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Université Paris-Saclay

hedi.tabia@univ-evry.fr

Hichem Arioui
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Abstract
Differentiable ARchiTecture Search (DARTS) is one of
the most trending Neural Architecture Search (NAS)
methods, drastically reducing search cost by resorting to
Stochastic Gradient Descent (SGD) and weight-sharing.
However, it also greatly reduces the search space, thus ex-
cluding potential promising architectures from being dis-
covered. In this paper, we propose D-DARTS, a novel so-
lution that addresses this problem by nesting several neu-
ral networks at cell-level instead of using weight-sharing
to produce more diversified and specialized architectures.
Moreover, we introduce a novel algorithm which can de-
rive deeper architectures from a few trained cells, increas-
ing performance and saving computation time. Our solu-
tion is able to provide state-of-the-art results on CIFAR-
10, CIFAR-100 and ImageNet while using significantly
less parameters than previous baselines, resulting in more
hardware-efficient neural networks.

1 Introduction
With the field of Deep Learning (DL) getting more and
more attention over the past few years, an important fo-
cus has been set on neural network architectural concep-
tion. A large number of architectures have been man-
ually crafted to address different computer vision prob-
lems [7, 9, 10, 19]. However, the design of these human-
made architectures is mainly driven by intuition and lacks

the certainty of an optimal solution. This is mainly due
to the vast number of possible combinations needed to
build a relevant neural architecture, making the man-
ual search space very difficult. On the other side, there
have recently been a number of works [15] that tried to
automate the architecture design process. These works
are referred to as Neural Architecture Search (NAS). In
NAS, a search algorithm attempts to build a neural net-
work architecture from a defined search space by assert-
ing the performance of “candidate” architectures. Early
works such as [23] are based on Reinforcement Learning
(RL), but they are very costly with hundreds or thousands
of GPU days needed to obtain competitive architectures.
Since then, new alternatives have been proposed such as
gradient-based methods [3, 5, 11, 20, 21, 22]. In these
methods, the search space is relaxed to be continuous so
that the architecture can be optimized by a gradient de-
scent algorithm e.g. Stochastic Gradient Descent (SGD).
They operate on a small component, i.e. cell, as the build-
ing block of the designed architecture. The obtained cell
could either be stacked up multiple times to build a con-
volutional network or recursively connected to build a
recurrent network [3, 11, 20]. The main advantage of
gradient-based methods over RL-based ones is the greatly
reduced search cost, by several orders of magnitude (see
Section 5). However, despite the progress brought by Dif-
ferentiable ARchitecTure Search (DARTS) [11], existing
methods greatly reduce the search space of relevant neu-
ral architecture as searching for building blocks limits the
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algorithm’s creativity. To alleviate this problem, we pro-
pose to directly search for a super network which includes
a set of learnable cells. Moreover, to further optimize the
super network architecture, we leverage Game theory. We
introduce a novel loss function based on Shapley value
[18] concept.

As presented in Section 4, the contributions of this pa-
per are:

• A new way of structuring the DARTS search process
by nesting small neural networks at cell level.

• A novel loss specially designed to take advantage of
the new distributed structure.

• A mechanism to derive larger architectures from a
few well-trained highly specialized cells.

The rest of the paper is structured as follows: In Section
2, we conduct a short survey on recent differentiable NAS
works, in Section 3, we review the original concept of
DARTS and discuss its issues, Section 5 presents the re-
sults of a set of experiments conducted on popular com-
puter vision datasets, Section 6 discusses the results of the
experimental study and Section 7 finally brings a conclu-
sion to this article while giving some insights on promis-
ing directions of future work.

2 Related Work
Few other works already attempted to improve on DARTS
by addressing these limitations, such as PC-DARTS [22],
P-DARTS [4] and FairDARTS [5]. In PC-DARTS, au-
thors tried to minimize the memory footprint of DARTS
by optimizing the search process to avoid redundancy.
P-DARTS (Progressive DARTS) was able to greatly re-
duce search time by progressively deepening the archi-
tecture during search, leading to better search space ap-
proximation and regularization. FairDARTS tried to solve
two important problems that occured in DARTS, the over-
representation of skip connections and the uncertainty in
the probability distribution of operations, leading to a
“fairer” system. Both of these works obtained state-of-
the-art results on popular datasets [6, 10].

