
Abstract—The purpose of the present work is the recon-
struction of motorcycle lateral dynamics. The main idea is to
estimate pertinent states and unknown inputs (rider action) with
respect to nonlinear outputs due to motion transformation frames
(inertial sensors are away from the local frame). To overcome
this issue, we propose a new Unknown Input Observers with
variable output matrix. In this paper, we take into account
the ground truth measurements provided in the body-fixed
frame, parametric uncertainties as well as sensors noise. This
step leads to a nonlinear parameter-dependent output equation
with unmeasured premise variables in the observer design. The
observer synthesis is specified in term of convergence and stability
study by considering a quadratic Lyapunov function associated
with the Input To State Stability (ISS) property. Sufficient
conditions are agreed in terms of Linear Matrix Inequalities
(LMIs). Finally, the performances, usefulness and robustness
of the proposed approach are assessed throughout an electric
Scooter under urban riding scenario.

Index Terms—Nonlinear Output, Quasi-LPV Observer, ISS
Stability, Motorcycle Lateral Dynamics.

I. INTRODUCTION

Nowadays, vehicles are increasingly sophisticated and
equipped with advanced driver assistance systems (ADAS).
The objective of these assistance systems is to provide vehi-
cles, the environment and the infrastructure with intelligence
and autonomy. In fact, autonomous driving and road safety
have become real challenges, therefore ADAS development
is attracting great interest, particularly around vehicle local-
ization, autonomous guidance, obstacle avoidance, pedestrian
detection, stability control, etc. Most of them are dedicated
to improve safety by warning the driver of dangerous sit-
uations and sometimes by acting on the dynamics of the
vehicle. Unfortunately, we are far from this excitement from
the bike side. Indeed, the powered motorized two-wheeled
vehicle (PWTv) market being less expensive, it is difficult
to cover instrumentation and Research & Development costs
with an attractive selling price. In addition, most of these
assistance systems are based on mathematical models of the
vehicle, and motorcycles are much more complex to model
and highly non-linear than four-wheeled vehicles. The delay
in the development of advanced assistance systems is not
without consequence since accidentology of motorcyclists is
really alarming worldwide [1].

Today some safety systems exist on motorcycle market:
Braking System (ABS), Traction Control System (TCS), Mo-
torcycle Stability Control (MSC), etc. But the majority of
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them are set on premium motorcycles class which represent
a little proportion of the motorcycle park. Estimation tech-
niques are main outfits to make easier the development of
ADAS and hence reducing the cost. Lot of recent works deal
with motorcycle dynamic state estimation [2], [3], [4] but
few of them perform experimental investigations to validate
the results. In [5] and [6] experimental tests are performed
but only lateral dynamics estimation is considered. In [7]
authors proposed a more complete experimental investigation
to validate estimated states with extended Kalman filter but
only constant forward speed case is considered. This issue
was addressed in [8]. Unfortunately, all these works consider a
constant output matrix which is a strong assumption. Because
of the distance between the inertial measurement (near to
the center of gravity) and body fixed frame. This induces
significant errors in certain riding conditions (cornering, high
speed, etc.). We introduced recently an interesting extension
to our previous works on the estimation of the motorcycle’s
lateral and steering dynamics with nonlinear outputs [6] where
we present here some updates as well as an experimental
application to motorcycles.

Presently, the Inertial Measurement Unit (IMU) is the best
motion sensor used in automotive applications. IMUs provide
a measurement in the six Degrees of Freedom (DoF) of the
vehicle motion. However, these measurements should be trans-
formed to the vehicle body frame. Otherwise, the IMU mount-
ing should be included to reformulate the dynamics model
output in order to be coherent with sensor measurements.
This reformulation could enhance the estimation algorithm
and allows avoiding significant errors in the PTWv’s motion
interpretation with respect to the car vehicle where the roll
angle is neglected.

The main contribution of this paper is the robustness study
towards the parametric uncertainties and sensors noise and, on
the other hand, the experimental validation of the proposed
works in [6] by designing a new unknown input observer
(UIO) with variable output matrix. The observer design is
based on a simple two bodies model of the electric scooter
which allows to get very good estimation time performance.
Let us remind that the considered UIO is able to simultane-
ously estimate every lateral dynamic states and rider action
without any forward speed limitation.

