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How to implement a fine idea defined in a nice paper?

» grab SNAKES
> make quick customisation

(time Petri nets < 100 LoC / nets-within-nets < 30 LoC)
> implement your idea
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SNAKES in a nutshell pg’[hOﬂ

powered

v

SNAKES is a Python library

> free software (GNU LGPL)
» 82k lines of code

» define and manipulate Petri nets

» very generic definition
» various extensions provided by default
(read arcs, whole-place arcs, inhibitor arcs, ...)
» others are easy to add (timed nets, nets-within-nets, ...)

» annotations are Python expressions
tokens are Python objects (even SNAKES' net objects)

> every net can be executed (/.e., transitions can be fired)
> limited PNML support

> extensible with plugins

(2
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Hello world

"salut" "le monde"

from snakes.nets import *

pn = PetriNet("hello world in SNAKES") "helto world?
pn.add_place(Place("hello", ["hello", "salut"]))
pn.add_place(Place("world", ["world", "le monde"]))
pn.add_place(Place("sentence"))

pn.add_transition(Transition("concat"))

pn.add_input("hello", "concat", Variable("h"))

pn.add_input ("world", "concat", Variable("w"))
pn.add_output("sentence", "concat", Expression("h + ’ > + w"))

modes = pn.transition("concat") .modes()
pn.transition("concat") .fire(modes[2])
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But... Isn't Python slow as hell?

Python is fast

» for building and manipulating Petri nets (even large ones)
» for firing transitions interactively

» for calling CPU-intensive routines from an external library

Python is slow

» for computing large state-spaces
» for running complex algorithms

» SNAKES is even slower (not optimised for speed)

So, can we use SNAKES for model-checking?
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Fast analysis with Neco
NECo

Nnet compiler
» tukasz Fronc's companion tool
https://code.google.com/p/neco-net-compiler/
» Neco compiles SNAKES' Petri nets into fast native code

» per-net optimised marking structure
> per-transition optimised firing
> no magic = cannot optimise arbitrary Python code

» reads PNML, ABCD, or net objects

> process-symmetries reductions (plugin pids)

> state space exploration and LTL model-checking (using SPOT)
» awarded at the model-checking contest 2013

(2


https://code.google.com/p/neco-net-compiler/

iz widd G Brmees i /7
Outline

Interfacing with other languages

(2
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SNAKES out of Python

Cython = Python + type annotations = generates optimised C/C++

your tool in your language

Cython wrapper — C/C++ library

SNAKES Python runtime
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» Sam Sanjabi's post-doc (2010) and Samira Chaou's PhD (2013)
» ABCD modelling of peer-to-peer storage systems
» security analysis (model-checking, simulation & stats)
Michaél Guedj's PhD
ABCD modelling of security protocols
BSP-parallel CTL* model-checking
Viet Van Pham's PhD
semantics of m-graphs, analysis of open reconfigurable systems
reachability testing, simulation and LTL model-checking

Mourad Amziani's PhD
modelling of elasticity mechanisms in cloud systems
safety analysis
support to Petri net research
several other PhD around the world
prototyping, experiments, methods validation, ...

numerous master students’ projects, teaching, tutorials, etc. [ﬁ
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Viet Van Pham's PhD
semantics of m-graphs, analysis of open reconfigurable systems
reachability testing, simulation and LTL model-checking

Mourad Amziani's PhD
modelling of elasticity mechanisms in cloud systems
safety analysis
» support to Petri net research
» several other PhD around the world (few information available)
> prototyping, experiments, methods validation, ...
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Ongoing and future work

> necessary conditions to reach version 1.0 (current: 0.9.17)

>

»
>
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replace PNML support with more generic output (GrML, JSON)
recover through GrML — PNML (using third-party tool CosyVerif)
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fill a few holes in the documentation
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Ongoing and future work

> necessary conditions to reach version 1.0 (current: 0.9.17)

replace PNML support with more generic output (GrML, JSON)

» recover through GrML — PNML (using third-party tool CosyVerif)
> integrate Neco through a plugin

> fill a few holes in the documentation

» minor code cleanup and simplification

v

» other needs and ideas

better interactive/fast simulation, coupled with statistical analysis
genericity w.r.t. annotation language (use compilation approach)
major code cleanup and simplification

integrate with other tools (GUls, analysers, etc.)

more inputs/outputs (using third-party tools)

automate API generation to other languages

extend ABCD with a Petri net syntax

add processes to ABCD

win the lottery and hire engineers

v
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Thank you. Questions?
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