Motivated by the success of DARTS, this present work
explores for the first time a gradient-based distributed

search procedure for deep convolutional neural network
architectures.

3 Preliminaries: DARTS
DARTS (Differentiable ARchitecTure Search) [11] is a
gradient-based NAS method that searches for novel archi-
tectures through a cell-modulated search space while us-
ing a weight-sharing mechanism to speed up this process.
More specifically, it searches for two different types of
cells: normal (i.e. that composes most of the architecture)
and reduction (i.e. that performs dimension reduction).
During the search process, a small size proxy network (su-
pernet) with only a few of these cells (e.g. 8 as suggested
in [11]) is trained. Once inferred, these two cells are the
building blocks from which architectures of any size can
be derived, similarly as residual blocks in ResNet [7] and
thus most of the final network components share the same
architectural weights. In particular, they are stacked mul-
tiple times to form a network of the desired size (e.g. 14
or 20 layers as in [11]), determined empirically depending
on if the emphasis is put on raw performance or hardware
efficiency. Each cell can be described as a direct acyclic
graph of N nodes where each edge connecting two nodes
is a mix of operations chosen among |Oi,j | = k candi-
dates, where Oi,j = {o1i,j , ..., oki,j} represents the set of
all possible operations for the edge ei,j connecting node
i to node j. The goal here is to determine which oper-
ations (with a maximum of 2) must be selected for each
edge in order to maximize the validation loss Lval. Such
loss corresponds here to the Cross Entropy loss LCE , a
widely used categorical loss function derived from C.E.
Shannon’s Theory of Information [17] and defined as fol-
lows:

LCE(x, tc) = −log

(
exp(x[tc])∑|x|
j=0 exp(x[j])

)
(1)

where x is the output of the final linear classifier (i.e. a
probability distribution) and tc is the target class for this
output.

In that objective, DARTS search process involves a set
of parameters, denoted by α(i,j) = {α(i,j)

1 , ..., α
(i,j)
k }

which represents the weight of each operation from Oi,j

in the mixed output of each edge. To build the mixed out-
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put, the categorical choice of operations is done through a
softmax:

oi,j(x) =
∑

o∈Oi,j

exp(α
(i,j)
o )∑

o′∈Oi,j
exp(α

(i,j)
o′ )

o(x) (2)

where oi,j(x) is the mixed output of edge ei,j for input
feature x and α(i,j)

o ∈ α(i,j) is the weight associated with
operation o ∈ Oi,j .

These parameters are optimized using a gradient de-
scent algorithm while the global supernet (from which
the cells are part of) is trained on a given dataset. Thus,
DARTS is practically solving a bi-level optimization
problem. DARTS search process is summarized in Fig. 1.

Search for 
parameters

Search for
parameters

Architecture
Optimizer

(Adam)

Normal Cell
αnormal

Reduction Cell
αreduce

Ground Truth

Input

Loss
(feedback) Loss

Criterion
(LCE)

Stacked n times to derive

Output Search for 
parameters

Model Optimizer
(SGD with

momentum + Step
LR scheduler)

Partial Network Training

Search Algorithm
(Architect)

Network
(Supernet)

Dataset

Hyperparameters

Figure 1: Layout of the search process at work in DARTS
[11]. A global optimizer searches for two sets of parame-
ters (i.e. αnormal and αreduce) that define the architecture
of cells. The two types of searched cells are stacked mul-
tiple times to build a proxy network (supernet) which is
trained in order to validate the performance of these cells.

