grid, it yields 2D Minority. Such a model is
of course an extreme simplification of any real phenomena but understanding
this ”simple” model is already an indispensable step towards the study of more
involved interaction networks. Surprisingly, it already exhibits an astonishingly
rich behavior which is investigated in this paper.
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1.a – The pattern growth of the shell of the
widespread species Conus textile is gov-
erned by a mathematical function present-
ing similarities with the Rule 30 CA above.

1.b – 2D minority induced by a set of
cells expressing (in black) or not (in
white) a gene which tends to inhibit its
expression in neighboring cells.

Fig. 1. Cellular automata as models in biology.

The 2D Minority automaton belongs to the class of threshold cellular au-
tomata which have been intensively studied under synchronous dynamics (at
each time step, all the cells update simultaneously) [5]. However models for
natural phenomena rather update asynchronously. Empirical studies [6–8]have
shown how the behavior can change drastically when introducing asynchronism.
However only few mathematical analyses are available and they mainly con-
cern one-dimensional stochastic cellular automata [9–12]. Providing analyses of
2D rules remains a real challenge. For instance the mean-field approach does
not succeed in approximating tightly such stochastic dynamics [13]. Fig. 2 illus-
trates for three 2D cellular automata the differences between the synchronous
dynamics and the fully asynchronous dynamics where only one random cell up-
dates at each time step. Some related stochastic models like Ising models or
Hopfield nets have been studied under asynchronous dynamics (our model of
asynchronism corresponds to the limit when temperature goes to 0 in the Ising
model). These models are acknowledged to be harder to analyze when it comes
to two-dimensional topologies [14] or negative feedbacks [15].

For all these reasons 2D Minority under fully asynchronous dynamics turns
out to be an interesting and challenging candidate for mathematical analyses.
This paper focuses on the Moore neighborhood: at each time step, the fired cell
updates to the minority state among its eight closest neighbors and itself. It

Life a random Totalistic Minority

Synchronous
dynamics

Fully
asynchronous

dynamics

Fig. 2. Typical configurations observed during the evolution of some 2D cellular au-
tomata (Moore neighborhood). Similar stripes emerge in asynchronous regime even if
their synchronous behavior differ drastically.
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carries on a work initiated in [1] where 2D Minority was analyzed for the von
Neumann neighborhood (four neighbors instead of eight). One might have hoped
for minors adjustments to deal with the Moore neighborhood, however the results
do not come out so easily. Experiments discussed in Section 3 show that new
patterns (wider variety of striped patterns) and new phenomena occur (particle-
like behaviors). Several key ideas presented in [1] (energy, borders and regions)
apply, but their use requires some innovations. We show that the initial stage
of the dynamics is characterized by a fast energy drop (Theorem 3). We exhibit
borders that separate striped regions competing with one another and we manage
to prove how final stable (horizontally or vertically) stripes configurations are
reached almost surely from typical configurations occuring at the end of the
process. Furthermore, we prove that this convergence occurs in polynomial time
(Theorem 5). In the proof, we show that as the regions crumble, inflate or retract,
the overall structure admits a recursive description which persists over time. The
proofs of the study of such dynamical systems, know as complex systems, involve
unavoidable tedious case studies and one of the important contribution of this
paper is to set up a compact, possibly elegant, and thus safe framework to deal
with these enumerations of cases. Note that in the course of the paper, we present
an interesting characterization of the stable configurations for 2D Minority for
the Moore neighborhood (Theorem 2). As far as we know, it had only been
solved for the von Neumann neighborhood [5].

2 Definitions

We consider in this paper the 2D 2-states cellular automaton Minority under
fully asynchronous dynamics over finite configurations with periodic boundary
conditions. We are given two positive integers n and m, let N = nm. We denote
by T = Zn × Zm the set of cells and Q = {0, 1} the set of states (0 stands for
white and 1 for black in the figures). We consider the Moore neighborhood : two
cells (i, j) and (k, l) are neighbors if max(|i − k|n, |j − l|m) 6 1 (where |i − j|p
denotes the distance in Zp). A n×m-configuration c is a function c : T→ Q; cij
is the state of the cell (i, j) in configuration c.

