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Abstract— This paper presents a new approach to recover
the depth information from images of a monocular vision
system. The depth’s estimation for a point is achieved by
designing a nonlinear observer based on a polytopic a structure.
The fulfillment of the conditions of the state estimation, that
depends on the applied velocities for the nonlinear system, is
required. To this end, the observability analysis is performed
to establish the kinematic conditions for the reconstruction of
unmeasured states. The stability analysis is carried out using
Lyapunuv theory. The observer gains were computed from the
resolution of the Linear Matrix Inequality (LMI) constraints.
Illustrations and simulation results are given at the end to prove
the effectiveness of the proposed approach.
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I. INTRODUCTION

During the last decades, the observation techniques for
nonlinear systems have received a large interest within
control community, and many works have been devoted for
the design of different observers in order to enhance the re-
liability and performance, since in many control applications
the state vector availability is required.
A great deal of applications, where the camera is used,
require in general precise knowledge of the depth. Many
works have previously dealt with recovering the 3D structure
for common applications, like reconstructing the 3D scene,
or obtaining the pose of an object by means of different
observation techniques. Filtering techniques have been used
for extracting the 3D structure like an Extended Kalman
Filter (EKF) [15] that is based on a local linearization of
the system, which does not approximate well enough a
highly nonlinear system, and cannot describe the system
dynamics. Besides it requires jacobian matrices calculations,
which is difficult to be derived analytically due to compli-
cated derivatives, or numerically since it involves a high
computational cost. Another filtering technique based on an
Unscented Kalman Filter was presented in [16], the main
drawback of this approach is being explicitly limited to
gaussian probability distribution. In [10], the problem of the
depth observation within classical visual servoing schemes is
solved, also in [1], Structure from Motion (SfM) is addressed
with active optimization of the estimation error transient
response to enhance the convergence rate, by applying some
constrains on the camera motion. Same thing was done in
[7] using two different parametrization based on both planar
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and spherical projection. However, the theoretical analysis
of all these works neglect a perturbation term so that the
exponential stability can be proved. In this paper, we present
a novel method for depth estimation to remedy the problems
stated before, considering linear parameter-varying (LPV)
model of the system that defines the relation between the
variation of the feature coordinates and the instantaneous
camera velocity [15]. The present technique takes the inverse
of the depth as an unmeasured state with known dynamics
and uses Thau-Luenberger observer for T-S fuzzy systems
[11] assuming a perfect knowledge of the camera intrinsic
parameters. Nevertheless, in our case due to the fact that
the observability condition depends on the current states and
applied inputs, usually refers to non-uniformly observable
system, may influence the fulfillment of the observability
criteria. Thus we rely on appropriate inputs excitation so
that the observation properties hold.
Designing a T-S observer is achieved when a set of criterion
enabling the state reconstruction are met and this problem
is usually formulated using the Linear Matrix Inequalities
(LMI) [12]. Takagi–Sugeno (T–S) systems have received
considerable attention in recent years [19]–[21], for the
reason of its capability of representing a large class of
nonlinear systems with reduced mathematical complexity.
The structure can describe both discrete [24], [25] and
continuous [23] systems using measurable or unmeasurable
premise variables. The convergence conditions when using
Takagi–Sugeno (T–S) structure is usually expressed in terms
of linear matrix inequality (LMI), to obtain the observer
gains. LMI formalism is used also to assign the closed loop
poles in a specific region in the complex plane to guarantee
a satisfactory transient convergence responses [26], [27].
This paper is organized as follows: section.II introduces
basic definition and the description of the nonlinear model.
Subsequently, section.III gives the T-S representation of
the system and discusses the observability analysis. sec-
tion.IV covers the nonlinear observer design. Experiments
are conducted to discuss the performances of the proposed
observer and comparing this later to the one presented in [1]
in section.V, Finally section.VI draws some conclusions and
future perspectives.

II. MATHEMATICAL BACKGROUND

For better readability, we adopt the following notation:
the matrices are represented in upper case bold letters X
and vectors are in lower case bold letters x otherwise, the
remaining notations represent scalars (x or X).



Before formulating our problem, recall the following basic
definitions and lemmas which will be used in the proof of
our main results.