This paper is structured as follows: Section II introduce
dynamic modeling and misalignment problem. Section III
explains how the proposed robust observer is derived. Sec-
tion IV discusses the results of the experimental tests. Finally,
section V presents concluding remarks and discussions.
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II. DYNAMIC MODEL DESCRIPTION

A. Lateral Dynamics Description

The lateral dynamics of the PTWv (Fig. 1) is considered as
presented in Sharp’s 71 model [9]. This model captures the
lateral displacement vy, the yaw motion ψ , the roll motion φ

of the main vehicle’s body Gr and the steering motion δ of the
front body G f . These 4 DoF are combined with the relaxation
behavior of the nonlinear front and rear tire forces Fy f and Fyr.
By choosing the state vector x(t) = [φ δ vy ψ̇ φ̇ δ̇ Fy f Fyr]

T ,
the PTWv dynamics state-space representation is:

Ēẋ = Ā(vx(t))x(t)+ B̄τ(t) (1)

where τ is the unknown rider’s torque and vx(t) is the time-
varying forward speed. Matrices Ē = [ei j], Ā(vx) = [ai j] and B̄
and their parameters are given in appendix [6].
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Fig. 1. The geometry of the two-body model of the PTWV.

B. Motorcycle Instrumentation and Sensor Alignment

The IMU sensor is usually mounted at point Gm near to
the center of gravity of the main motorcycle’s body, Gr. It
provides the three body-fixed linear accelerations axb f , ayb f
and azb f and the three angular rates ψ̇b f , φ̇b f and θ̇b f . All these
measurements are expressed in the IMU body-fixed frame as
illustrated in Fig. 2.
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Fig. 2. The PTWv accelerations expressed in the IMU reference frame.

In almost study cases, the dynamics model’s outputs ex-
pressed in the vehicle reference frame (A,~iA,~jA,~kA), and the
IMU measurements expressed in the IMU reference frame

(Gm,~ib f ,~jb f ,~kb f ) are supposed to be the same. If this assump-
tion is relatively true for cars, it is not coherent with the PTWv
motion where the roll angle can reach 45◦. In that case, this
assumption considerably affects the system’s observability.

Let’s denote cos(β ), sin(β ), tan(β ) and sinc(β ) with their
abbreviations cβ , sβ , tβ and scβ , where sinc(β ) = sin(β )

β
. Since

the IMU box is not aligned with the vehicle reference frame,
then the accelerations in the Y and Z axis in the body-fixed
frame can be approximated by:

ayb f = aycφ −gsφ (2)
azb f =−aysφ −gcφ

In addition, in cornering steady state, the lateral acceleration
in the vehicle reference frame can be computed from the tire
forces as May = Fy f +Fyr. Thus, acceleration ayb f becomes:

ayb f =
cφ

M
(Fy f +Fyr)−gsφ (3)

On the other hand, the vehicle orientation is described by Euler
angles: roll (φ ), pitch (θ ) and yaw (ψ) which are related to
the IMU body-fixed angular rates by [10]:

φ̇ = φ̇b f + tθ sφ θ̇b f + cφ tθ ψ̇b f
θ̇ = cφ θ̇b f − sφ ψ̇b f
ψ̇ = sφ/cθ θ̇b f + cφ/cθ ψ̇b f

(4)

By some algebraic manipulations, the body-fixed angular rates
are expressed as follows:

θ̇b f = ψ̇sφ , ψ̇b f = ψ̇tφ sφ , φ̇b f = φ̇ (5)

Hence, the IMU sensor outputs are established and can be
related to the state vector x(t) by:

y(t) =
[
δ (t) , ψ̇b f (t) , φ̇b f (t) , δ̇ (t) , ayb f (t)

]T
=C(x(t))x(t) (6)

where the output matrix C(x(t)) is expressed by:

C(x(t)) =


0 1 0 0 0 0 0 0
0 0 0 tφ sφ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

−g.scφ 0 0 0 0 0 cφ

M
cφ

M


Since the matrix Ē is non-singular, the model given by (1) can
be written in a quasi linear parameter varying (LPV) form as:{

ẋ(t) = A(vx(t))x(t)+Bτ(t)
y =C(x(t))x(t) (7)

where: A(vx) = Ē−1Ā(vx) and B = Ē−1B̄.

