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Abstract. Cellular automata are often used to model systems in
physics, social sciences, biology that are inherently asynchronous. Over
the past 20 years, studies have demonstrated that the behavior of cellular
automata drastically changed under asynchronous updates. Still, the few
mathematical analyses of asynchronism focus on one-dimensional proba-
bilistic cellular automata, either on single examples or on specific classes.
As for other classic dynamical systems in physics, extending known meth-
ods from one- to two-dimensional systems is a long lasting challenging
problem.

In this paper, we address the problem of analysing an apparently sim-
ple 2D asynchronous cellular automaton: 2D Minority where each cell,
when fired, updates to the minority state of its neighborhood. Our ex-
periments reveal that in spite of its simplicity, the minority rule ex-
hibits a quite complex response to asynchronism. By focusing on the
fully asynchronous regime, we are however able to describe completely
the asymptotic behavior of this dynamics as long as the initial configu-
ration satisfies some natural constraints. Besides these technical results,
we have strong reasons to believe that our techniques relying on defining
an energy function from the transition table of the automaton may be
extended to the wider class of threshold automata.
Due to space constraint, we refer the reader to [16] for the missing proofs.

1 Introduction

In the literature, cellular automata have been both studied as a model of compu-
tation presenting massive parallelism, and used to model phenomena in physics,
social sciences, biology... Cellular automata have been mainly studied under syn-
chronous dynamics (at each time step, all the cells update simultaneously). But
real systems rarely fulfill this assumption and the cell updates rather occur in
an asynchronous mode often described by stochastic processes. Over the past 20
years, many empirical studies [2,4,5,13,18] have been carried out showing that
the behavior of a cellular automaton may widely vary when introducing asyn-
chronism, thus strengthening the need for theoretical framework to understand
the influence of asynchronism. Still, the few mathematical analyses of the ef-
fects of asynchronism focus on one-dimensional probabilistic cellular automata,
either on single examples like [8,9,15] or on specific classes like [6,7]. As for other



classic dynamical systems in physics, such as spin systems or lattice gas, ex-
tending known methods from one- to two-dimensional systems is a long lasting
challenging problem. For example, understanding how a configuration all-up of
spins within a down-oriented external field evolves to the stable configuration
all-down has only recently been solved mathematically and only for the limit
when the temperature goes to 0, i.e., when only one transition can occur at time
(see [3]). Similarly, the resolution of the study of one particular 2D automaton
under a given asynchronism regime is already a challenge.
Our contribution. In this paper, we address the problem of understand-
ing the asynchronous behavior of an apparently simple 2D stochastic cellular
automaton: 2D Minority where each cell, when fired, updates to the minority
state of its neighborhood. We show experimentally in Section 2 that in spite
of its simplicity the minority rule exhibits a quite complex response to asyn-
chronism. We are however able to show in Section 3 that this dynamics almost
surely converges to a stable configuration (listed in Proposition 3) and that if
the initial configuration satisfies some natural constraints, this convergence oc-
curs in polynomial time (and thus is observable) when only one random cell
is updated at a time. Our main result (Theorems 1 and 2) rely on extending
the techniques based on one-dimensional random walks developed in [6,7] to the
study of the two-dimensional random walks followed by the boundaries of the
main components of the configurations under asynchronous updates. We have
strong reasons to believe that our techniques relying on defining an energy func-
tion from the transition table of the automaton may be extended to the wider
class of threshold automata.

Our results are of particular interest for modeling regulation network in bi-
ology. Indeed, 2D Minority cellular automaton represents an extreme simpli-
fication of a biological model where the biological cells are organized as a 2D
grid and where the regulation network involves only two genes (the two states)
which tend to inhibit each other (see [1]). The goal is thus to understand how
the concentrations of each gene evolve over time within the biological cells, and
in particular, which gene ends up dominating the other in each cell, i.e., in which
state ends up each cell. Understanding this simple rule is thus a key step in the
understanding of more complex biological systems.