Theorem 1 (Kalman Observability Rank Condition): For
every matrix A ∈ Rn×n and C ∈ Rm×n. The time invariant
linear system:

{
ẋ(t) = Ax(t)
y(t) = Cx(t)

(1)

is observable if and only if the mn×n the given observability
matrix O has a full rank of n. :

O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
CA
⋮

CAn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

Lemma 1: For every matrix G=GT > 0, X and Y with
appropriate dimensions, the property below holds [28]:

XTY +YTX ≤ XTGX +YTG−1Y (3)

Lemma 2 (the Schur complement [8]): consider
following convex nonlinear inequalities:

R > 0, Q − SR−1ST > 0 (4)

where Q = QT and R = RT . Hence, the previous inequali-
ties can be written in the following form:

[
Q S

ST R
] > 0 (5)

A. Conventional camera model

Let P be a 3-D point of coordinates P = (X Y Z)⊺ defi-
ned in the camera frame Fc. Its imaging by the conventional
camera is obtained through the well known pinhole model
(figure 1)
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Fig. 1: Pinhole camera projection

More precisely, the 3-D point P is projected in the image
as a 2-D point with homogeneous coordinates given by the
vector m as:

m = (x y 1)
⊺

=
1

Z
P (6)

The velocity of the 3D point P is related to the camera
special velocity by:

Ṗ = −υ +P × ω = (−I [P]×) u (7)

where []× refers to the skew-symmetric matrix of a given
vector, u = (υ⊺ ω⊺)

⊺

is the measured spatial velocity of the
camera motion, with υ = (υx υy υz)

⊺ and ω = (ωx ωy ωz)
⊺

are respectively, the instantaneous linear and angular velocity
of the camera frame origin. From (7), the dynamics of the
inverse of the depth 1

Z
is given by:

d( 1
Z
)

dt
= (0 0 −

1
Z2 −

y
Z

x
Z

0) u (8)

The time derivative of the image point m is linked to the
camera spatial velocity u by the following interaction matrix
[13]:

ṁ = (
− 1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

(1 + y2) −xy −x
) u (9)

One can note that the inverse of the depth 1
Z

appears li-
nearly in the elements of the interaction matrix corresponding
to the linear velocities υ.

Let us now define X = (s⊺, χ) as the state vector with
s = (x y)⊺ ∈ R2 is a measurable vector, and χ = 1

Z
∈ R is

the unmeasurable 3D data that we want to estimate. Using
(9) and (8), the dynamics of the state vector is given by:

{
ṡ = fm(s,u) +ΩT(s,u) χ
χ̇ = fu(s, χ,u)

(10)

where the vectors ΩT(s,u) ∈ R2, fm(s,u) ∈ R2 and
fu(s, χ,u) ∈ R are generic and sufficiently smooth w.r.t
their arguments and they are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fm(s,u) = (
xy −(1 + x2) y

1 + y2 −xy −x
)ω

ΩT(s,u) = (−vx + xvz −vy + y vz)

fu(s, χ,u) = vzχ
2 + (y ωx − xωy)χ

(11)

In the upcoming sections, the dynamic model given in
(10) will be expressed in a T-S form in order to design a
polytopic Thau-Luenberger observer to estimate the depth
information χ.

III. POLYTOPIC FORMULATION & OBSERVABILITY
ANALYSIS

This section presents the new formulation of the vision
system model into the Takagi-Seguno (T-S) [3] and the
analysis of the system uniform observabilty.



A. Sector Nonlinearities Representation

Our aim is to design a nonlinear observer which estimates
the depth information 1

Z
during the camera motion. For this

purpose, we adopt a new representation of the system (10),
which can be expressed in the state space form given by:

{
Ẋ = A(X,u) X +B(y) ω
y = CX

(12)

where:

A(X,u) =

⎛
⎜
⎜
⎝

0 0 −vx + xvz
0 0 −vy + yvz
0 0 χvz + ywx − xwy

⎞
⎟
⎟
⎠

B(y) =

⎛
⎜
⎜
⎝

xy −(1 + x2) y
1 + y2 −xy −x

0 0 0

⎞
⎟
⎟
⎠

and y represents the output of the system with:

C = (
1 0 0
0 1 0

)

As said before, a T-S model is composed of a finite set
of a weighted linear systems, used to achieve a trade-off
between the accuracy and complexity of the model [3]–[5].
The previous system can be approximated or represented by
an r sub-models. The mathematical formulation of the T-S
model of the system is given by:

Ẋ =
8

∑
i=1

µi(X)(Ai X +B(y) ω) (13)

where Ai ∈ R3×3, B ∈ R3×3 and X ∈ R3×1 is the state
vector.

The weighting functions µi, i = 1, . . . , r satisfy the convex
sum property expressed by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ⩽ µi ⩽ 1
8

∑
i=1
µi = 1

(14)

the system has the following three nonlinearities:

h1 = −vx + xvz h2 = −vy + yvz h3 = χvz + ywx − xwy

These terms are bounded, so that the T-S model obtained
is a weighted sum of an eight sub-models, that corresponds
exactly to the nonlinear model on the considered compact
bounds. For more information, please refer to [28].

