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Motorcycle State Estimation and Tire Cornering
Stiffness Identification Applied to Road Safety:

Using Observer Based Identifiers
Majda FOUKA, Lamri NEHAOUA and Hichem ARIOUI

Abstract—This paper deals with observer-based identification
framework to estimate both lateral dynamic states and tires’
cornering parameters in the perspective of designing advanced
rider assistance systems for powered two-wheeled vehicle. An
adaptive observer is proposed to reconstruct the state variables
regardless the forward velocity variations and to estimate the real
unknown tires’ parameters. The stability and convergence anal-
ysis of the proposed observer is based on the Lyapunov theory,
the persistency of excitation and the general Lipschitz condition.
To enable this observer design, the linear parameter varying
observer is transformed into Takagi-Sugeno exact form observer
where the sufficient conditions are given in terms of linear matrix
inequalities. Finally, an evaluation framework is proposed to
provide a critical overview about the method effectiveness. The
proposed adaptive law is compared to a direct estimation and a
dynamic inversion estimation methods. Co-simulation scenarios
are performed by using both BikeSim c© motorcycle simulator and
real data-log obtained from an instrumented electrical scooter.

Index Terms—Adaptive LPV Observer, Motorcycle safety, Lat-
eral dynamics, State estimation, Tire Parameters identification.

I. INTRODUCTION

The technological achievement of the powered two-wheeled
vehicle (PTWv) and its expansion not just conveyed a funny
transportation system to their users through a noteworthy
decrease time, but also has introduced a genuine and complex
safety challenges. Unlike car vehicles, the integration of the
various safety into one architecture can lead to an unexpected
behavior in hazard riding situations. The supply of road safety
for PTWv riders remains useless as long as some driving rules
are not always adapted to riding psycho-physical capacity like
the visual fields, distance assessment, dynamics evaluation and
loss of attention. Therewith, the development of advanced
driver assistance systems (ADAS) to improve rider safety
should integrate riding experience and vehicle controllability
in different driving situations.

Developing ADAS for PTWv remains a high theoretical and
technical challenge. The self-unstable characteristic of PTWv
gives rise to various difficulties in design, control, estimation,
rider behavior analysis and effectiveness assessment. Indeed,
ADAS systems depend basically on motorcycle motion states
as steering behavior, roll angle and tire/road interaction. The
evolution of these states depends strongly on the riders’ actions
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and vehicle’s parameters such that rider’s torque applied on
the motorcycle handlebar, tire cornering stiffness, PTWv mass
and inertia moment. Hence, build up an ADAS requires a
precise knowledge, at every instant, of the vehicle’s dynamics
throughout physical or virtual sensors. This topic is one of
our research interest which intends to develop ADAS systems
starting from a minimum set of self vehicle integrated sensors
to acquire measured states. For the remaining unmeasured,
model-based state estimators are used to achieve a reliable
estimation of both the vehicle’s unmeasured dynamics and the
most important unknown parameters. One of the important
unknown parameters are tires’ stiffness. In fact, the main goal
of ADAS is to handle the vehicle before reaching the limits of
its stability region which is mainly depends on the tire/road
generated longitudinal and lateral forces with respect to the
road available friction. The PTWv’s rider should be aware at
each instant about the available road friction and the optimal
turn speed to avoid an over-steer or an under-steer behavior.
This enables to foresee the ideal roll angle required to generate
the lateral forces.

An extensive research effort has been done to examine the
effectiveness of various estimation and identification methods
in improving handling and stability of PTWv [1], [2], [3],
[4], [5]. In almost references, the estimation of the PTWv
dynamics is done by considering restrictive assumptions with
respect to riding practice, parameters variation interval, and
also by considering a known tire friction or under a constant
speed assumption [6], [7]. These assumptions simplify the
estimation problem but lead to an inaccurate estimation with
respect to the real dynamics. In fact, motorcycle characteristics
and road conditions may change for different riding situations.
Therefore, it is interesting to estimate a set of optimal system’s
parameters from the available input-output data and a prior
knowledge about the system’s behavior. In [8], a survey
on vehicle dynamic states estimation is proposed where the
estimation methods advantages and shortcomings are high-
lighted. In the framework of the vehicle control, a disturbance
observer is proposed in order to achieve both the desired side-
slip angle and the yaw rate. Also, in [9], an interval fault
estimation approach by using zonotopic technique is proposed.
A discrete-time linear parameter-varying systems is considered
in the presence of bounded parametric uncertainties, measured
perturbation, and system disturbance. However, the direct
transposition of almost approaches developed for four-wheeled
vehicles remains a great challenge.

