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Faster fast simulation

Compute traces of Petri nets faster

I for statistical analysis

I to use a model as a prototype. . .

I . . . or even as an implementation

Exploit parallelism

I multi-core CPUs

I mutli-CPU architectures

I distributed computing (clusters)

Contribution

I a parallel algorithm

I formal analysis

I benchmark
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Concurrency model

I simulation is sequential on single CPU
I uses cooperative multitasking (no locks needed)
I “call fun(· · · )”

I starts “fun(· · · )” in a new thread
I does not give control (actual start is delayed)

I “rpc fun(· · · )”
I remotely calls an instance of “fun(· · · )”
I gives control immediately, until a result is available

I remote procedure calls are realised on the other CPUs
I in parallel to the simulation
I implementation uses a (limited) pool of worker processes

Token flows

We computes successor markings through flows
= pairs of markings to add/remove from the current one
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Players and teams

I each transition is simulated by a player
I each player has

I a team: the other players with which it has a conflict
I an output: the other players for which it may produce tokens

1 struct player :
2 trans : transition
3 team : set[player ]
4 out : set [player ]
5 busy : bool
6 retry : bool

7 def startup (players) :
8 run ← []
9 for player in players :

10 player .busy ← True
11 call work(player, run)
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Algorithm

1 def work (player, run) :
2 player . retry ← False
3 flows ← {f in rpc getflows(player.trans, run. last ) | f.sub ≤ run.last}
4 if player . retry and flows = ∅ :
5 call work(player, run)
6 elif flows = ∅ :
7 player .busy ← False
8 else :
9 choose flow in flows

10 append run.last − flow.sub + flow.add to run
11 player .busy ← False
12 for other in player .team ∪ player.out :
13 if not other.busy :
14 other.busy ← True
15 call work(other, run)
16 elif other.busy and other in player.out :
17 other. retry ← True
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Model-net Nm models Medusa

I 4 transitions

rpc start of work, up to rpc
retry return from rpc + if

= player got no flows but has to retry
idle return from rpc + elif

= player got no flows and becomes idle
fire return from rpc + else

= player has at least one flow and can fire its transition

I 3 places

1. players structures
2. computed flows
3. trace (only its latest marking)
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Simulated-nets Ns
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Marking graph Gm
here for net (3)
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I rpc, retry and idle are internal actions 7→ τ

I let Gm/τ be Gm in which gray arcs have been collapsed
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Results

I Gm/τ always isomorphic to Gs (marking graph of Ns)

I Gs and Gm are weak bisimilar

I correctness: every run of the Nm is a correct run of Ns

I completeness: every run of Ns exists in Nm

I deadlock equivalence: Nm and Ns have the same deadlocks

I progression: no τ -loop in Gm ⇒ a fire always eventually occurs
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Prototype implementation
SN

A
KES

I Python

I SNAKES for Petri nets stuff

I gevent for cooperative multitasking

I less than 150 lines of code

For the benchmarks:

I 4 parametrised models (next slide)

I P/T nets + simulated colours (eat CPU for a given amount of time)
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Models used

•

•

•

starflower

•

•

hyperloop

•

•

•

•

cycle
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•

•
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Medusa does not like uncoloured nets



Franck Pommereau et al. Benchmarks 17 / 21

But Medusa loves large coloured nets
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Medusa efficiently eats your CPUs
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Achievements and future work

Contribution

I simple yet non-trivial parallel simulation algorithm

I formally analysed

I portable design from multicore to clusters

I efficient implementation is attainable

I encouraging experimental results

Perspectives

I use Neco’s compilation technique to improve RPC-side computation

I finer-grained algorithm (ex: compute one flow at a time)

I better analysis of the influence of colours

I investigate fairness more thoroughly (thanks to reviewer 1)

I formal proof
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