B. Uniform Observability Analysis

Before going any further in the design of the observer,
we should discuss the observability properties of the system.
Following theorem 1 of Kalman Observability Rank Condi-
tion, the observability matrix of system (12) is expressed by:

O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 xvz − vx
0 0 yvz + vy
0 0 −(xvz − vx)(vzχ − ωyx + ωxy)
0 0 −(yvz − vy)(vzχ − ωyx + ωxy)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The system is uniformly observable if and only if
rank(O) = 3. After a quick verification of the matrix O,
one can state that the system (12) is uniformly observable
when xvz − vx ≠ 0 or yvz − vy ≠ 0.

This means that the linear velocities should be known
and well excited to avoid the previous two conditions. In
other words the feature point should be different than the
optical point when the camera moves on the optical axis
(figure fig:pinhole). Moreover, one can notice that the angular
velocity doesn’t affect the observability of the system.

IV. DESIGN OF THE POLYTOPIC OBSERVER

In this section we are interested in estimating the states
using an adequate polytopic observer of the form:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

˙̂X =
8

∑
i=1
µi(X̂)(AiX̂ +Li(y − ŷ)) +Bω

ŷ = CX̂
(15)

The estimated state and output vector are respectively
denoted X̂ and ŷ.

Our aim then is to compute the gain Li to ensure the
convergence of the following estimation error asymptotically
to zero.

e(t) = X(t) − X̂(t) (16)

In what follows we omit the time dependency for simplicity
sake. The dynamics of the error is modeled by:

ė = Ẋ − ˙̂X

=
8

∑
i=1

µi(X)(AiX +Bω) −
8

∑
i=1

µi(X̂)(AiX̂ +Bω +Li(y − ŷ))

=
8

∑
i=1

µi(X)AiX −
8

∑
i=1

µi(X̂)(AiX̂ +Li(y − ŷ)) (17)

then:

ė =
8

∑
i=1

µi(X̂)(Ai −LiC)e +
8

∑
i=1

(µi(X) − µi(X̂))AiX (18)

By replacing the expressions
8

∑
i=1
µi(X̂)(Ai − LiC) and

8

∑
i=1

(µi(X) − µi(X̂))AiX by Ae and ∆(X̂,X) respectively,

one can obtain:

ė = Aee +∆(X̂,X) (19)

Assume that X and X̂ are bounded, and since µi(X), µi(X̂)

and Ai, i = 1, . . . ,8 are also bounded, we can say that



∆(X̂,X) fulfills the Lipschitz condition in some region of
interest:

∆(X̂,X)
T∆(X̂,X) =∥(∆(X̂,X)∥

2
< γ∥X̂ − X∥

2
= γ∥e∥

2

(20)
the notation ∥.∥ represents the 2-norm and γ > 0 is the
Lipschitz constant.

To satisfy the asymptotic stability of system (19), we draw
two conditions [11]:

1) the system Ae is Hurwitz.

2) ∆(X̂,X) is a vanishing disturbance i.e:

∆(X̂,X)→ 0 when X̂ → X
The first condition implies that there exists a positive definite
symmetric matrices Q ∈ Rn×n and P ∈ Rn×n such that the
following inequality holds:

Ae
TP +PAe ⩽ −Q (21)

which means:

(Ai −LiC)
TP +P(Ai −LiC) ⩽ −Q i = 1, . . . ,8 (22)

Furthermore the stability analysis of the error dynamics
(19) is investigated using Lyapunov theory by considering
the following quadratic storage function:

V = eTPe P = PT
> 0 (23)

Taking the time derivative of the Lyapunov function and
substituting the estimation error derived previously we get:

V̇ = ėTPe + eTPė

= (eTAe +∆
T
(X̂, X))Pe + eTP(Aee +∆(X̂, X))

= eT
(Ae

TP +PAe)e +∆
T
(X̂, X)Pe + eTP∆(X̂, X)(24)

Recalling that the variation of the Lyapunov function must
be definite negative, it follows that:

V̇ = eT
(Ae

TP+PAe)e+∆
T
(X̂, X)Pe+ eTP∆(X̂, X) ⩽ 0 (25)

This expression can be simplified using lemma 1, by
taking G as a scalar denoted by ε:

∆T
(X̂, X)Pe + eTP∆(X̂, X) ⩽ ε∥(∆(X̂, X)∥

2
+
1

ε
eTP2e (26)