2 Experimental results

This section is voluntarily informal because it presents experimental observations
whose formalizations are already challenging open questions. The next section
will present in a proper theoretical framework our progresses in the understand-
ing of these phenomena. The configurations studied here consist in a set of cells
organized as a n × m torus (n and m are even) in which each cell can take
two possible states: 0 (white) or 1 (black). The asynchronous behavior of 2D
minority automaton turns out to be surprisingly complex for both of the studied
neighborhoods:
– von Neumann (N-neighborhood for short), where each selected cell updates

to the minority state within itself and its neighbors N, S, E, and W; and
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Random noise erodes
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A stable pattern emerges (checkerboards and
stripes for N- and M-neighborhoods respectively)
and rapidly covers the whole configuration when
both dimensions are even.

Fig. 1. 2D Minority under different α-asynchronous dynamics with N50 = 50 × 50
cells. The last column gives, for α ∈ [0, 1], the empirical probability that an initial
random configuration converges to a stable configuration before time step Ts ·N50 where
Ts = 1000 and Ts = 2000 for von Neumann and Moore neighborhood respectively.

– von Neumann (N-neighborhood for short), where each selected cell updates
to the minority state within itself and its neighbors N, S, E, and W; and

– Moore (M-neighborhood for short), where each selected cell updates to the
minority state among itself and its 8 closest neighbors N, S, E, W, NE, NW,
SE, and SW.

In this section, we present a report on extensive experiments conducted on 2D
Minority for both N- and M-neighborhood.

In this section, we consider the α-asynchronous 2D Minority dynamics in
which at each time step, each cell updates to the minority state in its own
neighborhood independently with probability α. We denote by α = 0 the fully
asynchronous 2D Minority dynamics in which at each time step, a daemon se-
lects uniformly at random one cell and updates it to the minority state in its
neighborhood.
The synchronous regime (α = 1) of 2D Minorityhas been thoroughly stud-
ied in [10] where it is proved that it converges to cycles of length 1 or 2. Ex-
perimentally, from a random configuration, the synchronous dynamics in both
neighborhoods converges to sets of large flashing white or black regions.
As soon as a little bit of asynchronism is introduced, the behavior changes
drastically for both neighborhoods (see Fig. 1 and open our website [12] for
animated sequences). Due to the asynchronism at each step, some random cells
do not update and this creates a noise that progressively erodes the flashing
homogenous large regions that were stable in the synchronous regime. After few
steps, the configuration seems to converge rapidly to a homogeneous flashing
background perturbed by random noise.
Experiments provide evidences that there exists a threshold αcαcαc,
αc ≈ .83 and αc ≈ .57 for the N- and M-neighborhoods respectively, such that
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– Moore (M-neighborhood for short), where each selected cell updates to the
minority state among itself and its 8 closest neighbors N, S, E, W, NE, NW,
SE, and SW.

In this section, we present a report on extensive experiments conducted on 2D
Minority for both N- and M-neighborhood.

In this section, we consider the α-asynchronous 2D Minority dynamics in
which at each time step, each cell updates to the minority state in its own
neighborhood independently with probability α. We denote by α = 0 the fully
asynchronous 2D Minority dynamics in which at each time step, a daemon se-
lects uniformly at random one cell and updates it to the minority state in its
neighborhood.
The synchronous regime (α = 1) of 2D Minority has been thoroughly stud-
ied in [10] where it is proved that it converges to cycles of length 1 or 2. Ex-
perimentally, from a random configuration, the synchronous dynamics in both
neighborhoods converges to sets of large flashing white or black regions.
As soon as a little bit of asynchronism is introduced, the behavior changes
drastically for both neighborhoods (see Fig. 1 and open our website [12] for
animated sequences). Due to the asynchronism at each step, some random cells
do not update and this creates a noise that progressively erodes the flashing
homogenous large regions that were stable in the synchronous regime. After few
steps, the configuration seems to converge rapidly to a homogeneous flashing
background perturbed by random noise.
Experiments provide evidences that there exists a threshold αcαcαc,
αc ≈ .83 and αc ≈ .57 for the N- and M-neighborhoods respectively, such that
if α 6 αc, then stable patterns arise (checkerboards and stripes for N- and M-
neighborhood respectively). As it may be observed in [12], above the threshold,
when α > αc, these patterns are unstable, but below and possibly at αc, these
patterns are sufficiently stable to extend and ultimately cover the whole config-
uration.
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Convergence in asynchronous regimes. The last column of Fig. 1 shows
that experimentally, when α 6 αc, the asynchronous dynamics appears to con-
verge at least with constant probability, rapidly to very particular stable config-
urations tiled by simple patterns known to be stable for the dynamics. Above the
threshold, when αc < α < 1, the asynchronous dynamics appears experimentally
to be stuck into randomly evolving configurations in which no structure seems
to emerge.

