1

(B

bidc

Franck Pommereau SNAKES

SNAKES: a flexible high-level Petri nets library

Franck Pommereau

IBISC, University of Evry, France

PETRI NETS 2015 — June 25th

@ franck pommereau snakes Q

1/17

evry

https://duckduckgo.com/?t=lm&q=franck+pommereau+snakes

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

(2

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

> implement Petri nets

(2

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

> implement Petri nets
> places
transitions
arcs
markings
implement a bunch of related methods

vV vyVvYyy

(2

How to implement a fine idea defined in a nice paper?

> implement Petri nets

>

vV VvV vy VvYyy

places

transitions

arcs

markings

implement a bunch of related methods
colours

data model

> language

> expressions evaluation

> interface with Petri net

v

2/17

(2

How to implement a fine idea defined in a nice paper?

> implement Petri nets

>

vV VvV VvYyVvyy

places

transitions

arcs

markings

implement a bunch of related methods
colours

> data model

> language

> expressions evaluation

> interface with Petri net

> implement various extensions

>
>
>

custom arcs
custom places
custom firing rule

2/17

(2

How to implement a fine idea defined in a nice paper?

» implement Petri nets
> places
transitions
arcs
markings
implement a bunch of related methods
colours
> data model
> language
> expressions evaluation
> interface with Petri net
» implement various extensions
> custom arcs
> custom places
> custom firing rule
> implement auxiliary but required features
> draw Petri nets and/or state spaces -
» implement save/load Petri nets and/or state spaces L,’E

vV VvV VvYyVvyy

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

> implement Petri nets
> places
> transitions
> arcs
> markings
> implement a bunch of related methods
> colours
> data model
> language
> expressions evaluation
> interface with Petri net
> implement various extensions
> custom arcs
> custom places
> custom firing rule
> implement auxiliary but required features
> draw Petri nets and/or state spaces
> implement save/load Petri nets and/or state spaces
> implement Petri nets executions
> transition firing
> interactive simulation

> fast simulation r
> state space L,QE

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

> implement Petri nets
> places
> transitions
> arcs
> markings
> implement a bunch of related methods
» colours
> data model
> language
> expressions evaluation
> interface with Petri net
> implement various extensions
> custom arcs
> custom places
» custom firing rule
> implement auxiliary but required features
> draw Petri nets and/or state spaces
> implement save/load Petri nets and/or state spaces
> implement Petri nets executions
> transition firing
> interactive simulation
> fast simulation
> state space
> accessibility analysis r
> interface with a model-checker L,QE

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

> implement Petri nets
> places
> transitions
> arcs
> markings
> implement a bunch of related methods
> colours
> data model
> language
> expressions evaluation
> interface with Petri net
> implement various extensions
> custom arcs
> custom places
> custom firing rule
> implement auxiliary but required features
> draw Petri nets and/or state spaces
> implement save/load Petri nets and/or state spaces
> implement Petri nets executions
> transition firing
> interactive simulation
> fast simulation
> state space
> accessibility analysis
> interface with a model-checker r
> and so on L,QE

How to implement a fine idea defined in a nice paper?

>

v

v

vvYyVvYy

Franck Pommereau Motivation

implement Petri nets
> places
> transitions
> arcs
> markings
> implement a bunch of related methods
> colours
> data model
> language
> expressions evaluation
> interface with Petri net
implement various extensions
> custom arcs
> custom places
> custom firing rule
implement auxiliary but required features
> draw Petri nets and/or state spaces
> implement save/load Petri nets and/or state spaces
implement Petri nets executions
> transition firing
> interactive simulation
> fast simulation
> state space
> accessibility analysis
> interface with a model-checker
and so on
and so on
and so on
and so on

2/17

(2

Franck Pommerea Motivation 2/17

How to implement a fine idea defined in a nice paper?