DARTS suffers from two majors issues. The first is the
over-representation of skip connections. The second is the
discretization discrepancy problem of the softmax opera-
tion, namely a very small standard deviation of the result-
ing probability distribution. To mitigate these issues, the
authors of FairDARTS [5] replaced the softmax function
by the sigmoid function (denoted by σ) and proposed a
novel loss function (zero-one loss denoted by L01) which
aims to push the architectural weight values towards 0 or
1, and is defined as follows:

L01 = − 1

N
(σ(α)− 0.5)2 (3)

In fact, L01 corresponds to the mean square error between
σ(α) and 0.5. L01 is then added to LCE to form Fair-
DARTS total loss LF :

LF = LCE + w01 ∗ L01 (4)

Despite these solutions, DARTS and all of its evolutions
[4, 5, 11, 22] are still limited in their capacity to create
original architectures since most of their structure is rigid
and human-made (e.g. the search space modulation or the
number of cells searched) and the search space is very
restricted as pointed out by prior works [14, 20].

This is the issue we are trying to address in this pa-
per. Contrary to other approaches, such as FBNetV2 [20]
where the authors used a masking mechanism for feature
map reuse to increase search speed, and included a wider
range of spatial and channel dimensions. This paper is
the first to explore and implement distributed differential
architectural search for the first time.

4 Proposed Approach

4.1 Delegating search to cell-level subnets
As explained in section 3, DARTS [11] only searches for
two types of cells (“normal” and “reduce”) and stacks
them multiple times to form a network as large as needed.
This weight-sharing process has the advantage of reduc-
ing search space to a limited set of parameters (i.e. α) thus
saving time and hardware resources. However, this ap-
proach limits both the search space size and the original-
ity of the derived architectures as all the underlying struc-
ture is human-designed. In particular, the search space
s(no, ne) of a single cell with no primitive operations to
select from (within a maximum of 2) and ne edges can be
computed as follows:

s(no, ne) =

(
no
2

)ne

=

(
n0!

2!(n0 − 2)!

)ne

(5)

Following Eq. 5, using DARTS default parameters (no =
7 and ne = 14), the search space of a single cell com-
prises 1018 possible configurations. Thus, as both normal
and reduce cells share the same no and ne, the total search
space size of DARTS is 1036 possibilities. This number
is comparable to other differentiable NAS works [3, 20],
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but far lower than those of Reinforcement Learning based
NAS methods [2, 23] that describe architecture topologies
using sequential layer-wise operations, which are also far
less efficient.

The key idea behind our method is to increase diversity
in the architecture by delegating the search process to sub-
nets nested in each cell. This way each cell that composes
the global supernet is individual and is itself a full neural
network with its own optimizer, criterion, scheduler and
its input, hidden and output layers, as shown in Fig. 2.
In addition, instead of searching for building blocks as
DARTS do, we increase the number of searched cells to
an arbitrary n (e.g. 8) and directly seek for a full n-layer
convolutional neural network. Thus, we trade the weight
sharing process introduced by DARTS for greater flexi-
bility and creativity. Nonetheless, cells still belong either
to the normal or reduction class, depending on their posi-
tion in the network (reductions cells are positioned at the
1
3 and 2

3 of the network).

Search for 
parameters

Cell n
αn

Cell 1
α1

Input

Ground Truth

Loss

Criterion
(LCE)

Directly connected to derive

Output Search for 
parameters

Model Optimizer
(SGD with

momentum + Cosine
Annealing scheduler)

Partial Network Training

Architecture
Optimizer 1

(Adam)

Search for 
parameters

Architecture
Optimizer n

(Adam)

LossCriterion 1
(L1T)

LossCriterion n
(LnT)

.

.

.

.

.

.

Ground Truth Dataset

Output

Network
(Supernet)

Search Algorithm
(Architect)

Hyperparameters
Ground TruthOutput

Ground TruthOutput

Figure 2: Layout of the search process used in D-DARTS.
Cells are still divided in two types (normal, reduction)
but each cell i is independent with its own optimizer,
scheduler and criterion (based on our novel ablation loss
LT ) which search for its architectural parameters αi,
thus making the entire search process distributed. The
searched cells are directly connected to one another to
form a proxy network (supernet) which is trained to vali-
date their performance.