Hence, the resulting inequality is given by:

eT
(Ae

TP +PAe)e + ε∆
T
(X̂, X)∆(X̂, X) +

1

ε
eTP2e ⩽ 0 (27)

Since the nonlinear part defined by ∆(X̂,X) satisfies the
Lipschitz condition (20), we derive the following inequality:

eT (Ae
TP +PAe + εγ

2
+

1

ε
P2

)e ⩽ 0 (28)

This inequality can be expressed as LMI constrains, taking
into consideration the previous equation and using the Schur
complement lemma 2, one can get:

[
−Q + εγ2 P

P −ε
] < 0 (29)

The rate of convergence of the state estimation error to zero
is governed by the pole placement of the matrix Ae. The
eigenvalues can be assigned in a particular regions [17] or in
a constructed region using the intersection of different LMI
regions. The one chosen here defined by the combination
of a disk of radius β centered at (0,0) and the half plane
delimited by the value α. i.e:

S(α,β) = {z ∈ C, R(z) < −α, ∣z∣ < β}

Where R denote the real part of a given complex number.
This pole clustering is governed by the following

constraints:

P = PT
> 0 (30a)

(
βP Ae

Ae
TP βP

) < 0 (30b)

Ae
TP +PAe + 2αP < 0 i = 1, . . . ,8 (30c)

We notice that after placing the poles we have a redundant
definition of the inequalities (22) and (30c). Thus, we assume
that Q = 2αP.
Substituting the term Ae in the previous equations, the
observer gains satisfying the pole clustering are calculated
under the following constraints:

(
−2αP + εγ2 P

P −ε
) < 0 (31a)

8

∑
i=1

µi(X̂)(
βP P(Ai −LiC)

(Ai −LiC)TP βP
) > 0 (31b)

8

∑
i=1

µi(X̂)((Ai −LiC)
TP +P(Ai −LiC)) + 2αP < 0

(31c)
The variables must appear linearly in the constraints derived
in order to obtain solvable LMIs. For this reason change of
variables below is adopted: η̄ = εγ2 and Fi = PLi which is
equivelent to :

[
−2αP + η̄ P

P −ε
] < 0 (32a)

(
βP PAi +FiC

AT
i P +CTFTi βP

) > 0 (32b)

AT
i P+CTFTi +PAi +FiC+ 2αP ⩽ 0 i = 1, . . . ,8 (32c)

This implies that if there exist a a positive definite symetric
matrix P ∈ R3×3, matrices Fi ∈ R3×3, positive scalars η̄ and
ε so that the LMIs constrains to be satisfied. The resulting
observer gain is given by Li = P−1Fi.
The condition (29) guarantees the stability of the system, yet
the conditions (32) allow us to place the poles in order to
improve the performance of the error convergence.



V. SIMULATION RESULT

In this section we report the simulation results that illus-
trates the depth recovering using the proposed technique, and
compare this later to the one presented in [1].

Simulations are carried out using Matlab where a synthetic
set of images is generated using a known camera motion.
The depth information measurements (χ) of the tracked
point feature as well as its image coordinates denoted by
s = (x y)⊺ are computed offline to serve as a ground-truth
data for comparison.

The observers behavior is performed using three different
initial conditions χ̂ = 0.1, χ̂ = 0.5 and χ̂ = 1. Two
cases during the simulation are considered: with and without
measurements noise.

To have a fast convergence, pole clustering taken in the
region S(α,β) defined by β = 100 and α = 10 shows a
satisfactory response. The obtained gains calculated from the
resolution of the LMIs (32) are given by (Li gain matrices
are given in the appendix 34):

ε = 104 γ = 10−7

p = 10−10
⎛
⎜
⎜
⎝

0.8951 −0.1217 0.0008
−0.1217 0.9032 0.0019
0.0008 0.0019 0.0000

⎞
⎟
⎟
⎠

Figure (2) shows the error between the ground truth
data and the T-S model of the system for (x y χ) denoted
respectively by ∆x, ∆y and ∆χ. The order of the error
indicates the perfect match between the real data and T-S
model, based on which the observer is designed.

0 1 2 3 4 5

-6

-4

-2

0

2

4

6
10

-17

Fig. 2: Error between the ground truth data and the states of
T-S model.

In the sequel we report the simulation results, for both
polytopic Thau-Luenberger observer and the one proposed
in [1] using a set of images that has been generated for the
following applied linear/angular velocities of the camera:

υ = (− 1
5

1
10

sin(4πt + π
2
) − 1

10
)
⊺

ω = (0 0 − 1
5

sin(π
2
t) − 1

100
)
⊺

.