C. TS Structure of the Lateral Dynamics Model

In this section, by using the sector nonlinearity approach,
the system dynamics (7) with its q nonlinearities is exactly
rewritten as weighted r linear sub-models [11]:{

ẋ(t) = Aµ x(t)+Bτ(t)
y(t) = Cµ x(t) (8)

where Aµ =
r
∑

i=1
µi(υ)Ai and Cµ =

r
∑

i=1
µi(υ)Ci and, matrices

Ai, B, and Ci are constant. Also weighting functions satisfy

0≤ µi(υ)≤ 1 and
r
∑

i=1
µi(υ) = 1 with r = 2q.
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The vector υ(t) =
[

vx scφ tφ sφ cφ

]T is the vec-
tor of the premise variables. The longitudinal velocity vx ∈
[vmin,vmax] is measurable and bounded. Also, the roll angle is
bounded and belongs to [φmin,φmax] for a stable motorcycle.

III. OBSERVER DESIGN

The aim of this part is to design a nonlinear unknown input
observer (UIO) for Takagi-Sugeno (TS) fuzzy systems under
parameters uncertainties ∆Aµ and sensor noise n(t) as :{

ẋ(t) = (Aµ +∆Aµ)x(t)+Bτ(t)
y(t) = Cµ x(t)+Dn(t) (9)

D is a constant matrix. In this context, the following nonre-
strictive assumptions are considered:
(i) The state x(t) and the steering torque τ(t) are bounded

i.e., stable or stabilized motorcycle motion;
(ii) The pairs (Ai,C j) are observable or detectable;

(iii) The matching condition holds rank(CiB) = rank(B);
(iv) The sensor noise and its derivative are bounded

‖n(t)‖
∞
< ∞ and

∥∥∥ dn(t)
dt

∥∥∥
∞

< ∞;

(v) The model uncertainties are bounded
∥∥∆Aµ

∥∥
∞
< ∞.

Unlike other UIO approaches, we focus here on using quasi-
LPV UIO with state dependent output matrix and unmea-
surable premise variables to estimate the system’s states and
unknown inputs.

A. State estimation

In the present paper, we consider the nonlinear observer, in
TS form, given by:{

ż(t) = Nµ̂ z(t)+Lµ̂ y(t)
x̂(t) = z(t)−Mµ̂ y(t) (10)

where, x̂(t) is the estimated state and y(t) is the output
vector. µ̂ are the estimated weighting functions. The observer’s
matrices Nµ̂ ∈ Rn×n, Lµ̂ ∈ Rn×ny , Mµ̂ ∈ Rn×ny are parameter
varying and have the same quasi-LPV form as the matrix Aµ .

Nµ̂ =
r

∑
i=1

µ̂i(υ)Ni, Lµ̂ =
r

∑
i=1

µ̂i(υ)Li, Mµ̂ =
r

∑
i=1

µ̂i(υ)Mi (11)

The observer design procedure aims to determine the afore-
mentioned observer’s matrices. According to (10), the state
estimation error e(t) = x(t)− x̂(t) can be written as:

e(t) = x(t)− x̂(t)

= x(t)− z(t)+Mµ̂Cµ x(t)+Mµ̂ Dn(t)

= Pµ̂ x(t)− z(t)+ζ (t) (12)

where: Pµ̂ = I − Mµ̂Cµ̂ and ζ (t) = Mµ̂(Cµ̂ − Cµ)x(t) −
Mµ̂ Dn(t), which one can minimize its effect on the estimation
error. By differentiating (12) and by using equations (9) and
(10), the error dynamics is:

ė(t) = Ṗµ̂ x(t)+Pµ̂ ẋ(t)− ż(t)+ ζ̇ (t) (13)

= Nµ̂ e(t)+(Ṗµ̂ +Pµ̂ Aµ̂ −Lµ̂Cµ̂ −Nµ̂ Pµ̂ )x(t)+Pµ̂ Bτ(t)+d(t)

where d(t) = Pµ̂(Aµ − Aµ̂ + ∆Aµ)x(t) + Lµ̂(Cµ̂ −Cµ)x(t)−
Nµ̂ ζ (t)+ ζ̇ (t). According to assumptions (III.i), (III.iv) and

(III.v), the state vector x(t) is stable and, since the weighting
functions µi are positive and convex, then ζ (t) and ζ̇ (t) are
bounded. This will fit the general practical case of a stable
PTWv.