To the authors’ best knowledge, a very few works deals with



the PTWv parameters identification, which use regression-
based estimation methods to recover the road available friction
or the vehicle’s parameters [10], [11]. These methods are
designed under consideration for a specific systems form and
their direct transposition to the more general problem case is
not straightforward for many reason. First, the identification
problem is formulated assuming that all the system states are
measured, which is really untruthfully. Second, the parameter
identification problem is closely related to persistency of
excitation that can reach an optimal solution [12]. Moreover,
for identification process, suitable rich input signals should be
considered, while in practice, these signals can not be freely
applied to excite the PTWv due to the system constraints,
and lead to a set of incompatible parameters. Alternative
approaches suggest the use of observer-based identification. In
this scope, adaptive observers present a convenient approach to
deal with both dynamic states and parameters estimation [13].
In [14], an adaptive robust observer is designed for a class
of parametric semi-strict feedback nonlinear systems. And in
[15], a nonlinear high gain observer design based on the full-
order model of the induction motor is proposed. Such an effort
appears nontrivial due to the fact that the full-model at best
admits locally a non-triangular observable form. Also, in [16],
trajectory tracking has been proposed based on an output-
feedback iterative learning controller, together with a state
observer and a fully-saturated learning mechanism, through
Lyapunov-like synthesis. The focus was on the convergence
problem, to deal with time-varying parametric uncertainties.

In the present paper, an estimation framework is proposed
for the PTWv dynamic states estimation and tires’ stiff-
ness identification by considering the self integrated vehicle’s
sensor. The proposed approach can be summarized in four
steps. First, a nonlinear PTWv dynamics model is described
including lateral, yaw, roll and steering motions where the
forward speed is considered to be a varying parameter. Next,
the dynamics model is written in an LPV form where the state
matrix includes only the varying measured parameters and,
all unknown parameters are collected in one term which can
be written in an affine form for identification purpose. After,
an LPV-adaptive observer is proposed and then transformed
into Takagi-Sugeno exact form for stability and convergence
analysis. Finally, sufficient conditions are given in terms of
linear matrix inequalities (LMIs) to enable design. In the
best case, this technique allows to make the estimation error
asymptotically converge to zero. The design of such observers
supposes the availability of the measures and their prior
processing. One must keep in mind that this contribution is
a more realistic validation toward the experimental testing.
The long term objective is to use these estimated informations
to design risk function which can be integrated in a warning
ADAS system.

This paper is organized in six sections. section II presents
the PTWv dynamics. The LPV-adaptive observer design
methodology is described in section III with stability analysis.
Co-simulation and experimental validation are discussed in
section V. Finally, section VII concludes the paper.

II. PTWV DYNAMICS

A. Model description

In this work, the well-known Sharp model is used to
describe the PTWv lateral dynamics [17]. The PTWv is
represented as a set of two bodies linked by the steering
mechanism allowing the simulation of 4 DoF (Degrees of
Freedom) as shown in Fig. 1. The main body is subject to
lateral motion according to the generated tire forces whereas
the front body is subject to steering motion as derived by the
applied rider’s steering torque on the vehicle’s handlebar.
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Fig. 1: Geometrical representation of the motorcycle