> implement Petri nets
> places
> transitions
> arcs
> markings
> implement a bunch of related methods
> colours
> data model
> language
> expressions evaluation
> interface with Petri net
implement various extensions
> custom arcs
> custom places
> custom firing rule
implement auxiliary but required features
> draw Petri nets and/or state spaces
> implement save/load Petri nets and/or state spaces

v

v

v

implement Petri nets executions
> transition firing

> interactive simulation

> fast simulation

> state space

> accessibility analysis

> interface with a model-checker
and so on

and so on

and so on

and so on

and so on

and so on

and so on

and so on

and so on

and so on

YYYVYVYVYVYVVY

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

v

implement Petri nets
> places
> transitions
> arcs
> markings
» implement a bunch of related methods
» colours.
> data model
> language
> expressions evaluation
» interface with Petri net
implement various extensions
> custom arcs
> custom places
» custom firing rule
» implement auxiliary but required features
» draw Petri nets and/or state spaces
» implement save/load Petri nets and/or state spaces
> implement Petri nets executions
> transition firing
> interactive simulation
» fast simulation
S
>

v

state space
accessibility analysis

> interface with a model-checker

and so on

and 5o on

and so on

and so on

and so on

and so on

and so on

and 50 on

and so on

and so on

and so on

and so on

and so on

and so on

and so on

and so on r

and so on S

h:

and so on

YYYYYYYYYYYYVYYVYYVY

How to implement a fine idea defined in a nice paper?

v

v

v

YYYYYYYYYYYYYYYYVYYY

implement Petri nets

> places

> transitions

> arcs

> markings
> implement a bunch of related methods
» colours
> data model
> language
> expressions evaluation
» interface with Petri net
implement various extensions
> custom arcs
> custom places
> custom firing rule
implement auxiliary but required features
» draw Petri nets and/or state spaces
» implement save/load Petri nets and/or state spaces
implement Petri nets executions
> trans
> interactive simulation
» fast simulation
> state space
> accessibility analysis
» interface with a model-checker

and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so
and so

implement your idea

on
on
on
on
on
on
on
on
on
on
on

Franck Pommereau

Motivation

2/17

-
hid

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

v

implement Petri nets
> places

> transitions

> arcs

> markings

> implement a bunch of related methods

> expressions evaluation
> interface with Petri net

implement various extensions

> custom arcs

> custom places

> custom firing rule

implement auxiliary but required features

> draw Petri nets and /or state spaces

> implement save/load Petri nets and /or state spaces

implement Petri nets executions

> transition firing

» interactive simulation

> fast simulation

> state space

> accessibility analysis

> interface with a model-checker

and so on

and so on

and so on

and o o

and so on

and so on

and so on

and so on

and so on

and s on

and so on

and so on

and so on

and so on

and so on

and so on

and so on

and so on

. . ro
. implement your idea A

v

v

YYYYYYYYYYYYYYYYOYY

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

» grab SNAKES
> implement your idea

(2

Franck Pommereau Motivation 2/17

How to implement a fine idea defined in a nice paper?

» grab SNAKES
> make quick customisation

(time Petri nets < 100 LoC / nets-within-nets < 30 LoC)
> implement your idea

(2

Outline

Introducing SNAKES

Efficient model-checking
Interfacing with other languages
Typical use cases

Conclusion

(2

liiioclueiing SWARES &/ i
Outline

Introducing SNAKES

(2

SNAKES in a nutshell pg’[hOﬂ

powered

v

SNAKES is a Python library

> free software (GNU LGPL)
» 82k lines of code

» define and manipulate Petri nets

» very generic definition
» various extensions provided by default
(read arcs, whole-place arcs, inhibitor arcs, ...)
» others are easy to add (timed nets, nets-within-nets, ...)

» annotations are Python expressions
tokens are Python objects (even SNAKES' net objects)

> every net can be executed (/.e., transitions can be fired)
> limited PNML support

> extensible with plugins

(2

rizalraig SIAES 9/ L7
Architecture

>\ -

© hets simul lang

-

o) Petri nets, places, transitions, arcs, interactive parsers, ast,
- markings, marking graphs, ... simulation

o

(o]

O

(2

Architecture

plugins

core library

ops sync gv
PBC/PNA & transitions drawing with
M-nets synchronisation GraphViz
compositions

nets

Petri nets, places, transitions, arcs,
markings, marking graphs, ...

pids
dynamic
process
creation/
destruction

simul lang
interactive parsers, ast,
simulation

(2

liiioclueiing SWARES @ /il
Architecture

utilities

plugins

core library

abcd

compiler/simulator for the
Asynchronous Box Calculus

with Data

ops sync gv
PBC/PNA & transitions drawing with
M-nets synchronisation GraphViz
compositions

nets

Petri nets, places, transitions, arcs,
markings, marking graphs, ...

