Franck Pommereau et al.

Faster Simulation of (Coloured) Petri Nets
Using Parallel Computing

Jordan de la Houssaye Franck Pommereau

IBISC, University of Evry / Paris-Saclay

PETRI NETS 2017 — Zaragoza — June 28th 2017

1/21

Franck Pommereau et al. Introduction 2/21

Outline

Introduction

Faster fast simulation

Compute traces of Petri nets faster
» for statistical analysis
> to use a model as a prototype. ..

> ... or even as an implementation

Franck Pommereau et al. Introduction 3/21

Faster fast simulation

Exploit parallelism
» multi-core CPUs
» mutli-CPU architectures

» distributed computing (clusters)

Franck Pommereau et al. Introduction 3/21

Faster fast simulation

Contribution
> a parallel algorithm
» formal analysis

» benchmark

Franck Pommereau et al. Medusa 4/21

Outline

Medusa

Jilzslize 5/ 2
Concurrency model

» simulation is sequential on single CPU

> uses cooperative multitasking (no locks needed)
» “call fun(---)"

> starts “fun(---)" in a new thread
> does not give control (actual start is delayed)

» “rpc fun(---)"
> remotely calls an instance of “fun(---)"
> gives control immediately, until a result is available
» remote procedure calls are realised on the other CPUs

> in parallel to the simulation
» implementation uses a (limited) pool of worker processes

Jilzslize 5/ 2
Concurrency model

» simulation is sequential on single CPU

> uses cooperative multitasking (no locks needed)
» “call fun(---)"

> starts “fun(---)" in a new thread
> does not give control (actual start is delayed)

» “rpc fun(---)"
> remotely calls an instance of “fun(---)"
> gives control immediately, until a result is available

» remote procedure calls are realised on the other CPUs

> in parallel to the simulation
» implementation uses a (limited) pool of worker processes

Token flows

We computes successor markings through flows
= pairs of markings to add/remove from the current one

Jilzslize
Players and teams

» each transition is simulated by a player

» each player has

> a team: the other players with which it has a conflict
» an output: the other players for which it may produce tokens

1 struct player :

2 trans :
3 team

4 out

5 busy

6 retry

transition

. set[player]
. set[player]
. bool
: bool

def startup (players) :
run <]
for player in players :
player.busy < True
call work(player, run)

6 /21

Jilzslize 7/21
Algorithm

1 def work (player, run) :

2 player.retry < False

3 flows « {f in rpc getflows(player.trans, run.last) | f.sub < run.last}
4 if player.retry and flows = () :

5 call work(player, run)

6 elif flows = 0 :

7 player.busy < False

8 else :

9 choose flow in flows

10 append run.last — flow.sub + flow.add to run
11 player.busy < False

12 for other in player.team U player.out :

13 if not other.busy :

14 other.busy < True

15 call work(other, run)

16 elif other.busy and other in player.out :

17 other.retry < True

Faiiel el 5/ 2
Outline

Formal analysis

Franck Pommereau et al. Formal analysis 9/21

Model-net N,, models Medusa

> 4 transitions
rpc start of work, up to rpc
retry return from rpc + if

= player got no flows but has to retry

idle return from rpc + elif
= player got no flows and becomes idle

fire return from rpc + else
= player has at least one flow and can fire its transition

> 3 places
1. players structures
2. computed flows
3. trace (only its latest marking)

Simulated-nets N

©

O
3) 4 —O

Faiiel el il) 2
Marking graph G,

here for net (3)

Faiiel el il) 2
Marking graph G,

here for net (3)

> rpc, retry and idle are internal actions — 7

> let G,/7 be Gy, in which gray arcs have been collapsed

Faiiel el 2) 2
Results

v

Gm/T always isomorphic to Gs (marking graph of V)

v

Gs and G, are weak bisimilar

» correctness: every run of the N, is a correct run of N,

v

completeness: every run of Ns exists in N,

v

deadlock equivalence: N,, and Ns have the same deadlocks

» progression: no 7-loop in G, = a fire always eventually occurs

Franck Pommereau et al. Benchmarks 13 /21

Outline

Benchmarks

Franck Pommereau et al. Benchmarks 14 /21

Prototype implementation

» Python
» SNAKES for Petri nets stuff
» gevent for cooperative multitasking

» less than 150 lines of code

For the benchmarks:
» 4 parametrised models (next slide)

» P/T nets + simulated colours (eat CPU for a given amount of time)

Models used

starflower hyperloop
ﬁ] \D
L] 0]
O O——O0—0

53886868588

parallel

Franck Pommereau et al. Benchmarks

16 / 21
Medusa does not like uncoloured nets
3000 model = Cycle model = StarFlower model = HyperLoop model = Parallel
2500
2000)
size
3-39
2 1500 39-75
IS 75-111
111-147
. 147-183
1000

500

Franck Pommereau et al. Benchmarks

17 /21
But Medusa loves large coloured nets
120 model = Cycle model = StarFlower model = HyperLoop model = Parallel
100
]
(]
80
') size
3-39
L]
o 39-75
g o0 75-111
111-147
. 147-183
40 1!
20
0

Fra

Pommere

et a

Benchmarks

Medusa efficiently eats your CPUs

rate

rate

rate

rate

100

80

60

40

100

80

60

40

20

100

80

60

40

100

80

60

40

model = Cycle | tool = snakes

model = StarFlower | tool = snakes

model = HyperLoop | tool = snakes

model = Parallel | tool = snakes

100
transitions

150

model = Cycle | tool =

medi

usa

model = Parallel | tool = medusa

0 50 100

transitions

150

procs
1
2
4
-6
- 8
.10

18 /21

Franck Pommereau et al. Conclusion 19 /21

Outline

Conclusion

Franck Pommereau et al. Conclusion 20 /21

Achievements and future work

Contribution
» simple yet non-trivial parallel simulation algorithm
» formally analysed
» portable design from multicore to clusters
» efficient implementation is attainable

> encouraging experimental results

Perspectives
» use Neco's compilation technique to improve RPC-side computation
» finer-grained algorithm (ex: compute one flow at a time)
> better analysis of the influence of colours
> investigate fairness more thoroughly (thanks to reviewer 1)

» formal proof

Franck Pommereau et al. Conclusion 21 /21

Thank you. Questions?

Introduction
Medusa
Formal analysis
Benchmarks

Conclusion

	Introduction
	Medusa
	Formal analysis
	Benchmarks
	Conclusion