We consider the fully asynchronous dynamics of 2D Minority. Time is dis-
crete and let ct denote the configuration at time t; c0 is the initial configu-
ration. The configuration at time t + 1 is a random variable defined by the
following process: a cell (i, j) is selected uniformly at random in T and its state
is updated to the minority state in its neighborhood (we say that cell (i, j)
fires at time t), all the other cells remain in their current state: ct+1

ij = 1 if
(ctij+cti−1,j+cti+1,j+cti,j−1 +cti,j+1 +cti−1,j+1 +cti−1,j−1 +cti+1,j−1 +cti+1,j+1) 6 4,
and ct+1

ij = 0 otherwise; and ct+1
kl = ctkl for all (k, l) 6= (i, j). A cell is said active

if its state would change if fired.
A configuration c is stable if it remains unchanged under the dynamics, i.e., if

all its cells are inactive. We say that the random sequence (ct) converges almost
surely from an initial configuration c0 = c if the random variable T = min{t :
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initial config. step 1N step 5N step 10N step 20N step 30N step 50N

step 70N step 90N step 100N step 120N step 130N step 140N step 153N

Fig. 3. A typical execution of stochastic 2D Moore minority with N = 50× 50 cells.

ct is stable} is finite with probability 1. We say that the convergence occurs in
polynomial time on expectation if E[T ] 6 p(N) for some polynomial p.

3 Experiments

Typical behavior. Like other 2D automata (such as Game of Life [6])the asyn-
chronous behavior of 2D Minority differs radically from its synchronous dynam-
ics. In particular, [5] proved that the synchronous dynamics eventually leads to
stable configurations or cycles of two opposite configurations. The latter case is
the typical behavior in synchronous simulations where one can observe big flash-
ing islands (Fig. 2). On the contrary, as can be observed in Fig. 3, the states
of most of the cells are very stable over time in fully asynchronous regime and
present typically very rapidly striped patterns (horizontal or vertical) that tend
to extend and merge with each other until one gets over the others and covers
the whole configuration (when at least one of the dimensions n or m is even). A
goal of this paper is to explore how such stripes arise and end up covering the
whole configuration. Note also that such stripes arise as well in many other asyn-
chronous automata such as the totalistic cellular automata (see Section 1). Very
rarely a random initial configuration may converge to more exotic stable config-
urations. Fig. 6 gives some examples of more or less exotic stable configurations
under 2D minority dynamics.

Borders and Particles. Part of the richness of 2D Minority under fully asyn-
chronous behavior is due to some specific configurations where ”particles” can
be observed. Several patterns can be identified as particles although for now we
do not have a formal definition. We say that there is a border between two di-
agonally neighboring cells if they are in the same state (more details in the next
section). Active cells are always located near the borders. When the borders draw

a pattern (where red spots indicate active cells), then, depending of which
of the two active cell fires the pattern will move in different directions: forward

or backward . Such patterns which ”move” along borders can be called
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4.a – A sequence of updates in a
configuration starting with 4 parti-
cles where two of them move along
rails and ultimately vanish after col-
liding with each other.

4.b – A sequence of updates where the rails can-
not sustain the pertubations due to the move-
ments of the particles: at some point, rails get to
close with each other, new active cells appear,
and part of the rail network collapses.

Fig. 4. Some examples of the complex behavior of particles in a 20 × 20 configuration.

particles. In some configurations, the set of all the borders form a network of
”rails” carrying several particules. These particules follow random walks along
the rails and vanish when they collide. Note that the dynamics is a lot more
intricate than 2D random walks because the rails are modified by the passage of
the particules and if two rails become too close, a whole part of the rail network
collapses. Fig. 4 illustrates this kind of phenomena. Configurations with particles
and rails are rarely reached from a random initial configuration. Nevertheless, we
have to consider them when we study the convergence and these phenomena are
extremely difficult to analyze mathematically. Such a system of particles is not
observed in asynchronous 2D minority with von Neumann neighborhood [1] or
in related models like the ferromagnetic Ising model or Hopfield networks with
positive feedback.