pids
dynamic
process
creation/
destruction

simul lang
interactive parsers, ast,
simulation

(2

liiioclueiing SWARES
Architecture

6 /17

utilities

plugins

core library

abcd

compiler/simulator for the
Asynchronous Box Calculus

with Data

ops sync gv
PBC/PNA & transitions drawing with
M-nets synchronisation GraphViz
compositions

nets

Petri nets, places, transitions, arcs,
markings, marking graphs, ...

pids
dynamic
process
creation/
destruction

simul
interactive
simulation

included in SNAKES

lang

parsers, ast,

(2

liiioclueiing SWARES
Architecture

external
tools

utilities

plugins

core library

p
neco

net compiler,
state-space computation
& LTL model-checking

abcd

compiler/simulator for the
Asynchronous Box Calculus

with Data

~
ops sync gv
PBC/PNA & transitions drawing with
M-nets synchronisation GraphViz
compositions
nets

Petri nets, places, transitions, arcs,
markings, marking graphs, ...

pids
dynamic
process
creation/
destruction

simul
interactive
simulation

6 /17

not in SNAKES anymore

lang

parsers, ast,

liiioclueiing SWARES 7/ il
Hello world

from snakes.nets import *

(2

liiioclueiing SWARES 7/ il
Hello world

snakes.nets

pn = PetriNet("hello world in SNAKES")

(2

liiioclueiing SWARES 7/ il
Hello world

snakes.nets

pn = PetriNet("hello world in SNAKES")
pn.add_place(Place("hello", ["hello", "salut"]))

(2

liiioclueiing SWARES 7/ il
Hello world

"world"

"le monde"

snakes.nets

pn = PetriNet("hello world in SNAKES")
pn.add_place(Place("hello", ["hello", "salut"]))
pn.add_place(Place("world", ["world", "le monde"]))

liiioclueiing SWARES 7/ il
Hello world

"world"

"le monde"

snakes.nets

pn = PetriNet("hello world in SNAKES")
pn.add_place(Place("hello", ["hello", "salut"]))
pn.add_place(Place("world", ["world", "le monde"]))
pn.add_place(Place("sentence"))

=]

Hello world

pn

pn.
.add_place(Place("world", ["world", "le monde"]))

pn.

pn

pn.

"world"

"le monde"

snakes.nets

= PetriNet("hello world in SNAKES")
add_place(Place("hello", ["hello", "salut"]))

add_place(Place("sentence"))

add_transition(Transition("concat"))

Hello world

"hello" "world"
"salut" "le monde"

from snakes.nets import *

pn

pn.
.add_place(Place("world", ["world", "le monde"]))

pn

pn.

pn.
pn.

= PetriNet("hello world in SNAKES")
add_place(Place("hello", ["hello", "salut"]))

add_place(Place("sentence"))

add_transition(Transition("concat"))
add_input("hello", "concat", Variable("h"))

liiioclueiing SWARES 7/ il
Hello world

"hello" "world"
"salut" "le monde"

from snakes.nets import *

pn = PetriNet("hello world in SNAKES")
pn.add_place(Place("hello", ["hello", "salut"]))
pn.add_place(Place("world", ["world", "le monde"]))
pn.add_place(Place("sentence"))

pn.add_transition(Transition("concat"))
pn.add_input("hello", "concat", Variable("h"))
pn.add_input ("world", "concat", Variable("w"))

Hello world
"hello" "world"
"salut" "le monde"
h w
h+0 +w)

from snakes.nets import *

pn

pn.
.add_place(Place("world", ["world", "le monde"]))

pn.

pn

pn.
pn.
.add_input ("world", "concat", Variable("w"))

pn.

pn

= PetriNet("hello world in SNAKES")
add_place(Place("hello", ["hello", "salut"]))

add_place(Place("sentence"))

add_transition(Transition("concat"))
add_input("hello", "concat", Variable("h"))

add_output ("sentence", "concat", Expression("h + ’ ’ + w"))

Hello world
"hello" "world"
"salut" "le monde"
h w
h+0 +w)

from snakes.nets import *

pn

pn.
.add_place(Place("world", ["world", "le monde"]))

pn.

pn

pn.
pn.
.add_input ("world", "concat", Variable("w"))

pn

pn.