We will show in Theorem 1 that if at least one of the dimensions is even,
the dynamics will almost surely reach a stable configuration, for all 0 6 α < 1,
but after at most an exponential number of steps. We conjecture that below
the threshold αc this convergence occurs in polynomial time on expectation
if both dimensions are even (the threshold Ts = 2000 is probably too low for
the M-neighborhood in Fig.1). We will prove this result in Theorem 2 for the
fully asynchronous regime under the N-neighborhood under certain natural
constraint on the initial configuration. Similar results to the ones to be presented
below have been obtained in [17] for the M-neighborhood by extending of the
techniques presented here.

3 Analysis of fully asynchronous 2D Minority

We consider now the fully asynchronous dynamics of 2D Minority with von
Neumann neighborhood. Let n and m be two positive integers and T = Zn×Zm

the n × m-torus. A n × m-configuration c is a function c : T → {0, 1} that
assigns to each cell (i, j) ∈ T its state cij ∈ {0, 1} (0 is white and 1 is black in
the figures). We consider here the von Neumann neighborhood : the neighbors of
each cell (i, j) are the four cells (i ± 1, j) and (i, j ± 1) (indices are computed
modulo n and m, we thus consider periodic boundary conditions). We denote
by N = nm, the total number of cells.

Definition 1 (Stochastic 2D Minority). We consider the following dynam-
ics δ that associates to each configuration c a random configuration c′ ob-
tained as follows: a cell (i, j) ∈ T is selected uniformly at random and its
state is updated to the minority state in its neighborhood (we say that cell
(i, j) is fired), all the other cells remain in their current state: c′ij = 1 if
cij + ci−1,j + ci+1,j + ci,j−1 + ci,j+1 6 2, and c′ij = 0 otherwise; and c′kl = ckl

for all (k, l) 6= (i, j). We say that a cell is active if its neighborhood is such that
its state changes when the cell is fired.

Definition 2 (Convergence). We denote by ct the random variable for the
configuration obtained from a configuration c after t steps of the dynamics:
ct = δt(c); c0 = c is the initial configuration.

We say that the dynamics δ converges almost surely from an initial configu-
ration c0 to a configuration c̄ if the random variable T = min{t : ct = c̄} is finite
with probability 1. We say that the convergence occurs in polynomial (resp., lin-
ear, exponential) time on expectation if E[T ] 6 p(N) for some polynomial (resp.,
linear, exponential) function p.
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Fig. 2. Neighborhood’s names and transition tables of Minority δ and its counterpart
Outer-Totalistic 976 δ̂ (see section 3.2): only active cells switch their states when fired.

As seen in Section 2, any configuration tend to converge under this dynamics
towards a stable configuration, i.e., towards a configuration where all cells are in
the minority state of their neighborhood, i.e., inactive.
Checkerboard patterns. We say that a subset of cells R ⊆ T is connected if
R is connected for the neighborhood relationship. We say that R is checkerboard-
tiled if all adjacent cells in R are in opposite states. A horizontal (resp., vertical)
band of width w is a set of cells R = {(i, j) : k 6 i < k + w} for some k (resp.,
R = {(i, j) : k 6 j < k + w}).