The lateral, yaw, roll and steering dynamics are respectively
described by the following equations :

e33v̇y + e34ψ̈ + e35φ̈ + e36δ̈ = a34ψ̇ +Fy f +Fyr

e34v̇y + e44ψ̈ + e45φ̈ + e46δ̈ = a44ψ̇ +a45φ̇ +a46δ̇ (1)
+a47Fy f +a48Fyr

e35v̇y + e45ψ̈ + e55φ̈ + e56δ̈ = a54ψ̇ +a56δ̇ +a51φ +a52δ

e36v̇y + e46ψ̈ + e56φ̈ + e66δ̈ = a64ψ̇ +a65φ̇ +a66δ̇ +a61φ

+a62δ +a67Fy f + τ

Equations (1) can be written under the following state space:

Eẋ = Ā(vx(t))x(t)+ B̄u(t) (2)

where x(t) ∈ Rnx is the state vector including the PTWv
dynamics such that x = [φ ,δ ,vy, ψ̇, φ̇ , δ̇ ,Fy f ,Fyr ]

T . The input
vector is denoted by u(t) ∈ R where u(t) = τ(t) refers to
the rider’s torque. The vehicle’s forward speed vx(t) is con-
sidered as a measured time-varying parameter. The matrix
E = [ei j]∈Rnx×nx is constant and invertible, Ā= [āi j]∈Rnx×nx

is a time-varying matrix depending on ζ (t) and the unknown
tire parameters. B̄ ∈Rnx is a constant vector. All matrices and
parameters are defined in tables VI, V and IV.

In addition to the motion dynamics, we introduce the tire
relaxation to characterize the transient behavior by means of
a first order system as following:

σ

vx
Ḟyk =−Fyk +FSS

yk
k = f ,r (3)

where, FSS
yk

are the steady state lateral tires’ forces generated
according to the tire’s side-slip angle αk and the camber angle



γk. σk is the tire’s relaxation. In steady state, these forces are
given by the following linear equation:

FSS
yk

=−Cαk αk +Cγk γk (4)

where, side-slip angle αk and the camber angle γk, for the
front and rear tire, are given by [17]:

α f =
vy + l f ψ̇

vx
−δ cosε αr =

vy− lrψ̇
vx

(5)

γ f = φ +δ sinε γr = φ

The use of a linear tire representation is justified as is
discussed in the introduction section. ADAS are dedicated to
perform safety tasks before the vehicle reaches the limits of
its stability region. Beyond the stability region, almost ADAS
fails to recover the vehicle handling.

B. Parameter-dependent model

Let consider ζ (t) = vx(t) a varying measured parameter and
Θ ∈RnΘ is the unknown parameters vector. The PTWv model
of equation (2) can be reformulated in the following LPV
form: {

ẋ = Aζ x+Bu+Λ(x,ζ ,Θ)
y =Cx

(6)

where y ∈Rny is the output measured vector and Λ(x,ζ ,Θ) ∈
Rnx represents the parameters of the PTWv dynamics.

In fact, we introduce Csk,0, the nominal values of the tires’
stiffness where s = α,γ . Equation (3) can be written as:

σ

vx
Ḟyk =−Fyk +Cαk,0αk +Cγk,0γk+ (7)

(Cαk −Cαk,0)αk +(Cγk −Cγk,0)γk

By replacing αk and γk by their respective expressions from
equation (5) in the previous equation, we get:[

Ḟy f
Ḟyr

]
=

[
a71,0 a72,0 a73,0 a74,0 0 a76,0 a77,0 0
a81,0 0 a83,0 a84,0 0 0 0 a88,0

]
x+

[
− vxα f

σ f

vxγ f
σ f

0 0
0 0 − vxαr

σr

vxγr
σr

]
︸ ︷︷ ︸

χ(x,ζ )


Cα f −Cα f ,0
Cγ f −Cγ f ,0
Cαr −Cαr ,0
Cγr −Cγr ,0


︸ ︷︷ ︸

Θ

(8)

where ai j,0 are the parameters ai j of matrix Ā(ζ ) evaluated
for the nominal values of the tires’ stiffness Csk,0. After some
algebraic manipulations, equation (6) is recovered in which:

Aζ = E−1Ā(ζ ) (9)