The architectural parameters (α) are computed using
logits. In this context, logits represents the probability
distribution generated by the linear classifier placed at the
end of the supernet. At each training step, they are com-
puted using the global supernet and are passed down to

cells which use them to compute their individual losses
and gradients in order to update their architectural weights
(α). This way, we directly build a full and complete neu-
ral network where each cell is highly specialized (w.r.t.
its position in the supernet, contrary to generic building
blocks), thus effectively expanding the search space by a
factor of 10(n−2)∗18 (according to Eq. 5) where n is the
total number of searched cells (e.g. a factor a 10118 when
considering 8 cells). To the best of our knowledge, this is
the largest search space ever explored by a differentiable
NAS method. In section 5, we show that smaller (e.g. 7 or
8 layers) NestedDARTS architectures can achieve similar
or higher performance than large (e.g. 14 or 20 layers)
DARTS architectures on common datasets.

4.2 Adding a new cell-specific loss
In addition to the new network structure introduced in
subsection 4.1, we designed a novel cell-specific loss
function that we dubbed ablation loss. Indeed, as we in-
creased the number of searched cells, the learning chal-
lenge became greater with a large amount of additional
parameters to take into account. Thus, the global loss
functions used in DARTS [11] and FairDARTS [5] can-
not accurately assess the performance of each cell and in-
stead only take into account the global performance of the
supernet. In contrast, our new loss function is specific to
each cell it is assigned to and is an additive loss, based on
the global loss function introduced in [5] that proved to be
a significant improvement over the original one [11].

The main idea behind this ablation loss function is to
perform a limited ablation study on the cell level. In-
deed, ablation studies have long proven to hold a key
role in asserting the effectiveness of neural network ar-
chitectures [13]. This way, by computing the difference
in the supernet loss LCE (i.e. the Cross Entropy loss,
see Eq. 1) with and without each individual cell acti-
vated, we can obtain a measure of their respective con-
tributions that we call their marginal contributions, noted
MC = {MC1, ...,MCn}. This method is inspired by
Shapley values [18], a game theory technique widely used
in Explainable Artificial Intelligence to assess the contri-
butions of model features to the final output [1, 12] or the
contributions of agents to the common reward in a coop-
erative multi-agent Reinforcement Learning context [8].
Thus, cell Ci marginal contribution MCi is computed as
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follows:

MCi = LCE(C,α,w)− LCE(C \ {Ci}, α, w) (6)

Where C is the set containing all cells such as C =
C1, ..., Cn, α is the encoding of the architecture (see sec-
tion 3) and w are the weights associated with the archi-
tecture. Once we obtained all the marginal contributions
MC, we apply the following formula to compute the ab-
lation loss of cell Ci:

Li
AB =

{
MCi−mean(MC)

mean(MC) if mean(MC) 6= 0

0 else
(7)

Li
AB expresses how important the marginal contribu-

tion (i.e. its performance) of cell i is w.r.t. the mean of
all the marginal contributions. Li

AB is then added to Fair-
DARTS global loss LF (see Eq. 4) to form the total loss
LT , weighted by the hyperparameter wabl:

Li
T = LF + wabl ∗ Li

AB (8)

Finally, when expanding Eq. 8, we obtain:

Li
T = LCE + w01 ∗ L01 + wabl ∗ Li

AB (9)

where LCE is the CrossEntropy loss (see Eq. 1), L01

is the Zero-One loss introduced in FairDARTS [5] (see
Eq. 3) and w01 is an hyperparameter weighting L01.

In section 5, we show that Li
T can warm start the search

process and provide a substantial increase in performance.
However, it also increases GPU memory usage signifi-
cantly, as shown in Section 5.2.

4.3 Building larger networks from a few
highly specialized cells

In previous works [5, 11, 22], the final network architec-
ture was derived from the two searched cells (i.e. normal
and reduce) which were stacked as much time as needed
to build a network with the desired number of layers (e.g.
10, 15 or 20 layers).