3.1 Energy of a configuration

The following natural parameters measure the stability of a configuration, i.e.,
how far the cells of the configuration are from the minority state in their neigh-
borhood. Following the seminal work of Tarjan in amortized analysis [19], we
define a local potential that measures the amount of local unstability in the con-
figuration. We proceed by analogy with the spin systems in statistical physics
(Ising Model [3]): we assign to each cell a potential equal to the benefit of switch-
ing its state; this potential is naturally defined as the number of its adjacent cells
to which it is opposed (i.e., here, the number of cells which are in the same state
as itself); summing the potentials over all the cells defines the total energy of the
configuration at that time. As we consider arbitrary initial configuration, the sys-
tem evolves out-of-equilibrium until it (possibly) reaches a stable configuration,
thus its energy will vary over time; in particular, as will be seen in Proposition 1,
its energy will strictly decrease each time an irreversible transition is performed
(i.e., each time a cell of potential > 3 is fired). It turns out that this energy
function plays a central role in defining, in Section 3.4, the variant that will be
used to prove the convergence of the system. We will see in particular that as
observed experimentally in Section 2, the system tends to reach configurations
of minimal energy as one would expect in a real physical system.

Definition 3 (Energy). The potential vij of cell (i, j) is the number of its four
adjacent cells that are in the same state as itself. The energy of a configuration
c is defined as the sum of the potentials of the cells: E(c) =

∑
i,j vij.

Definition 4 (Borders and Homogeneous regions). We say that there is a
border between two neighboring cells if they are in the same state. An alternating
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path is a sequence of neighboring cells that does not go through a border, i.e., of
alternating states. This defines an equivalence relationship « being connected by
an alternating path », the equivalence classes of this relationship are called the
homogenous regions of the configuration.

By definition, each homogeneous region is connected and tiled by one of the
two checkerboard patterns, either or . The boundary of each homogeneous
region is exactly the set of borders touching its cells. Note that the potential of
a cell is the number of borders among its sides. The energy of a configuration is
thus twice the number of borders and a cell is active if and only if at least two of
its sides are borders. It follows that: if both dimensions n and m have the same
parity, (∀c) E(c) ∈ 4N; and (∀c) E(c) ∈ 2 + 4N otherwise.

There are two configurations of maximum energy 4N : all-black and all-white.
If n and m are even, there are two configurations of energy zero: the two checker-
boards. If n is even and m is odd, the minimum energy of a configuration is 2n
and such a configuration consists in a checkerboard pattern wrapped around the
odd dimension creating a vertical band of width 2 tiled with pattern .
Energy of stable configurations. A cell is inactive if and only if its po-
tential is 6 1. It follows that the energy of any stable configuration belongs to
{0, 2, . . . , N}. Stable configurations are thus as expected of lower energy. If n
and m are even and at least one of them is a multiple of 4, there are stable
configurations of maximum energy N , tiled by the “fat”-checkerboard or .

Under the fully asynchronous dynamics δ, the overall variation of the energy
of the configuration when the state of a cell of potential v is flipped is 8−4v 6 0,
and since active cells have potential > 2:

Proposition 1 (Energy is non-increasing). From any initial configuration c,
the random variables E(ct) form a non-increasing sequence and E(ct) decreases
by at least 4 each time a cell of potential > 3 is fired.

Initial energy drop. Furthermore, after a polynomial number of steps and
from any arbitrary initial configuration, the energy falls rapidly below 5N/3,
which is observed experimentally through the rapid emergence of checkerboard
patterns in the very first steps of the evolution. Observing that for any configu-
ration of energy at least 5N/3, there exists a sequence of at most two updates
that decreases strictly the energy, one can show that:

Proposition 2 (Initial energy drop, proof omitted). The random variable
T = min{t : E(ct) < 5N/3} is almost surely finite and E[T ] = O(N2).

Every inactive cell touches at most one border. Thus, the boundaries of ho-
mogeneous regions in a stable configuration form straight lines at least 2 cells
apart from each other. Thus,

Proposition 3 (Stable configurations). Stable configurations are the con-
figurations composed of parallel checkerboard-tiled bands of width at least 2.In
particular, if n and m are odd, no stable configuration exists.