B = E−1B̄

Λ(x,ζ ,Θ) = Dχ(x,ζ )Θ

D = E−1
[

06,2
I2

]
where 06,2 ∈ R6,2 a zero matrix and I2 ∈ R2,2 is an

identity matrix. An inertial measurement unit (IMU) is
embedded on the PTWv and mounted under the vehicle’s seat

at approximately the vehicle’s center of mass. The available
measurements are three accelerations and three angular ve-
locities expressed in the IMU body reference frame. These
measurements are used to derive the roll angle rate φ̇ , yaw
angle rate ψ̇ and the lateral acceleration ay expressed in the
PTWv modeling reference frame. In addition to the IMU
measurement, an optical encoder is fixed on the steering body
providing the steering angle δ and its time-derivative δ̇ . The
minimum set of sensor measurements are the following:

y =
[

δ ψ̇ φ̇ δ̇ ay
]T

(10)

C. Problem statement

From PTWv dynamics equation, it is straightforward to
find an approximate estimation of the tires’ cornering stiffness
using a direct method or a dynamics inversion approach. With
the direct method [18], the PTWv can be reduced to an
equivalent one-body dynamics expressed by:{

May = Fy f +Fyr
Izψ̈ = l f Fy f − lrFyr

(11)

where M and Iz are the PTWv’s equivalent body mass and
z-inertia. By combining equations (4), (3) and (11), we get:
−α f γ f −αr γr
−l f α f l f γ f lrαr −lrγr
−α f γ f 0 0

0 0 −αr γr




Cα f

Cγ f

Cαr

Cγr

=


May
Izψ̈

σ f
vx

Ḟy f +Fy f
σr
vx

Ḟyr +Fyr


(12)

In the other hand, the dynamics inversion gives more insight
in parameters estimation by avoiding state differentiation as
in equation (12). This method is based on classical unknown
input observers and output differentiation as reported in [19],
[20]. From equations (6) and (9), we get:

˙̂y =CAζ x̂+CBu+CDχ(x̂,ζ )Θ̂ (13)

By an algebraic inversion of the previous equation leads to a
state estimation without the need of parameters identification
and the unknown parameters vector Θ can be reconstructed
from the estimation of the state vector and output derivatives.
However, the feasibility of this inversion is conditioned by
a convenient selection of the excitation signal to fulfill rank
condition rank(CD) =rank(D).

The problem of state estimation and unknown parameters
identification of the motorcycle dynamics is addressed. The
front and rear tires’ cornering stiffness identification are the
focus of our interest since they play a key role to guarantee the
motorcycle stability in turns maneuvers. Moreover, it is known
among all vehicle dynamics literature that tires’ cornering
stiffness are combined with the available road friction µ , then,
solving the estimation problem for the unknown parameters
vector Θ is equivalent to finding the combined vector Θ =
µΘ0, where Θ0 is the tires’ nominal stiffness. Without loss
of generality, in this paper the tires’ cornering stiffness are
considered with their associated road friction are embedded
in one variable. For some very special cases such a puddle
and dead leaf causing an abrupt variation of road friction, the
problem of friction estimation can be more efficiently solved



by using other techniques like that vision-based classification
[21], [22].

III. OBSERVER DESIGN

In this section, the design of the LPV-adaptive observer
is described based on the PTWv model of equation (6).
Next, asymptotic convergence is proved by using Lyapunov
theory associated with the Lipschitz property, giving rise to an
optimization problem expressed by a set of LMI to be solved.