An example of first and final images of the synthetic set are
shown in figure 3. The red dot is the tracked point, that we
want to estimate its depth, and the blue line is the trajectory
of the feature point when the camera is moving.

(a)

(b)

Fig. 3: Reference (a) and final synthetic image (b).

The overall comparison between our approach and the one
proposed in [1] based on the results reported in the figures (4)
and (5), shows that both observers converge to zero. One can
note that the proposed observer converges rapidly to the real
values as compared to the one presented in [1]. assigning
the poles in the desired regions enabled us to get a fast
convergence rate, as can be seen in the figures above, for both
cases when the measurements are effected by the noise and
when they are not, the observer converges to the actual values
within 0.2 seconds, whereas the observer proposed in [1]
attain the actual values after 2 seconds. However figures (5)
illustrates that our observer is more prone to measurements
noise, as for the observer proposed in [1], it shows robust
response when the measurements are affected by noise.

In order to make an objective comparison between both
observers, the values shown in table I, quantifies the error
performance based on the Root Mean Squared Error (RMSE)
formula given as:

RMSE =

√
1

n
Σn
t=1(χ − χ̂)

2
t (33)

TABLE I: Comparison of the Estimation Errors for both
observers based on RMSE

Observer Result using
our approach

Result using
the observer of
[1]

without χ̂ = 0.1 0.0113 0.0274
measurements χ̂ = 0.5 0.0257 0.0621

noise χ̂ = 1 0.0718 0.1723
with χ̂ = 0.1 0.0117 0.0274

noisy χ̂ = 0.5 0.0262 0.0621
measurements χ̂ = 1 0.0721 0.1723

The results in tables I, indicates that the calculated RMSE
values of the estimation error for the observer proposed in [1]
is larger than the values computed for our observer, which
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Fig. 4: Simulation results of the estimation error for the
following initial values of χ̂ (a) χ̂ = 0.1, (a) χ̂ = 0.5 and
(c) χ̂ = 1 without measurements noise.

means that, the approach presented in this paper is more
accurate than the one proposed in [1].

VI. CONCLUSIONS

In this paper, an approach consisting on designing a non-
linear observer that recovers the current value of the depth
during robot/camera motion was proposed. To do a rigorous
stability analysis, the nonlinear system is described by T-
S model with unmeasured premise variable that depend on
system states. The convergence of the state estimation error
is established using Lyapunov theory through a quadratic
Lyapunov function candidate also to ensure a satisfactory
response of the error estimation, pole clustering in a pres-
cribed LMI region is considered along with the convergence
conditions of the estimation error, and are expressed in terms
of LMIs constraints then the observer gains are obtained by
solving the feasibility of these LMIs. The simulations and
results has proved that the proposed approach to estimate
the depth of the feature point performs well comparing to
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Fig. 5: Simulation results of the estimation error for the
following initial values of χ̂ (a) χ̂ = 0.1, (b) χ̂ = 0.5 and
(c) χ̂ = 1 with noisy measurements .

the approach presented in [1]. The contribution of this work
consisted on giving a novelty description of the relation
between the feature extracted from the image and = the
linear/ angular velocity of the camera using T-S represen-
tation and synthesis a nonlinear observer without assuming
approximation.

Concerning our future work we are going to consider
camera auto-calibration that is to say recovering the focal
length and the depth using the same observation approach
proposed in the present paper also to consider more scenarios
and real experiments.



APPENDIX

L1 = 104
⎛

⎜

⎝

0.0089 0.0021
0.0037 0.0108
−1.8819 −1.8409

⎞

⎟

⎠

L2 = 104
⎛

⎜

⎝

0.0105 −0.0031
0.0080 −0.0023
−3.4109 3.7088

⎞

⎟

⎠

L3 = 104
⎛

⎜

⎝

0.0085 0.0021
0.0031 0.0106
−1.8531 −1.8538

⎞

⎟

⎠

L4 = 104
⎛

⎜

⎝

0.0103 −0.0031
0.0075 −0.0016
−3.1634 3.4488

⎞

⎟

⎠

L5 = 104
⎛

⎜

⎝

0.0019 0.0042
−0.0066 0.0138
3.5075 −3.2689

⎞

⎟

⎠

L6 = 104
⎛

⎜

⎝

0.0028 −0.0046
−0.0071 −0.0007
2.9089 3.0488

⎞

⎟

⎠

L7 = 104
⎛

⎜

⎝

0.0021 0.0041
−0.0064 0.0135
3.3622 −3.1276

⎞

⎟

⎠

L8 = 104
⎛

⎜

⎝

0.0035 −0.0039
−0.0059 0.0006
2.3795 2.5010

⎞

⎟

⎠

(34)
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