However, as presented in subsection 4.1, in D-DARTS,
we directly search for a “full” network of multiple indi-
vidual cells instead of searching for building block cells
as in DARTS [11]. But, the downside of this method is

that searching for a high number of cells is memory hun-
gry (see Section 5.3), as each cell must possess its own
optimizer, criterion and parameters. This is not a critical
issue as we show in section 5 that a few (e.g. 8) of these
highly specialized cells can outperform a large number of
base cells.

Nonetheless, it may be useful to use a larger number
of cells without spending additional search time, espe-
cially when dealing with highly complex datasets such
as ImageNet [6]. Thus, to save computation time and
still profit from a high number of layers, we developed
a new algorithm to derive larger architectures from an al-
ready searched smaller one, inspired by what is done in
DARTS [11]. The key idea behind this concept is to keep
the global layout of the smaller architecture with the re-
duction cells positioned at the 1/3 and 2/3 of the network,
similarly as in DARTS and FairDARTS [5], and repeat the
searched structure of “normal” cells in the intervals be-
tween the reduction cells until we obtain the desired num-
ber of cells. This process is summarized in Algorithm 1.

Algorithm 1 Algorithm describing the larger architecture
derivation process for D-DARTS
Require: List: C, list of searched cells
Require: Integer: n, desired number of layers
Ensure: List: Cf , list of cells that compose the derived architecture

Cf ← empty list()
m← euclidean division(|C|, 3)
m2← euclidean division(2 ∗ |C|, 3)
for i in [0, n] do

if n > |C| then
if i < euclidean division(n, 3) then

c← modulo(i,m)
else if i = euclidean division(n, 3) then

c← m
else if i > euclidean division(n, 3) and i <
euclidean division(2 ∗ n, 3) then

c← modulo(i,m2− 1−m) +m+ 1
else if i = euclidean division(2 ∗ n, 3) then

c← m2
else

c← modulo(i, |C| − 1−m2) +m2 + 1
end if

else
c← i

end if
append(c, Cf )

end for

Thus, Algorithm 1 allows us to obtain a larger architec-
ture without the need to launch a new search (i.e. without
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any overhead). In section 5, we show that doubling the
number of layers this way can result up to a 1% increase of
top1 accuracy when evaluating on CIFAR-100 [10]. How-
ever, the gain is more limited (around 0.15 %) for simpler
datasets such as CIFAR-10 [10] where the base model al-
ready performs very well.

5 Experiments

We focused on searching for convolutional network archi-
tectures and evaluating them on image classification tasks.

5.1 Experimental Settings

Experiments were conducted on CIFAR-10, CIFAR-
100 [10] (search, evaluation) and ImageNet [16] (transfer)
using Nvidia GeForce RTX 3090 and Tesla V100 GPUs.
We mostly use the same data processing, hyperparameters
and training tricks than FairDARTS [5] and DARTS [11].
However, due to the increase in memory consumption that
comes with the new search algorithm and loss (see Sec-
tion 5.3), we lowered the search batch size from 96 to
72, which had the negative effect of increasing the search
time. Moreover, we used PyTorch Automatic Mixed Pre-
cision to speed up floating point operations, mainly when
fully training models. Finally, we select the architectural
operations using FairDARTS edge (i.e. 2 operations max-
imum per edge) or sparse (i.e. 1 operation maximum per
edge) method with a threshold of σ = 0.8, meaning that
the maximum number of operations per edge is limited
to 2 as in [5, 11]. We chose w01 = 8 and wabl = 0.5
for the hyperparameters of total loss LT (see Eq. 8) as
discussed in Section 5.2. DARTS, on the other hand,
systematically selects the two operations with the high-
est softmax weights for each edge (this parsing method is
referred as darts in Table 1 and Table 3). Our implemen-
tation is based on PyTorch 1.7.1 and derived from the one
of [5].