4 Energy, Borders, Diamonds and Stable Configurations

4.1 Borders, Diamonds and Stripes

The following definitions allow to highlight the underlying structure of a config-
uration with respect to the dynamics. These tools turn out to be a key step to
prove the convergence.

If n and m are even, a set of cells R is said to be tiled with even horizontal
stripes (resp. odd horizontal, even and odd vertical stripes) if cij = i mod 2
(resp. i+ 1, j, j + 1 mod 2), for all cell (i, j) ∈ R. Note that cells whose whole
neighborhood is striped are inactive. We say that there is a border between two
diagonally neighboring cells (i, j) and (i + ε, j + η), with ε, η ∈ {−1, 1}, if they
are in the same state, i.e., if cij = ci+ε,j+η. If n and m are even, we say that a
cell (i, j) is even (resp. odd) if i+ j is even (resp. odd). We say that the border
between two cells is blue if the cells are even, and green otherwise; furthermore,
we say that there is a diamond over cell (i, j) if its state coincides with even
horizontal stripes, i.e., if cij = i mod 2; the diamond is blue if the cell is even
and green otherwise.

Proposition 1 (Borders are boundaries). The borders are the exact bound-
ary of regions tiled with stripes patterns (odd/even horizontal/vertical). More-
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over, when n and m are even, the blue (resp. green) borders are the exact bound-
ary of the regions covered by the blue (resp. green) diamonds.

Since cells whose neighborhood is striped are inactive, the only active cells
in a configuration may be found along the borders.

4.2 Energy

As in Ising model [14] or Hopfield networks [15], we define a natural global
parameter that one can consider to be the energy of the system since it counts
the number of interactions between neighboring cells in the same state. This
parameter will provide key insights on the evolution of the system.

The potential vij of cell (i, j) is the number of its neighboring cells in the
same state as itself minus 2.4 By definition, if vij 6 1, then the cell is in the
minority state in its own neighborhood and is thus inactive (its state will not
change if fired); whereas, if vij > 2 then the cell is active and its state will change
if fired. Note that a configuration c is stable iff for all cell (i, j) ∈ T, vij 6 1.
Let say that a subset of cells R is fat if for each cell (i, j) ∈ R, there exists a
square Q = {(i, j), (i + ε, j), (i + ε, j + η), (i, j + η)}, for some ε, η ∈ {1,−1},
such that Q ⊂ R. The energy ER of set R in a given configuration is defined as:
ER =

∑
(i,j)∈R vij . We denote by E the energy of the whole configuration c.

The next proposition shows that the energy is non-negative for almost every
subset of cells of a configuration. This means that there cannot be too many
cells with negative potential. This implies that the decrease of energy over time
(Proposition 3 and Theorem 3) is not due to the increase of the number of cells
with negative potential, but to the decrease of the potentials of the cells with
positive potential, which explains intuitively why the striped patterns which have
minimum energy (Proposition 4) arise naturally very rapidly.

Proposition 2 (Energy is non-negative). For any fat subset of cells R of
size q: 0 6 ER 6 6q.

The following easy fact will be very handy in order to prove the convergence
of the dynamics.

Fact 1. When an active cell (i, j) is fired, its new potential is vij := 4− vij and
the total energy varies by 8− 2vij. Note that if vij = 2, both remain unchanged.

Proposition 3 (Energy is non-increasing). Under fully asynchronous dy-
namics, the energy is a non-increasing function of time and decreases each time
a cell with potential > 3 fires.

Proposition 4 (Minimum energy configurations). The energy of a config-
uration c is 0 iff c is a striped configuration.

4 The offset −2 is convenient since its ensures that the minimum energy of a configu-
ration is 0 (see Proposition 2 below).
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Fig. 5. Examples of stable configurations illustrating most of the possibilities.