= PetriNet("hello world in SNAKES")
add_place(Place("hello", ["hello", "salut"]))

add_place(Place("sentence"))

add_transition(Transition("concat"))
add_input("hello", "concat", Variable("h"))

add_output ("sentence", "concat", Expression("h + °> 7 + w"))

modes = pn.transition("concat").modes() # returns 4 modes

liiioclueiing SWARES 7/ il
Hello world

"salut" "le monde"

from snakes.nets import *

pn = PetriNet("hello world in SNAKES") "helto world?
pn.add_place(Place("hello", ["hello", "salut"]))
pn.add_place(Place("world", ["world", "le monde"]))
pn.add_place(Place("sentence"))

pn.add_transition(Transition("concat"))

pn.add_input("hello", "concat", Variable("h"))

pn.add_input ("world", "concat", Variable("w"))
pn.add_output("sentence", "concat", Expression("h + ’ > + w"))

modes = pn.transition("concat") .modes()
pn.transition("concat") .fire(modes[2])

Effiar; ot -eliceln 8 /i
Outline

Efficient model-checking

(2

Effiar; ot -eliceln 9 /il
But... Isn't Python slow as hell?

Python is fast

» for building and manipulating Petri nets (even large ones)
» for firing transitions interactively

» for calling CPU-intensive routines from an external library

(2

Effiar; ot -eliceln 9 /il
But... Isn't Python slow as hell?

Python is fast

» for building and manipulating Petri nets (even large ones)
» for firing transitions interactively

» for calling CPU-intensive routines from an external library

Python is slow

» for computing large state-spaces
» for running complex algorithms

» SNAKES is even slower (not optimised for speed)

(2

But... Isn't Python slow as hell?

Python is fast

» for building and manipulating Petri nets (even large ones)
» for firing transitions interactively

» for calling CPU-intensive routines from an external library

Python is slow

» for computing large state-spaces
» for running complex algorithms

» SNAKES is even slower (not optimised for speed)

So, can we use SNAKES for model-checking?

(2

Fast analysis with Neco
NECo

Nnet compiler
» tukasz Fronc's companion tool
https://code.google.com/p/neco-net-compiler/
» Neco compiles SNAKES' Petri nets into fast native code

» per-net optimised marking structure
> per-transition optimised firing
> no magic = cannot optimise arbitrary Python code

» reads PNML, ABCD, or net objects

> process-symmetries reductions (plugin pids)

> state space exploration and LTL model-checking (using SPOT)
» awarded at the model-checking contest 2013

(2

https://code.google.com/p/neco-net-compiler/

iz widd G Brmees i /7
Outline

Interfacing with other languages

(2

Interfacing with other languages 12 /17
SNAKES out of Python

Cython = Python + type annotations = generates optimised C/C++

your tool in your language

Cython wrapper — C/C++ library

SNAKES Python runtime

(2

Typical use cases B/
Outline

Typical use cases

(2

TeEl| s czEas i) i
Some SNAKES users

» Sam Sanjabi's post-doc (2010) and Samira Chaou's PhD (2013)
» ABCD modelling of peer-to-peer storage systems
» security analysis (model-checking, simulation & stats)
Michaél Guedj's PhD
ABCD modelling of security protocols
BSP-parallel CTL* model-checking
Viet Van Pham's PhD
semantics of m-graphs, analysis of open reconfigurable systems
reachability testing, simulation and LTL model-checking

Mourad Amziani's PhD
modelling of elasticity mechanisms in cloud systems
safety analysis
support to Petri net research
several other PhD around the world
prototyping, experiments, methods validation, ...

numerous master students’ projects, teaching, tutorials, etc. [ﬁ
!

TeEl| s czEas i) i
Some SNAKES users

» Sam Sanjabi's post-doc and Samira Chaou's PhD
» ABCD modelling of peer-to-peer storage systems
> security analysis

» Michaél Guedj's PhD (2012)

» ABCD modelling of security protocols (Alice-Bob kind)
» BSP-parallel CTL* model-checking (algorithm and scalability study)

» Viet Van Pham’s PhD
» semantics of m-graphs, analysis of open reconfigurable systems
> reachability testing, simulation and LTL model-checking
» Mourad Amziani's PhD
» modelling of elasticity mechanisms in cloud systems
» safety analysis
» support to Petri net research

» several other PhD around the world
> prototyping, experiments, methods validation, ...

» numerous master students' projects, teaching, tutorials, etc. [%
!