It follows that if n and m are odd, the dynamics δ never reaches a stable
configuration.
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3.2 Coupling with Outer-Totalistic 976

From now on up to the end of section 3, we assume that n and m are even
(with the only exception of Corollary 1). We denote by the checkerboard
configuration of energy 0 defined as follows: ij = (i + j) mod 2. Given two
configurations c and c′, we denote by c⊕ c′ the xor configuration c′′ such that
c′′ij = (cij + c′ij) mod 2.
Dual configurations. As observed above, the fully asynchronous dynamics
ct tends to converge from any initial configuration c0 to configurations tiled by
large checkerboard regions. It is thus convenient to consider instead, the sequence
of dual configurations (ĉt) defined by ĉt = ⊕ct, in which the large checkerboard
regions of ct appear as large homogeneous black or white regions. Clearly, the
dual sequence ĉt evolves according to the dynamics δ̂(.) = ⊕ δ( ⊕ .), indeed
for all t, ĉt+1 = ⊕ ct+1 = ⊕ δ(ct) = ⊕ δ( ⊕ ĉt) = δ̂(ĉt).
By construction, the two dual random sequences (ct) and (ĉt) as well as their
corresponding dynamics δ and δ̂ are coupled probabilistically (see [14]): the same
random cell is fired in both configurations at each time step. A simple calculation
shows that the dual dynamics δ̂ associates to each dual configuration ĉ, a dual
configuration ĉ′ as follows: select uniformly at random a cell (i, j) (the same cell
(i, j) as δ fires on the primal configuration c), let Σ = ĉi−1,j+ĉi+1,j+ĉi,j−1+ĉi,j+1

and set: ĉ′ij = 1 if Σ > 3; ĉ′ij = 1 − ĉij if Σ = 2; and ĉ′ij = 0 otherwise; and
ĉ′kl = ĉkl for all (k, l) 6= (i, j). It turns out that this rule corresponds to the
asynchronous dynamics of the cellular automaton Outer-Totalistic 976 [11]. The
corresponding transitions are given in Fig. 2.
Stable configurations of Outer-Totalistic 976. We define the energy of
the dual configuration ĉ and the potentials of each of its cells (i, j) as the cor-
responding quantities, E(c) and vij , in the primal configuration c. By Proposi-
tion 3, the stable dual configurations under the dual dynamics δ̂ are the dual
configurations composed of homogeneous black or white bands of widths > 2.
The two dual configurations of minimum energy 0 are all-white and all-black.

Experimentally, any dual configuration under the fully asynchronous dynam-
ics δ̂ evolves towards large homogeneous black or white regions (corresponding
to the checkerboard patterns in the primal configuration). Informally, these re-
gions evolve as follows (see Fig. 2): isolated points tend to disappear as well as
peninsulas; borders and surrounded points are stable; large regions are eroded
in a random manner from the corners or bridges that can be flipped reversibly
and their boundaries follow some kind of 2D random walks until large bands
without corners ultimately survive (see Fig. 3 or [12]).

3.3 Convergence from an arbitrary initial configuration

In this section, we consider arbitrary initial configurations c0 and show that
indeed the dynamics δ converges to a stable configuration almost surely and
after at most an exponential number of steps on expectation.

Theorem 1. From any initial configuration c0, the dynamics δ convergences to
a stable configuration after at most 2N2N+1 steps on expectation.
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Fig. 4. The coupled evolutions of Minority δ on the primal configurations (ct) (above)
and its counterparts Outer-Totalistic 976 δ̂ on dual configurations (ĉt) (below). Note
that from step 50N on, (ct) an (ĉt) are bounded configurations.
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1− ĉij if Σ = 2

0 otherwise
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and their boundaries follow some kind of 2D random walks until large bands
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9

Fig. 3. The coupled evolutions of Minority δ on the primal configurations (ct) (above)
and its counterparts Outer-Totalistic 976 δ̂ on dual configurations (ĉt) (below). Note
that from step 50N on, (ct) an (ĉt) are bounded configurations.