4.3 Stable Configurations

As opposed to the von Neumann fully asynchronous dynamics in [1], stable
configurations under the Moore neighborhood exhibit rather complex structures
as shown on Fig. 6. Although there is a great variety of stable configurations,
a general structure can be extracted and they can be characterized thanks to
the borders. We first describe the stable configurations when n and m are even
and deduce from there the structure of the stable configurations in the general
case by doubling the odd dimension. Fig. 5 gives examples of each type of stable
configurations.

Theorem 2 (Stable configurations). When at least one of n and m is even,
there are exactly three types of stable configurations:

– Type I: the borders are parallel straight (diagonal) lines such that: two lines
of the same color are at (`1-)distance > 2; if two lines blue and green are at
distance 1, there is no other line at distance 6 4 from each of them; the num-
ber of lines of each color along each row (resp., column) of the configuration
has the same parity as m (resp., n).

– Type II: all the blue and green borders are all pairwise interlaced either hor-
izontally according to the pattern , or vertically according to ; the pairs
of interlaced borders are at distance > 2 from each other; and the number
of interlaced pairs has the parity of n if interlaced horizontally, and of m
otherwise.

– Type III: the borders define a bicolor (horizontal/vertical stripes) underlying
toric grid s.t.:

• the segments of borders between two intersections are straight lines at
distance at least 2 from each other;

• two borders of the same color cannot intersect;
• the number of borders of each color crossed by every row (resp. column)

in the configuration has the same parity as m (resp. n);
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E = 0 Low E Higher E Med E High E The four highest energy config. (E = N)

Fig. 6. Examples of stable configurations for 2D Minority at various levels of energy.

• the borders of opposite colors intersect at the corners of the cells only,
and according to the following (possibly overlapping) patterns:
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Furthermore, no stable configuration can have both crossings of types C and
D and if a region has a crossing of type C (resp., D), all the crossings at
the same vertical (resp., horizontal) level in the underlying grid are of type
C (resp., D); moreover, the partity of the number of such horizontal (resp.,
vertical) levels of C-crossings (resp., D-) equals the parity of m (resp. n).

And any n×m-configuration of type I, II or III is a stable configuration.

Corollary 1. If n and m are odd, no stable configuration exists, and the dy-
namics never converges. If only one of n and m is odd, stable configurations of
type I, II, and III exist with the parity restrictions mentioned in Theorem 2.

Proposition 5 (Stable configurations energy). The energy of a stable con-
figuration c satisfies: 0 6 E 6 N . The only configurations with minimum energy
(zero) are tiled with a striped 1 × 2-pattern. And the only stable configuration
with maximum energy N are of four types: either tiled with the 2× 4-pattern ,

or the 8× 8-patterns ,
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D5
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D8

D5

D8

D8 D8
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D5

D10
D5

D4

D4

D4D10
D4 D5 , or (see Fig. 6).

5 Analysis of the convergence

In this section, we give our results on the existence and speed of the convergence
of the dynamics towards a stable configuration from an arbitrary initial configu-
ration. As opposed to the von Neuman dynamics where we were able to analyse
the whole convergence, because of the existence of particles following sophisti-
cated guided random walks (see Section 3), we are only able to describe the first
steps and the last steps of the convergence. These results rely on the study of the
energy function which is combined with an other parameter to obtain a variant.
This variant allows to reduce the study of the randomly evolving 2D shape to
an one dimensional random walk. The section ends with challenging conjectures
on the overall convergence of the process.
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5.1 Initial energy drop

According to experiments, the energy of a configuration drops very fast during
the first steps until it converges, most of the time to a striped configuration of
minimal energy. The following theorem provides a bound on the speed of this
initial energy drop.

Theorem 3. The energy of any configuration of size N is at most N + 2N/3
after O(N2) fully asynchronous minority updates on expectation.