5.2 Analysis of Ablation Loss: What impact
does it have?

5.2.1 Hyperparameter Choice

We made the hyperparameter weights of the ablation loss
wabl and the zero-one loss w01 from Eq. 8 vary in order
to choose their optimal value according to the global loss.
Thus, in Fig. 3 we madewabl vary from 0 to 2 while keep-
ing zero-one loss deactivated (i.e. w01 = 0) in order to an-
alyze its impact. We can see that an optimal value seems
to be attained around 0.5 with the global loss mainly in-
creasing when wabl reaches higher or lower values.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Ablation Loss Weight

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37
M

in
 G

lo
ba

l L
os

s (
af

te
r 5

0 
ep

oc
hs

)
LAB

Figure 3: Line plot of the minimal global loss obtained by
searching for a model on CIFAR-100 [10] for 50 epochs
w.r.t. the sensitivity weight wabl used for the ablation loss
LAB . We deactivated L01 (i.e. we setw01 = 0) to prevent
interference from occurring.

Moreover, we made the value of the sensitivity weight
w01 (used for L01, see Section 3) vary during search on
CIFAR-100, withwabl = 0.5 fixed, and reported the num-
ber of dominant operations (i.e. operations whose soft-
max weight value σ(α) is greater than 0.9). This experi-
ment was conducted in order to select a relevant value for
w01 since the value chosen by the authors of FairDARTS
[5] (w01 = 10) is no longer valid as the search process has
been altered. Fig. 4 shows that the proportion of dominant
operations steadily increases from w01 = 0 to w01 = 5
where it reaches a plateau and stabilizes. It is worth noting
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that for w01 = 5 and higher, nearly all operations softmax
values are either greater than 0.9 or inferior to 0.1. Finally,
we chose 7 as the optimal value for w01, as it offers both
a high number of dominant operations and an equilibrium
between operations whose softmax values is greater than
0.9 and those whose softmax value is inferior to 0.1.

0 2 4 6 8
w01

0

20

40

60

80

100

Nu
m

be
r o

f o
pe

ra
tio

ns
 (i

n 
%

)

( ) > 0.9
( ) < 0.1

both

Figure 4: Line plot showing the percentage of domi-
nant operations obtained in the final architecture α while
searching on CIFAR-100 w.r.t. the sensitivity weight w01

used for L01. We can see that the proportion of both types
of operations stabilizes afterw01 = 5 and reaches an equi-
librium at w01 = 7.

5.2.2 Ablation Study

We conducted an ablation study on our proposed abla-
tion loss LT (see Eq. 8). In particular, we compared
the performance of architectures with similar character-
istics searched either with LT or FairDARTS [5] loss LF

(see Eq. 4). Tables 1, 2 and 3 show that LT -searched
architectures (DD-3, DD-4, DD-5) outperform their LF -
searched counterparts by an average of 0.7 % across all
datasets, confirming the advantage procured by this new
loss function. When considering models that leveraged
Algorithm 1 to increase their number of layers (e.g. DD-2
and DD-4), this performance boost seems to be less sig-
nificant (e.g. around 0.1 % on CIFAR-100). In addition,
the loss impact is less important for sparse parsed models,
especially on CIFAR-10 (where DD-1 and DD-3 achieve

0 10 20 30 40 50
Epochs

50

60

70

80

90

Be
st

 T
op

-1
 V

al
id

at
io

n 
Ac

cu
ra

cy
 (i

n 
%

)

D-DARTS
DARTS
FairDARTS

Figure 5: Lineplot showing the best validation top-1 accu-
racy while searching on CIFAR-10[10] w.r.t. the current
epoch. D-DARTS clearly outperforms both DARTS and
FairDARTS by a large margin.

similar scores). This could be explained by the fact that
CIFAR-10 is a dataset simple enough for all methods to
always affect the same weight importance to the same op-
eration for each edge (as the sparse parsing method se-
lects only one operation per edge).

5.2.3 Convergence Speed

We conducted an experiment on model convergence speed
in order to compare the performance of D-DARTS with
previous baselines [11, 5]. Fig. 5 shows that D-
DARTS converges very quickly, hitting a final plateau
around epoch 40 and outperforming both DARTS and
FairDARTS respectively by 9 % and 14 %.