TeEl| s czEas i) i
Some SNAKES users

Sam Sanjabi's post-doc and Samira Chaou's PhD

ABCD modelling of peer-to-peer storage systems
security analysis

Michaél Guedj's PhD

ABCD modelling of security protocols
BSP-parallel CTL* model-checking

» Viet Van Pham’s PhD (2014)

» semantics of w-graphs, analysis of open reconfigurable systems
» reachability testing, simulation and LTL model-checking (using Neco)
Mourad Amziani's PhD
modelling of elasticity mechanisms in cloud systems
safety analysis
support to Petri net research
several other PhD around the world
prototyping, experiments, methods validation, ...

numerous master students’ projects, teaching, tutorials, etc. [%
1]

TeEl| s czEas i) i
Some SNAKES users

» Sam Sanjabi's post-doc and Samira Chaou's PhD

» ABCD modelling of peer-to-peer storage systems
> security analysis

» Michaél Guedj's PhD

» ABCD modelling of security protocols
» BSP-parallel CTL* model-checking

» Viet Van Pham's PhD

» semantics of m-graphs, analysis of open reconfigurable systems
> reachability testing, simulation and LTL model-checking

» Mourad Amziani's PhD (2015)

» modelling of elasticity mechanisms in cloud systems (nets-within-nets)
» safety analysis (reachability testing)
» support to Petri net research
» several other PhD around the world
> prototyping, experiments, methods validation, ...

» numerous master students' projects, teaching, tutorials, etc. [%
!

TeEl| s czEas i) i
Some SNAKES users

Sam Sanjabi's post-doc and Samira Chaou's PhD
ABCD modelling of peer-to-peer storage systems
security analysis

Michaél Guedj's PhD
ABCD modelling of security protocols
BSP-parallel CTL* model-checking

Viet Van Pham's PhD
semantics of m-graphs, analysis of open reconfigurable systems
reachability testing, simulation and LTL model-checking

Mourad Amziani's PhD
modelling of elasticity mechanisms in cloud systems
safety analysis
» support to Petri net research
» several other PhD around the world (few information available)
> prototyping, experiments, methods validation, ...

numerous master students’ projects, teaching, tutorials, etc. [ﬁ
!

TeEl| s czEas i) i
Some SNAKES users

» Sam Sanjabi's post-doc and Samira Chaou's PhD

» ABCD modelling of peer-to-peer storage systems
> security analysis

» Michaél Guedj's PhD

» ABCD modelling of security protocols
» BSP-parallel CTL* model-checking

» Viet Van Pham's PhD

» semantics of m-graphs, analysis of open reconfigurable systems
> reachability testing, simulation and LTL model-checking

» Mourad Amziani's PhD

» modelling of elasticity mechanisms in cloud systems
» safety analysis
» support to Petri net research
» several other PhD around the world
> prototyping, experiments, methods validation, ...

» numerous master students’ projects, teaching, tutorials, etc. [%
!

IFENC QLTINS Conclusion 15 /17

Outline

Conclusion

(2

IFENC QLTINS Conclusion 16 / 17

Ongoing and future work

> necessary conditions to reach version 1.0 (current: 0.9.17)

>

»
>
>
>

replace PNML support with more generic output (GrML, JSON)
recover through GrML — PNML (using third-party tool CosyVerif)
integrate Neco through a plugin

fill a few holes in the documentation

minor code cleanup and simplification

(2

Franck Pommereau Conclusion 16 / 17

Ongoing and future work

> necessary conditions to reach version 1.0 (current: 0.9.17)

replace PNML support with more generic output (GrML, JSON)

» recover through GrML — PNML (using third-party tool CosyVerif)
> integrate Neco through a plugin

> fill a few holes in the documentation

» minor code cleanup and simplification

v

» other needs and ideas

better interactive/fast simulation, coupled with statistical analysis
genericity w.r.t. annotation language (use compilation approach)
major code cleanup and simplification

integrate with other tools (GUls, analysers, etc.)

more inputs/outputs (using third-party tools)

automate API generation to other languages

extend ABCD with a Petri net syntax

add processes to ABCD

win the lottery and hire engineers

v

vV VvV VY VY VY VY VY

(2

Franck Pommereau [EEUIEITELN] 17 / 17

Thank you. Questions?

franck pommereau snakes Q

https://duckduckgo.com/?t=lm&q=franck+pommereau+snakes+ibisc

	Introducing SNAKES
	Efficient model-checking
	Interfacing with other languages
	Typical use cases
	Conclusion