Proof. According to the coupling above, it is equivalent to prove this statement
for the dual dynamics. The following sequence of δ̂-updates transforms any dual
configuration ĉ into a dual stable configuration : I) as long as there are active
white cells, choose one of them and switch its state to black; II) as long as there
are active black cells, choose one of them and switch its state to white.

During phase 1, the black regions expand until they fill their surrounding
bands or surrounding rectangles. Clearly according to the transition table Fig. 2,
after phase 1 of the algorithm, every white cell is inactive and thus is either a
border or surrounded. In particular, no white band of width 1 survived. During
phase 2, the black cells enclosed in rectangles or in bands of width 1 are eroded
progressively and ultimately disapear. Finally, only black bands of width > 2
survive at the end of phase 2 and the configuration is stable since it is composed
of homogeneous white or black bands of width > 2 (see Proposition 3). During
each phase, at most N cells change their state. We conclude that, from any
configuration ĉ, there exists a path of length at most 2N to a stable configuration.
Now, splits the sequence (ct) into segments (c2Nk+1, ..., c2N(k+1)) of length 2N .
The sequence of updates in each of these segments has a probability 1/N2N to
be the sequence of at most 2N updates given above that tranforms configuration
c2Nk into a stable configuration. Since these events are independent, this occurs
after N2N trials on expectation. We conclude that the dynamics δ̂ and thus δ
converge to a stable configuration after at most 2N ·N2N steps on expectation.�

Corollary 1. (Proof omitted) From any initial n×m-configuration c0, where n
is even and m is odd, the dynamics δ convergences to a stable configuration after
at most 3N3N+1 steps on expectation.

3.4 Convergence from a bounded configuration

We consider again that n and m are even. We observe experimentally that most
of the time, the dynamics converges rapidly to one of the two checkerboard
configurations of energy zero. We demonstrate in this section that if the dy-
namics reaches a configuration composed of an arbitrary region surrounded by
a checkerboard, then it will converge to the corresponding checkerboard config-
uration almost surely after a polynomial number of steps on expectation. This
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corresponds to the analysis of the last steps of the behavior observed in ex-
perimentation. We believe that the techniques developed here may be extended
to prove that the dynamics converges to a stable configuration in polynomial
expected time from any initial configuration (see discussions in section 4).

Definition 5 (Bounded configuration). We say that a configuration c is
bounded if there exists a (n−2)×(m−2) rectangle such that the states in c of the
cells outside this rectangle are equal to the corresponding states in one of the two
checkerboard configurations. W.l.o.g., we assume that the upper-left corner of the
rectangle is (1, 1) and that the checkerboard is , i.e., a configuration c is bounded
if cij = (i + j) mod 2 for all (i, j) ∈ {(i, j) : (−1 6 i 6 0) or (−1 6 j 6 0)}.

Each cell outside the surrounding rectangle has 3 neighbors in an opposite
state as itself, and is thus inactive. It follows that if c is a bounded configura-
tion, δ(c) is also bounded within the same surrounding rectangle. A bounded
configuration is thus equivalent to a finite perturbation of an infinite planar con-
figuration in Z2 tiled with the pattern. Since the dual of is the configuration
all-white, the dual of a bounded configuration is thus equivalent to a finite num-
ber of black cells, included into a (n− 2)× (m− 2) rectangle within an infinite
white planar configuration in Z2. We shall now consider this setting.

Definition 6 (Convexity). We say that a set of cells R ⊆ Z2 is convex if for
any pair of cells (i, j) and (i + k, j) (resp., (i, j + k)) in R, the cells (i + `, j)
(resp., (i, j + `)) for 0 6 ` 6 k belong to R. We say that R is an island if R is
connected and convex.

Our proof of the convergence of the dynamics in polynomial time for bounded
configurations relies on the definition of a variant which decreases on expectation
over time. It turns out that in order to define the variant, we do not need to
consider the exact internal structure of the bounded configuration, but only the
structure of the convex hull of its black cells.