5.2 The last steps of convergence

From now on, we assume that n and m are even. As mentioned above, in most
of the experiments striped regions arise quickly, then they extend, compete with
each other, merge until only one covers the whole configuration. In this sec-
tion, we provide an analysis of the very last steps of the convergence to this
stable configuration: the case where there remains only one single horizontally
striped region within a vertically striped background, which we will call a stan-
dard configuration. We then show that the background ends up covering the
whole configuration in polynomial time on expectation as expected according to
the experiments (Fig. 3 when t > 100N). This involves studying the randomly
evolving shape defined by the horizontally striped regions.

Note that every configuration is completely determined by its set of dia-
monds. When starting from a standard configuration, we show that the configu-
ration exhibits a recursive structure that is conserved over time. We then show
by studying a combination of the energy with the area of the random shape, that
the random shape of the set of diamonds tends to vanish. Interestingly enough,
we show that the horizontally striped region can flip the parity of its stripes but
cannot extend beyond its initial surrounding rectangle. Let us now start with
some definitions.

A blue rectangle (resp. green rectangle) is a rectangle such that its sides are
parallel to the diagonals and its corners are located at the centers of odd (resp.
even) cells. A blue or green rectangle is enclosing a set of diamonds D if all
the diamonds are contained in the rectangle, and it is surrounding D if it is
the smallest enclosing rectangle of that color for D. We say that a configuration
is standard if it consists in a finite set of diamonds of the same color forming
a rectangle (i.e., a set of diamonds of the same color whose borders match its
surrounding rectangle). Two diamonds are neighbors if they have a side in com-
mon (and are thus of the same color). A set D of diamonds is: connected if D
is connected for the neighborhood relationship; convex if for all ε ∈ {1,−1} and
for any pair of diamonds centered on cells (i, j) and (i + k, j + εk) in D, the
diamonds centered on cells (i+ `, j + ε`) for 0 6 ` 6 k belong to D; an island if
it is connected and convex.

Definition 1 (Valid configurations). A valid configuration (or valid dia-
monds set) is defined recursively by a tree structure of interlocked blue or green
rectangles where each subtree describes the diamond set enclosed within the cor-
responding rectangle. Precisely:
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R1
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R1 R2
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Rq-1 Rq...

Simple joins Shifted simple joins line joins when R2 is one diamond wide

A series of heterogeneous joins when R1,...,Rq have alternating colors:

For each heterogeneous join, at least one of the four borders is heterogeneous-ready

If both rectangles R1 and R2 have the same color:

R1

R2

R1
R2

R1

R2

R1

R2

R1

R2 x

R1

R2x

R1

R2

x

R1

R2x

h-ready border

valid heterogeneous 
     joins series

R'

R1

simple join

line join

no diamonds here

R2 R3

Fig. 7. To the left: valid combinations of valid configurations (the underlying cells
of the automaton are shown at the junction of the rectangles). To the right: a valid
configuration and its diamond set with a valid decomposition

– A set of diamonds consisting of an island is a valid configuration.
– The composition of two valid diamonds sets D1 and D2 enclosed by two

rectangles R1 and R2 of the same color laying next to each other according
to the patterns given in Fig. 7, is valid.

– The juxtaposition of q valid diamonds sets D1, . . . , Dq enclosed in q rectan-
gles R1, . . . , Rq of alternating colors as shown in Fig. 7, is valid if at each
junction, either both a blue and a green diamonds are located at the corre-
sponding corners of the surrounding blue and green rectangles, or at least
one of the four borders of these rectangles is h-ready; we say that the north-
east border of an enclosing rectangle R of a valid configuration is h-ready
if, within the smallest rectangle R′ corresponding to the node enclosing all
the diamonds laying along this border in the construction tree of R, the dia-
monds are located as follows: no diamond may lay in R′ to the south-west of
the diamonds along the north-east border of R nor one row below (see Fig. 7)
(the definition extends naturally to NW, SW, and SE borders by rotation).

A configuration is valid if its corresponding set of diamonds is valid. Each
valid configuration is recursively described by a construction tree: a binary tree
where each leaf is an island and each internal node stands for a join operation
whose two edges pointing downwards are labeled by the two, blue or green, joint
rectangles enclosing the two valid diamond sets described by the left and right
subtrees.