A. Observability Analysis

The PTWv model referenced by equation (6) with its
associated output measurements vector does not satisfy the
observability/detectability condition. One solution is to use
the flatness properties [23] to define additional virtual mea-
surements [24]. From equations (2), we consider the lateral
and yaw dynamics given by:[

E3,:
E4,:

]
ẋ =

[
Ā3,:
Ā4,:

]
x (14)

where the notation Ei,: denotes the ith line of matrix E. After
some algebraic manipulations, the output measurements vector
y, equation (6), can be augmented with an auxiliary virtual
sensor output, ya, expressed by:

ya = (M f k−Ml f )Fy f +(M f k+Mlr)Fyr (15)

B. LPV-adaptive observer

Assumption 1. Assume that ζ ∈ ∆ be a set of vectors defined
on an hyper-rectangles ∆ given by:

∆ =
{

ζ ∈ Rnζ | ζimin ≤ ζi ≤ ζimax } (16)

Assumption 2.
• The system’s input u(t) is known and sufficiently persis-

tent, i.e, it exists constants c1, c2 and c3 such that for all
t the following inequality holds [25] :

c1I ≤
∫ t0+c3

t0
Dχ(x̂,vx)χ

T (x̂,vx)DT dt ≤ c2I

• The state vector x(t) and the input vector u(t) are
bounded. This assumption will fit the general practical
case, e.g. a stable motion of a PTWv.

Theorem 1. Given the PTWv dynamics of equation (2) satis-
fying assumptions (1-2), the following LPV-adaptive observer:{ ˙̂x = Aζ x̂+Bu+Λ(x̂,ζ ,Θ̂)+Lζ (y− ŷ)

ŷ =Cx̂
(17)

with the adaptation law:
˙̂
Θ = Γχ

T (x̂,ζ )TCx̃ and Γ = Γ
T > 0 (18)

ensures an asymptotic convergence error for the simultaneous
state and parameters vector estimation, toward zero if there
exist a symmetric positive definite matrix P and matrices Kζ

and R satisfying the following inequalities :

PAζ +AT
ζ

P−KζC−CT KT
ζ
+PQ−1PT +R < 0 (19)

DT P = TC (20)

where x̃ is the state estimation error vector and Lζ is the
observer gain matrix .

Proof 1. Lets consider the following LPV-adaptive observer :{ ˙̂x = Aζ x̂+Bu+Λ(x̂,ζ ,Θ̂)+Lζ (y− ŷ)
ŷ =Cx̂

(21)

where x̂, ŷ and Θ̂ are respectively the estimated state, output
and parameters vector. Lζ is the observer gain matrix such
that Φζ = Aζ −LζC is Hurwitz. Lets x̃ = x− x̂ and Θ̃ = Θ− Θ̂

be respectively the state and the parameters estimation error
vector. The error dynamics can be computed as following:

˙̃x = Φζ x̃+ Λ̃+Dχ(x̂,ζ )Θ̃ (22)

in which Λ̃ = Λ(x,ζ ,Θ)− Λ̂(x̂,ζ ,Θ).
The stability analysis can be performed by considering the

following quadratic Lyapunov function :

V (x̃) = x̃T Px̃+ Θ̃
T

Γ
−1

Θ̃ (23)

where P and Γ are symmetric positive definite matrices.
By taking the time derivative of the Lyapunov function

(23), and replacing the state estimation error dynamics by its
equation (22), we obtain:

V̇ = x̃T
Ψζ x̃+ Λ̃

T PT x̃+ x̃T PΛ̃+ Θ̃
T

Γ
−1 ˙̃

Θ+ ˙̃
Θ

T
Γ
−1

Θ̃

+ Θ̃
T

χ
T (x̂,ζ )DT Px̃+ x̃T PDχ(x̂,ζ )Θ̃ (24)

where Ψζ = ΦT
ζ

PT +PΦζ .
Lets consider the following lemmas:

Lemma 1. The function Λ(x,ζ ,Θ) is said to be Lipschitz [26]
with respect to x, if for all x, the function Λ(x,ζ ,Θ) can be
rewritten under the following generalized Lipschitz condition:

Λ
T QΛ≤ xT Rx (25)

where Q and R are respectively symmetric positive and semi-
positive definite matrices. Thus, any system in the form of
equation (6), can be reformulated in a generalized Lipschitz
condition, as long as Λ(x,ζ ,Θ) is continuously differentiable
with respect to x.