Definition 7 (Convex hull of a configuration). For any finite set of cells
R ∈ Z2, we denote by hull(R) the convex hull of the cells in R, i.e., hull(R) =
∩

{
S ⊆ Z2 : S is convex and S ⊇ R}. Given a bounded dual configuration ĉ, we

define the convex hull of ĉ, hull(ĉ), as the dual configuration whose black cells are
the cells in the convex hull of the black cells of ĉ, i.e., if R = {(i, j) : ĉij = 1},
hull(ĉ)ij = 1 if and only if (i, j) ∈ hull(R). We say that a configuration c is
convex if ĉ = hull(ĉ).

We say that ĉ 6 ĉ′ if for all (i, j), cij 6 c′ij. Let ĉ be a convex dual bounded
configuration. We define for each black cell (i, j) in ĉ, the island of ĉ that contains
cell (i, j), as the maximum connected and convex configuration ĉ′ such that ĉ′ij =
1 and ĉ′ 6 ĉ. This defines a unique decomposition into black islands of the
convex bounded configuration ĉ.

The variant. We now consider the following variant : Φ(ĉ) = E(hull(ĉ))/4 +
|hull(ĉ))|, where |hull(ĉ))| is the number of black cells in the convex hull con-
figuration hull(ĉ). We will show that from any initial configuration c0, Φ(ct)
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decreases by at least 1/N on expectation at each time step until it reaches the
value 0, i.e., until the primal and dual configurations ct and ĉt converge to the
infinite checkerboard and the infinite all-white configurations respectively. In
order to prove that Φ(ct) decreases on expectation, we need to study the evolu-
tion of the convex hull of ĉt; for this purpose, we introduce a modified coupled
dual dynamics δ̄ that preserves the convexity of a dual configuration. Given a
dual configuration ĉ, we denote by δ̄(ĉ) the random configuration ĉ′ such that:
ĉ′ = δ̂(ĉ) if the cell updated by δ̂ is not a black bridge, and ĉ′ = ĉ otherwise.
Since only firing a black bridge can break the convexity of a black region, then:

Lemma 1. If ĉ is a convex bounded configuration, δ̄(ĉ) is a convex bounded
configuration.

The energy of a convex region is twice the number of borders, i.e., twice the
sum of the perimeters of the islands that compose it, so:

Lemma 2. For all convex bounded configurations ĉ and ĉ′, if ĉ 6 ĉ′, then
E(c) 6 E(c′).

The construction of δ̄ guarantees that the image of the convex hull of ĉ by
the dynamics δ̄ bounds from above the convex hull of the image of ĉ by the
dynamics δ̂.

Lemma 3. (Proof omitted) For all bounded configuration ĉ, δ̂(ĉ) 6 δ̄(hull(ĉ)).

Let ∆Φλ(ĉ) be the random variable for the variation of the variant after one
step of a dynamics λ from a configuration c, i.e., ∆Φλ(ĉ) = Φ(λ(ĉ))− Φ(ĉ).

Corollary 2. For all bounded configuration ĉ, ∆Φδ̂(ĉ) 6 ∆Φδ̄(hull(ĉ)).

Proof. By definition, ∆Φδ̄(hull(ĉ)) − ∆Φδ̂(ĉ) =
(
|δ̄(hull(ĉ))| − |hull(δ̂(ĉ))|

)
+(

E(δ̄(hull(ĉ))) − E(hull(δ̂(ĉ)))
)
. According to lemma 3, hull(δ̂(ĉ)) 6 δ̄(hull(ĉ))

and thus |hull(δ̂(ĉ))| 6 |δ̄(hull(ĉ))|. And by Lemma 2, since both configurations
are convex, E(hull(δ̂(ĉ))) 6 E(δ̄(hull(ĉ))). �

Lemma 4. For all bounded configuration ĉ that consists of a unique black island,
−4/N 6 E[∆Φδ̄(ĉ)] 6 −3/N.