5.3 Memory Efficiency
When searching using LT (see Eq. 8), additional tensors
must be stored on GPU memory, due to the computations
required to obtain the marginal contribution of each cell.
The memory usage with LT can be much more than what
an LF -based search requires. For example, an LT search
increase in memory consumption can be around 100%
in memory consumption using an Nvidia RTX 3090 on
CIFAR-100 [10] with a batch size of 72, taking up to
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21911 MB of memory versus 11100 MB with LF . In
consequence, this can be identified as a critical issue of
our method: we have to find means to reduce this mem-
ory consumption so we could search for deeper networks
and make our method available to lower end GPUs.

5.4 Searching architectures on CIFAR
When searching and evaluating on CIFAR-10 and
CIFAR-100 [10], we mainly use 8 layer networks and se-
lect either 1 or 2 operations per edge in order to test how
smaller architectures compete with larger ones. We also
compared the performance of models using FairDARTS
[5] loss function with ones using our new ablation-based
total loss function LT so we may assert its effective-
ness (see Section 5.2). For instance, when consider-
ing edge parsed models evaluated on CIFAR-10, the 8-
cell model DD-4 reached a top-1 accuracy of 97.48 %,
thus outperforming DD-2 (i.e. a model trained without
ablation-based loss) by around 0.4 %. However, results
are more mixed for sparse parsed models (DD-1, DD-
3, DD-5) as they all achieve similar results (around 97
%) no matter the dataset CIFAR-10 or CIFAR-100, or
the loss, LT rather than LF . This could be explained by
the fact that CIFAR-10 is a dataset simple enough for all
methods to always affect the same weight importance to
the same operation for each edge (as the sparse parsing
method selects only one operation per edge). Nonethe-
less, NestedDARTS models all reach competitive results
in both datasets. The smaller ones, such as DD-1 or DD-3,
can achieve the same level of performance than previous
baselines while possessing significantly less parameters
(e.g. 1.7M against 2.8M for the smallest model of [5])
while the largest can leverage better results (e.g. 84.15
% top-1 accuracy for DD-4 on CIFAR-100). One addi-
tional point to note is that our proposed ablation-based
loss LT seems to provide a larger increase in performance
for CIFAR-100. For example, it is around 1 % for CIFAR-
100 between the 8-cell versions of DD-2 and DD-4. How-
ever, this gap seems to tighten when resorting to Algo-
rithm 1 to deepen the architectures (e.g. there is only
a 0.1 % increase between the 14-cell versions of DD-2
and DD-4). Moreover, using Algorithm 1 effectively pro-
vides a performance boost in both datasets (e.g. around
0.3 % for DD-4 when using 14 cells instead of 8) thus
asserting its usefulness. Finally, one last comment is that

there is a consequent performance variation (e.g. around
0.5 % between DD-4 and DD-5 on CIFAR-10) when us-
ing the edge parsing method rather than the sparse one
while making the number of parameters double. Inter-
estingly, this impact is more important in CIFAR-100
(around 0.8 %). This may be related to the fact that us-
ing larger architectures is less pertinent on simple datasets
such as CIFAR-10 where sparse models already achieve
very high top-1 scores (greater or equal to 97 %) while it
is much more relevant on more challenging datasets like
CIFAR-100. All results are presented in details in Table 1
and Table 2.

5.5 Transferring to ImageNet
In order to test our approach on a more challenging
dataset, we transferred our best models searched on
CIFAR-10 and CIFAR-100 [10] to ImageNet [16], and
trained each with and without our proposed ablation loss
LAB in order to conduct an ablation study (see Section
5.2). We trained models using an RTX 3090 and we kept
the same hyperparameters and tricks as in [5, 11]. Train-
ing a model for 400 epochs takes around 10 days on a
single GPU. Table 3 shows that model DD-5 (transferred
from CIFAR-100) reached a top-1 accuracy of 75.03 %,
outperforming DARTS [11] by 1.7 %. However, DD-5
does not reach the level of performance of FairDARTS-
D [5], mainly because it was searched on CIFAR-100
and not on ImageNet. Finally, there is an important gap
(around 3.7 %) between DD-2 and DD-5, showing that us-
ing both LT and CIFAR-100 makes a significant impact
on performance.