Lemma 2. For every matrix G, symmetric positive definite,
the following property holds [27]:

XTY +Y T X ≤ XT GX +Y T G−1Y

By using the Lipschitz condition in lemma (1) and the
property in lemma (2), we get the following inequality :

Λ̃
T PT x̃+ x̃T PΛ̃≤ x̃T PQ−1PT x̃+ Λ̃

T QΛ̃ (26)

Now, we can prove exponential stability convergence:

V̇ (t)≤ x̃T (
Ψζ +PQ−1PT +R

)
x̃+ Θ̃

T
χ

T (x̂,ζ )DT Px̃+

x̃T PDχ(x̂,ζ )Θ̃+ Θ̃
T

Γ
−1 ˙̃

Θ+ ˙̃
Θ

T
Γ
−1

Θ̃ (27)

Following assumption (2), in the case of a stable PTWv
dynamics with a bounded states, the estimated term χ(x̂,ζ )
will be bounded by an upper singular values, e.g., ‖χ(x̂,ζ )‖2 <
σmax. Consequently:

V̇ (t)≤ x̃T (
Ψ+PQ−1PT +R

)
x̃+2Θ̃

T
Γ
−1 ˙̃

Θ+2σmaxΘ̃
T DT Px̃

(28)



At this level, we can derive the observer’s adaptive law from
equation (28) as following:

Θ̃
T

Γ
−1 ˜̇

Θ+σmaxΘ̃
T DT Px̃ < 0 (29)

According to the tire’s relaxation formula (3), the unknown
parameters rate is practically slow, e.g. Θ̇ = 0 and hence,
˙̃
Θ =− ˙̂

Θ. Furthermore, it is possible to find a matrix T , such
that DT P = TC [28]. The adaptive law can be stated as:

˙̂
Θ = Γχ

T (x̂,ζ )TCx̃ and Γ = Γ
T > 0 (30)

With this law, the time derivative V̇ (t) becomes :

V̇ (t)≤ x̃T (AT
ζ

PT +PAζ −CT KT
ζ
−KζC+PQ−1PT +R)x̃

(31)

where Kζ = PLζ .

C. Polytopic form

Theorem (1) in section (III) introduces a theoretical frame-
work for the states and parameters estimation. The resulting
optimization problem, given by the inequality of equation (19),
is parameter dependent, thus, we must revisit our observer.

Theorem 2. The following LPV-adaptive observer :{
˙̂x = Aζ x̂+Bu+Λ

(
x̂,ζ ,Θ̂

)
+Lζ (y−Cx̂)

˙̂
Θ = σmaxΘ̃T DT Px̃

(32)

ensures an asymptotic convergence of the state estimation
error for system class of equation 2, if and only if there exist a
matrix P symmetric positive definite, a matrix Kζ , and a matrix
R satisfying the Liptchiz condition. Thus, if the condition
rank(CD)= rank(D) is fulfilled, a matrix Γ symmetric positive
definite can be found such that the following LMIs hold:

min
i=1,··· ,r

ς s.t.

[
ς I DT P−TC

(DT P−TC)T ς I

]
� 0 (33)

[
AT

i P+PAi−CT KT
i −KiC+R P

P −Q

]
≺ 0

(34)

Proof 2. The PTWv model in equation (2) is dependent
on the measured vehicle’s speed, e.g., ζ = vx. According to
assumption (1), and knowing that ζ satisfies the following
convex property:

r

∑
i=1

ηi(ζ ) = 1, 0≤ ηi(ζ )≤ 1 (35)

where ηi are weighting functions. By using the so-called
Takagi-Sugeno (TS) structure [29], the PTWv model in equa-
tion (2) can be reformulated as a set of interconnected linear
time invariant models. Since the model depends on non-
linearity ζ ∈ ∆, supposed to be accessible at real-time, the

resulting LPV model (6) in TS structure is described by 2
sub-models as: ẋ =

r
∑

i=1
ηi (ζ )Aix+Bu+Λ(x,ζ ,Θ)

y =Cx
(36)

where r = 2nζ is the number of the sub-models corresponding
to nζ non-linearities (nζ = 1 in our case). Then, Aζ in equation

(2) becomes
r
∑

i=1
ηi(ζ )Ai and Ai are constant matrices.