Proof. Each active cell is fired with probability 1/N . According to the
dynamics of δ̄ (the same as the dynamics of δ̂, Fig. 2, except that black
bridges are inactive), if ĉ consists of an island of size > 2, E[∆Φδ̄(ĉ)] =
− 1

N

(
#{black corners}+ 2 #{black peninsulas}

)
+ 1

N #{white corners} =
− 1

N #{salient angles}+ 1
N #{reflex angles} = − 4

N , since #{salient angles} −
#{reflex angles} = 4 for all convex rectilinear polygon. Finally, if ĉ consists of
a unique (isolated) black cell, ∆Φδ̄(ĉ) = −3/N . �

Lemma 5. For any bounded not-all-white configuration ĉ, E[∆Φδ̂(ĉ)] 6 −`/N ,
where ` is the number of islands that compose hull(ĉ).
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Proof. By Corollary 2, E[∆Φδ̂(ĉ)] 6 E[∆Φδ̄(hull(ĉ))]. By convexity of hull(ĉ),
the sets of rows and columns touched by the islands that compose hull(ĉ) are
pairwise disjoint. Thus, one can index the islands from 1 to ` from left to right,
and the contacts between islands can only occur between two consecutive islands
at the corners of their surrounding rectangles. Each contact creates at most two
new active white cells that contribute for +1/N each to E[∆Φδ̄(hull(ĉ))]. The
contribution of each island to E[∆Φδ̄(hull(ĉ))] is at most −3/N according to
Lemma 4. It follows that E[∆Φδ̄(hull(ĉ))] 6 −3`/N + 2(`− 1)/N 6 −`/N . �

Theorem 2. The fully asynchronous minority dynamics δ converges almost
surely from any initial bounded configuration c to the stable configuration of
minimum energy, , and the expected convergence time is O(AN) where A is
the area of surrounding rectangle of the black cells in ĉ.

Proof. Initially and for all time t > 0, Φ(ĉt) 6 2(n−2+m−2)+A 6 2N +A.
As long as ĉt 6≡ 0, Φ(ĉt) > 0 and according to Lemma 5, E[∆Φδ̂(ĉ

t)] 6 −1/N . It
follows that the random variable T = min{t : Φ(ĉt) 6 0} is almost surely finite
and E[T ] = O(nA) (by applying for example Lemma 2 in [6]); and at that time,
ĉT and cT are the stable configurations all-white and , respectively. �

Example 1 (Worst case configurations). Consider the initial dual bounded n×n-
configuration ĉ consisting of a black 2 × (n − 2) rectangle. The expected time
needed to erase one complete line of the rectangle is at least Ω(nN) = Ω(AN).

4 Concluding remarks

This paper proposes an extension to 2D cellular automata of the techniques
based on random walks developped in [6,7] to study 1D asynchronous elemen-
tary cellular automata. Our techniques apply as well with some important new
ingredients, to the Moore neighborhood where the cell fired updates to the mi-
nority state within its height closest neighbors [17]. We believe that these tech-
niques may extend to the wide class of threshold automata, which are of par-
ticular interest, in neural networks for instance. We are currently investigating
refinements of the tools developed here, based on the study of the boundaries
between arbitrary checkerboard regions in order to try to prove that every ar-
bitrary n×m-configuration converges to a stable configuration in a polynomial
number of steps when n and m are both even (we conjecture a convergence
in time O(N3) for non-bounded toric configurations of even dimensions). This
result would conclude the study of this automaton under fully asynchronous
dynamics. The experiments lead in Section 2 exhibit an impressive richness of
behavior for this yet apparently simple transition rule. An extension of our re-
sults to arbitrary α-asynchronous regime is yet a challenging goal, especially if
one considers that most of the results concerning spin systems or lattice gas (at
the equilibrium) apply only to the limit when the temperature tends to 0, i.e.,
when only one transition occurs at a time.
Acknowledgements. We would like to thank C. Moore, R. D’Souza and J.
Crutchfield for their useful suggestions on the physics related aspects of our
work.
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