6 Discussion
In Section 4 we proposed a new approach for differen-
tiable architecture search that is based on a cell-level
distributed search mechanism. Instead of searching for
building blocks, we directly search for a complete su-
per network composed of multiple subnets nested at the
cell-level. To bring an additional performance boost to
this new mechanism, we also introduced an ablation-
based loss function that leverages Game Theory concepts
in order to take into account the marginal contributions
of each cell to the common goal (i.e. the classifica-
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Models Params
(M)

Parsing
Method Loss Top-1

(%) Layers Search Cost
(GPU-days)

Searched
On Type

NASNet-A[24] 3.3M N.A. N.A. 97.35 N.A. 2000 CIFAR-10 RL
DARTS[11] 3.3 darts LCE 97.00 20 1.5 CIFAR-10 GD
PC-DARTS[22] 3.6 darts LCE 97.43 20 3.8 CIFAR-10 GD
P-DARTS[4] 3.4 darts LCE 97.50 20 0.3 CIFAR-10 GD
FairDARTS-a[5] 2.8 sparse LF 97.46 20 0.4 CIFAR-10 GD

Ours

DD-1 1.7 sparse LF 97.00 8 0.5 CIFAR-10 GD
DD-2 3.3 edge LF 97.11 8 0.5 CIFAR-10 GD
DD-3 1.7 sparse LT 97.02 8 0.5 CIFAR-10 GD
DD-4 3.9 edge LT 97.48 8 0.9 CIFAR-100 GD
DD-4 3.9 edge LT 97.75 14 0.9 CIFAR-100 GD
DD-5 1.7 sparse LT 97.01 8 0.9 CIFAR-100 GD

Table 1: Comparison of models on CIFAR-10 [10]. Each reported Top-1 accuracy is the best of 4 independent runs.
For previous baselines, results are the official numbers from their respective papers with the search cost expressed
with the GPU used by the authors.

tion task). Moreover, since it would be too costly to di-
rectly search for large networks, we presented Algorithm
1, a procedure to automatically derive larger architectures
from smaller ones by stacking multiple times specific se-
quences of cells.

In Section 5 we showed that these proposed concepts
perform well but are not exempt from limitations. In par-
ticular, this approach is less efficient w.r.t. memory (see
Section 5.3) as with previous baselines [11, 5]. Finding
ways to reduce video memory consumption would allow
to directly search for larger architectures (e.g. 12 or 14
layers) that could prove highly beneficial for challenging
tasks such as ImageNet [10].

Nonetheless, combining the sparse threshold parsing
method with our distributed design allowed to obtain
architectures that are of an unprecedentedly small size
(around 1.7 M for the tiniest) and can still yield competi-
tive results. Furthermore, while using the edge threshold
parsing method, it is also possible to search for larger size
models that reach state-of-the-art results. This demon-
strates the flexibility and the usefulness of our method.

7 Conclusion and Future Work

In this paper, we proposed a new cell-based approach for
DARTS in section 4 and showed in section 5 that it effec-
tively achieves state-of-the-art results on popular datasets
while restricting architectures to a moderate size. In ad-
dition, our novel architecture derivation algorithm allows
us to derive larger architectures from only a small number
of cells, without further training.

However, this does come at the cost of an increase in
memory usage. This is mainly due to the greater num-
ber of optimizers and search parameters as well as addi-
tional computations done by the loss function that slows
down the search process as we have to cope with a lower
batch size. Thus, our future work will focus on improv-
ing memory usage to speed up the search process. Fur-
thermore, many ideas around this approach have not been
explored yet, such as improving the selection of search
hyperparameters, improving cell optimizers or reducing
the search cost by adding a weight sharing mechanism.
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