From theorem (1) and using the convex sum property of the
weighting functions, sufficient conditions ensuring V̇ (t) < 0
are established by the following LMIs:

AT
i P+PAi−CT KT

i −KiC+PQ−1PT +R < 0 (37)

By applying Schur lemma, inequality (19) can be trans-
formed to the second LMI of equation (33). The observer gain
matrix L in theorem (2) is also defined by:

Kζ =
r
∑

i=1
ηi(ζ )Ki,

Lζ =
r
∑

i=1
ηi(ζ )Li,

Li = P−1Ki

(38)

Finally, the equality constraint DT P= TC can be formulated
by the optimization problem described by equation (33).

IV. SIMULATION RESULTS

In this section, the effectiveness of the proposed estimation
framework is investigated by co-simulation with Bikesim c©

software [30]. The PTWv model Scooter Big Baseline is
chosen from the software dataset, in which, the nominal values
C ji,0 of the lateral slip and camber stiffness are available.
The test scenario is carried out by considering a handling
maneuver depicted in Fig. 2c and involving a medium hard
rider torque represented in Fig. 2a. The forward speed is a
measured varying parameter ranging from 40 km/h to 120
km/h as shown in Fig. 2a. For this first setup, the road
friction coefficient is fixed to a constant value µ = 0.9. The
observer gains Li are computed using theorem 2 and the
motorcycle parameters listed in Table VI. The test scenario
is in accordance with a real regular riding condition. It also
allows to highlight the observer performance by covering a
broad spectrum of the PTWv dynamics within and beyond its
linearization domain. Further, we test the adaptive law with a
constant gain matrix Γ and with zero initial condition.

Fig. 3a shows the state estimation performance with respect
to their measured values from Bikesim and also demonstrates
a finite-time asymptotic estimation. Furthermore, since the
lateral velocity vy, the roll angle φ and tire forces Fy f ,Fyr
are unmeasurable, their estimations are used to reconstruct
the lateral acceleration ay at the center of mass of the rear
body Gr by using the two equations in (39). Fig. 3c represents
the estimated lateral acceleration and the corresponding one
given by Bikesim. It is obvious that these results show finite-
time asymptotic estimation where exact estimation can’t be
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Fig. 2: Bikesim scenario: the rider’s steering torque input τ , the forward speed vx, and the vehicle’s trajectory.
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Fig. 3: Bikesim sensor (red) and observer estimation (dashed blue).

achieved since the PTWv dynamics linearization is carried out
considering small roll perturbations from straight line running.

ây =
(F̂y f + F̂yr)

M
and ây = ˙̂vy + vxψ̇−h ¨̂

φ

Fig. 4 shows the estimated tires stiffness deviations from their
nominal values. Once again, finite-time asymptotic estimation
is achieved with high accuracy and the observer effectiveness
is guaranteed for simultaneous states and tires’ stiffness esti-
mation. For example, for the first parameter Θ1, the estimated
deviation is used to recover the real front slip stiffness as
following Cα f =Cα f ,0 +Θ1.
In order to make the analysis compacted, for each estimated
parameters and for each method, the Mean value is computed
among the track test. Results, summarized in Table I, show that
the computed Mean value are generally close. It is important
to remark that the parameters computed using the adaptive law
are very close to nominal values, thanks to the the adaptive law

used in the observer estimation. Comparing the three methods,
the adaptive law has the best estimation.
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Fig. 4: Estimation performance of tire cornering stiffness.



Parameters Nominal Estimated Inversion Direct

Θ1 1028 1022.6 1055.2 1015.7

Θ2 58.7 60.4638 45.7477 64.2932

Θ3 2371 2387.1 2485.3 2595.4

Θ4 121 119.918 117.9743 124.4637

TABLE I: Parameters Mean values comparison

V. OBSERVER SENSITIVITY AND ROBUSTNESS

This section aims to test the robustness and sensitivity of
the observer with respect to the measurements’ noise and
regarding parameters uncertainties. Towards this end, the same
test scenario, previously described is considered. Remind that
the observer was designed considering the nominal tires’
cornering stiffness. Consequently, there are two objectives
in this section, the first is to test the observer measurement
noise sensibility. The second aims to demonstrate the observer
robustness to parameters variation.