B. Observer’s convergence study

Once the system and the observer are written in TS form, the
UIO design reduces to the stability analysis of the estimation
error dynamics. This is achieved based on Lyapunov theory
and the ISS property which yields to an LMI optimization
problem. If the observer’s matrices can be computed such:

Ṗµ̂ +Pµ̂ Aµ̂ −Nµ̂ Pµ̂ −Lµ̂Cµ̂ = 0 (14)
Pµ̂ B = 0 (15)

Then, the error dynamics in (13) is reduced to [12]:

ė(t) = Nµ̂ e(t)+d(t) (16)

If d(t) is vanishing with time, i.e., when t → ∞, then con-
vergence of the estimation error e(t) is asymptotic (Nµ̂ is
Hurwitz). Otherwise, ISS performances can be achieved for
the estimation error e(t) as it will be stated in theorem 1.
The second condition (15) is called decoupling condition.
From (12), we know that Pµ̂ = In+Mµ̂Cµ̂ . Then, the condition
(15) holds as stated by assumption (III.iii). This leads to:

Pµ̂ B = 0⇒Mµ̂ =−B(Cµ̂ B)† (17)

In the same way, by differentiating (15), we get Ṁµ̂ :

Ṗµ̂ B = 0⇒ (Ṁµ̂Cµ̂ +Mµ̂Ċµ̂)B = 0

Then:
Ṁµ̂ =−Mµ̂Ċµ̂ B(Cµ̂ B)† = Mµ̂Ċµ̂ Mµ̂ (18)

By using Pµ̂ , the first condition (14) can be expressed as:

Nµ̂ = Γµ̂ −Kµ̂Cµ̂ (19)

where Γµ̂ = Ṗµ̂ +Pµ̂ Aµ̂ and Kµ̂ = Nµ̂ Mµ̂ +Lµ̂ . Consequently,
the error dynamics becomes:

ė(t) = (Γµ̂ −Kµ̂Cµ̂)e(t)+d(t) (20)

C. Stability Analysis

The observer stability is studied by using the Lyapunov
theory to prove the exponential stability with respect to the
disturbance term d(t) and, the estimated membership functions
µ̂ . In this case, the ISS property will be formulated as an
optimization problem under LMI conditions.

Definition 1: [13] The state estimation error dynamics veri-
fies the ISS if there exists a K L function f1 : Rn×R−→R,
a K function f2 : R −→ R such that for each input d(t)
satisfying ‖d‖

∞
< ∞ and each initial conditions e(0), the

trajectory of the error associated to e(0) and d(t) satisfies

‖e(t)‖2 ≤ f1 (‖e(0)‖ , t)+ f2 (‖d(t)‖∞
) (21)

Definition 2 (The Schur’s complement ): [14] Given the
matrices Q, S and R, with appropriate dimensions, where



S = ST and R = RT , then the following equivalence holds:[
S Q

QT R

]
> 0⇔

{
R > 0
S−QR−1QT > 0 (22)

Theorem 1: Provided the polytopic system (9) under stated
assumptions. Given the varying parameters dependent matrices
Mµ̂ and Γµ̂ satisfying (17) and (19) and a positive scalar γ .
If there exist a symmetric positive definite matrix Q, matrices
Ki, and a positive scalar η solutions of the following LMI
optimization problem:

min
R,Q,η

η

such that and, for i = 1, · · · ,r:[
ΓT

i Q+QΓi−CT
i RT

i −RiCi +αQ Q
Q −γI

]
< 0 (23)(

αηI Q
Q αηI

)
> 0, Q≥ I (24)

then the state estimation error e(t) = x̂(t)−x(t) has an Input
To State Stability property and converges to an origin-centered
ball region.

Proof 1:
Let’s consider the quadratic Lyapunov function:

V (t) = e(t)T Qe(t), Q = QT > 0 (25)

Its time derivative along the trajectory of the state estimation
error is given by :

V̇ (t) = e(t)T
r

∑
i=1

(
Γ

T
i Q+QΓi−CT

i KT
i Q−QKiCi

)
e(t)

+ d(t)T Qe(t)+ e(t)T Qd(t) (26)

By adding and subtracting the term αe(t)T Qe(t)+γdT (t)d(t),
with α and γ a positive scalars, the inequality (26) can be
rewritten as following:

V̇ (t)≤
[

e(t)
d(t)

]T

Πµ̂

[
e(t)
d(t)

]
−αe(t)T Qe(t)+ γd(t)T d(t) (27)

where Πµ̂ =
r
∑

i=1
µ̂i(υ)Πi and:

Πi =

[
ΓT

i Q+QΓi−CT
i RT

i −RiCi +αQ Q
Q −γI

]
(28)

with Ri = QKi. Now, if Π < 0, then the time derivative of the
Lyapunov function (27) can be bounded as follows:

V̇ (t)≤−αV (t)+ γd(t)T d(t) (29)

By integrating (29), we get:

V (t)≤V (0)e−αt + γ

t∫
0

e−α(t−s) ‖d(s)‖2
2 ds

≤V (0)e−αt +
γ

α
‖d(t)‖2

∞
(30)

Knowing that V (t) is a Lyapunov function, it can be bounded
by λmin ‖e(t)‖2

2 and λmax ‖e(t)‖2
2, where λmin and λmax are the

min and max eigenvalues of the matrix Q, hence:

‖e(t)‖2
2 ≤

λmax

λmin

(
‖e(0)‖2

2 e−αt +
γ

α
‖d(t)‖2

∞

)
(31)

By using the square root on (31), we obtain:

‖e(t)‖2 ≤

√
λmax

λmin
‖e(0)‖2 e−

α
2 t +

√
λmax

λmin

√
γ

α
‖d(t)‖

∞
(32)

where:

‖d(t)‖
∞
≤
∥∥Pµ̂

∥∥
∞
‖x(t)‖

∞

+
∥∥Pµ̂ ∆Aµ x(t)

∥∥
∞
+
∥∥Nµ̂ ζ (t)

∥∥
∞
+
∥∥∥ζ̇ (t)

∥∥∥
∞

From the boundedness of ζ (t) and ζ̇ (t) and, thanks to defini-
tion (1), it is shown that the error dynamics (20) is stable and
verifies the ISS property. The states estimation converges to a
ball region with an ISS gain which can be minimized in order
to achieve a more accurate state estimation of the motorcycle
lateral motion. Since λmin can be imposed to be greater than
one and γ can also be fixed, therefore, minimizing the ISS
gain is equivalent to minimizing a positive scalar η such that:√

λmax

α
≤
√

η ⇔ (αη)2 I−QT Q > 0 (33)

By applying the Schur’s complement given in definition (2),
the inequality (33) can be written as an LMI constraint as:

(αη)2 I−QT Q > 0⇔
[

αηI Q
QT αηI

]
(34)

�

The observer design procedure is summarized in the following
steps:

1) Compute matrix Mµ̂ from (17) and matrix Pµ̂ from (12),
2) Solve the LMIs in (23) and (24),
3) Compute the observer gains Ki and deduce Ni and Li

from (35),
4) Use (11) to determine the observer’s matrices.

Ki = Q−1
i Ri

Ni = Γi−KiCi

Li = Ki−NiMi (35)

IV. EXPERIMENTAL RESULTS

A. Experimental Steup

A PTWv Peugeot Scoot’elec is instrumented in order to
perform the tests (Fig. 3). It is equipped with an electric power-
train developing a maximum power around 3 kW allowing a
maximum speed of 45 km/h. Three blocks of NiCad batteries
with, for each one, a capacity of 100Ah for 6 V voltage feed
the motor and inevitably lead to a consequent weight of 115
kg without rider.
In order to achieve the several designs and dynamic estimation,
we have chosen an embedded computer manufactured by
Neousys Technology. According to its compact size the model
NUVO-3005EB is ideal for installation under a seat. It offers
several features like: High performance CPU (Intel Core i7-
3610QM), PCIe Expansion Slot, Wi-Fi, 3G and GPS.



Fig. 3. Instrumented Scooter at the IBISC Lab.

The Inertial Measurement Unit (IMU) is a IG-500A man-
ufactured by SBG Systems, Fig. 3. It can work on angular
movements of 360◦ on the 3 axes and offers orientation matrix
either on Cartesian or Euler angles. The IMU is placed as close
as possible to the gravity center.
Several methods are possible to instrument the steering mech-
anism. We made the choice of an absolute encoder to measure
the handlebar angle δ , directly installed on the steering column
and, gives the steering angle without any transformation or
ratio.

B. Results Analysis

The expected urban scenario is considered with a varying
longitudinal velocity from 5Km/h to 40Km/h, as depicted in
Fig. 4.