Fig. 7 gives an example of a valid configuration starting with a blue island
composed with several line joins, followed by a simple join with another blue
island, and ending with a series of two heterogenous joins with the two islands
to its right. A valid configuration can be represented by several construction
trees. Rearranging construction trees according to certain rules is one of the
keys to the following results (like Theorem 4).
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The set of valid configurations is closed under the minority dynamics. In the
fully asynchronous dynamics, only one cell fires at each time step, thus only
one diamond is added or removed at each time step. Since there are horizontal
stripes inside an island, the cells which are not at the borders are not active. All
the deletions and additions of diamonds occur at the borders. A careful analysis
of the actives cells in valid configuration yields the following theorem.

Theorem 4 (Closure and Reachability). The set of valid configurations is
the set of all reachable configurations from standard configurations.

The energy function is not sufficiently precise to follow the evolution of the
valid configurations since it may remain constant for long period of time whereas
the configuration evolves towards a stable configuration. But combining it with
the area A of the configuration, defined as the number of its diamonds, yields a
variant from which we will deduce a polynomial bound on the expected conver-
gence time.

Proposition 6. The energy of a valid configuration is equal to twice the number
of its blue and green borders minus twice the number of intersections of blue and
green borders. Thus, E 6 8A.

The variant. Let Φ = A + E/4, for any given configuration. Let us denote by
E[∆Φ] the expected variation of Φ for this configuration after one fully asyn-
chronous minority update.

Proposition 7. For any valid configuration constructed from k islands with `

joins: E[∆Φ] 6
3`− 3k
N

.

Proof. (Sketch) The proof proceeds by induction on the construction tree of the
valid configuration. By following clockwise the borders of the island and counting
the active cells, we can show that the expected variation of Φ for a configuration
with only one island is at most− 3

N . If the configuration is obtained by joining two
valid configurations then whatever the join is, it can be checked that an active cell
in one of the two configurations remains active with the same characterization
in the joined configuration. A cell which is inactive in both configurations is
inactive in the joined configuration, except around the join where at most three
cells may have their activity changed. Then the expected variation of Φ is the
sum of the expected variation of the two configurations plus the effect of these
three cells which is in every case at most + 3

N . ut

Theorem 5. Every valid configuration of area A converges to the background
configuration in finite time with probability 1. The expected convergence time is
O(AN), which is thus O(N2).

Proof. The construction of a valid configuration can be expressed as a binary
tree where the leaves are the islands and the internal nodes are the joins (an
heterogenous series is encoded as a series of two-by-two joins). Thus, ` = k−1 if
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the tree is not empty, and by Proposition 6 and 7, as long as the configuration
is not stable, E[∆Φ] 6 − 3

N . For the initial configuration Φ 6 3A and the stable
configuration with vertical stripes is the only configuration where Φ = 0. Thus
it converges in finite time with probability 1 to this stable configuration and the
expected convergence time is O(AN) (see e.g. Lemma 5 in [9]). ut

Conclusion. The behavior of 2D Minority with the Moore neighborhood under
fully asynchronous dynamics is surprisingly rich and difficult to analyze. The ap-
proach outlined in [1] for the von Neumann neighborhood is useful. The analysis
of the energy and of the competing regions requires however a very accurate com-
prehension of the combinatorics of the automaton, which turned out to be more
complex for the Moore neighborhood. A key to complete the analysis seems to
find the most appropriate definitions for particles and rails and explain precisely
how they evolve.
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12. Fukś, H.: Probabilistic cellular automata with conserved quantities. Nonlinearity
17(1) (2004) 159–173

13. Balister, P., Bollobás, B., Kozma, R.: Large deviations for mean fields models of
probabilistic cellular automata. Random Struct. & Alg. 29 (2006) 399–415

14. McCoy, B., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University
Press (1974)

15. Rojas, R.: Neural Networks: A Systematic Introduction. Springer (1996) Chap. 13
- The Hopfield Model.