0 20 40 60 80

0

10

20

30

40

Fig. 4. Longitudinal velocity and Vehicle trajectory

The observer estimates the lateral dynamics (mainly lateral
velocity vy, roll angle φ and lateral forces Fyr/Fy f ) using the
measured states given by the inertial unit and the steering

encoder, depicted in Fig. 5. Also, the estimation error is plotted
to illustrate the observer performance and the boundedness of
the estimation errors.

Fig. 6 shows the estimation of the unmeasurable states,
namely the front and rear cornering forces and the lateral
speed. Then, by an algebraic inversion from (36), one can
reconstruct the rider torque τ̂(t) applied on the handlebar:

τ̂(t) = (Cµ̂ B)−1 (ẏ(t)− (Ċµ̂ +Cµ̂ Aµ̂)x̂(t)
)

(36)
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Fig. 5. States estimation (dashed red) compared to actual measurement (blue).
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Fig. 6. Unmeasurable states estimation of Scooter and torque estimation from
model inversion.

Since the actual state vy and Fy f ,Fyr are unknown, the
state estimation cannot be checked directly. One can use the
estimates v̂y and F̂y f , F̂yr to reconstruct the lateral acceleration
ay which is the sum of the estimated lateral forces (37). Also,
the roll measurement from the IMU can be used to check the
estimated one φ̂ (see Fig. 7).

ây =
(F̂y f + F̂yr)

M
(37)



The ability of the designed observer to well recover
simultaneously the motorcycle dynamics and the unknown
inputs can be highlighted with an acceptable convergence to
the actual value. This scenario endorses that this observer
is able to estimate the lateral dynamics and the rider action
even for real riding situations. Nevertheless, there are some
differences at the peak area of the estimated states due
to modeling uncertainties between the Scooter and the
estimated model. It should be noted that while the lateral
model estimation algorithm was developed using two bodies
motorcycle model (4 DoF), the data are being collected using
real motorcycle dynamics.

Also, let us remind that the observer is based on ISS prop-
erty. Finally, this also explains the non asymptotic estimation
errors convergence.
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Fig. 7. Validation :vy, Fy f , Fyr from the lateral acceleration and φ from IMU
roll angle measurement.

V. CONCLUSION

In this paper, the problem of unknown input observer design
for quasi-LPV motorcycle system with IMU data calibration
is investigated. This class of systems addressed here is time-
varying parameters dependent on unmeasurable states. The
main contributions of the proposed approach is to recon-
sider the classical unknown input observer synthesis nonlinear
output. The resulting observer allows to estimate the lateral
dynamic states and to reconstruct the unknown rider steering
torque applied on the motorcycle handlebar. In the other hand,
the motorcycle dynamics is modeled in the IMU reference
frame where the system’s outputs are measured directly by
the Inertial Measurement Unit without additional reference
frame transformation. Then, by using input to state stability
property, the convergence of the states estimation is proved and
formulated as an optimization problem under LMI conditions.
Finally, the observer is validated throughout experimental data
to reconstruct the relevant unmeasurable states and unknown
input of the PTWv lateral dynamics.
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APPENDIX

M = 303.31
e34 = 6.32 e35 = 171.38 e36 = 0.187 e44 = 34.73
e45 = 1.97 e46 = 0.66 e55 = 118.02 e56 = 0.383
e66 = 0.614
ā34 =−303.31vx ā44 =−6.319vx ā45 =−3.665vx ā46 = 0.682vx
ā47 = 0.856 ā48 =−0.624 ā51 = 1681 ā52 = 164.34
ā54 =−175.048vx ā56 =−1.4622vx ā61 = 164.34 ā62 = 69.45
ā64 =−0.8685vx ā65 = 1.47vx ā66 =−12.67 ā67 =−0.0894
ā71 =−5319vx ā72 = 104503vx ā73 =−112430 ā740 =−84997
ā76 = 10051 ā77 =−5vx ā81 = 3221.8vx ā83 =−100890
ā84 = 79098vx ā88 =−5vx

Ē =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 e33 e34 e35 e36 0 0
0 0 e34 e44 e45 e46 0 0
0 0 e35 e45 e55 e56 0 0
0 0 e36 e46 e56 e66 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


B̄ =



0
0
0
0
0
1
0
0



Ā(vx) =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 a34 0 0 1 1
0 0 0 a44 a45 a46 a47 a48

a51 a52 0 a54 0 a56 0 0
a61 a62 0 a64 a65 a66 a67 0
a71 a72 a73 a74 0 a76 a770 0
a81 0 a83 a84 0 0 0 a88
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