A. Observer sensitivity against sensors’ noise

In practice, the IMU measurements are highly affected
by noises. In order to test the observer robustness in the
presence of measurements noise, we consider a 5− 10%
random perturbation on the IMU measurements. An overview
of the resulting observer performances is depicted in Fig. 5.
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Fig. 5: Robustness to noise: observer states estimation in
presence of IMU measurments noise.

It can be noted that the effect of the noise on the states
estimation is limited, however, it remains slightly visible. Also,
we note that the steering angle and the front tire force are most
affected by noise measurements. It reveals also that the rear

tire force and the roll angle are less sensitive to measurement
noises.

The different noise sensitivities between the front and rear
tire forces is explained by the fact that the steering dynamics
mostly affects the front tire dynamics. For better performances,
the estimated signals can be denoised to remove the noise ef-
fect. To that end, a simple second-order Butterworth filter can
be used. Simulation result, shows that the adaptive observer is
robust enough to handle the noisy case.

B. Observer robustness against modeling uncertainties

In this section, the robustness of the state observer with
its associated adaptive law against modeling uncertainties is
studied. This observer is designed by considering the nominal
values of the tires’ stiffness, hence, it is hopeful to quantify the
effect of parameters variation on the observer performance. To
this end, we consider a variation of ±50% on the real values
of the front and rear tire stiffness. Next, the robustness of the
observer to the parameters uncertainties is also evaluated by
considering ±16.5% on the design value of the front and rear
mass which is equivalent to an over or an underweight of 50
Kg.

The estimated states are compared with their counterparts
by means of the root mean square percentage (RMSE%). The
metric quantifies the amount of error to show how close the
estimated values are to the true data, RMSE% is defined as:

RMSE% =

√√√√ 1
Ndataset

Ndataset

∑
i=1

(ymes− yest)
2 (39)

where ymes is the measurement of y including Ndataset data
points and yest is its estimate provided by the observer. The
resulting (RMSE%) for the the present scenario are shown in
tables II.

From table II, the RMSE values for (φ̇ , ψ̇,δ ,φ ,ay) raise
with parameters variation. Otherwise, it can be seen that the
RMSE for tires’ stiffness parameters remain approximately
constant, so, the observer is more robust for tire parameters
uncertainty. Therefore, the estimated values are generally small
and does not exceed 10.87% between the proposed observer
and actual data. As a result, the observer gives better estima-
tion for the nominal case, where the RMSE values are the
lowest. However, even with variations of the tires’ parameters
or the vehicle’s mass, these errors are always lowers than
13% which confirms that the performances of the observer
are preserved even in the presence of parametric uncertainties.
Despite modeling errors between synthesis model and data
from simulator, the estimation error dynamics still have good
performances and the observer ensures a good estimation.

VI. MOTORCYCLE EXPERIMENTAL TEST

In this section, an assessment of the LPV-adaptive observer
performance is presented using experimental log-data. The test
is carried out on an urban scenic road and performed with
normal riding behavior and good environmental conditions.
As depicted in Fig. 6a, the road is composed of straight lines



RMSE

State Nominal M+ M− C f ri ×1.5 C f ri ×0.5

φ 6.195 6.369 7.9026 6.6251 7.0678

δ 1.8521 1.8965 1.7682 1.8708 1.941

φ̇ 4.8623 6.903 7.6141 6.1901 5.589

ψ̇ 8.5218 10.467 9.1085 9.0992 9.114

ay 9.69 11.8859 13.7928 10.8682 10.66

TABLE II: Robustness to motorcycle mass ( M+ = M + 50,
M− = M−50), and tire parameters variation (C f ri ).

followed by a narrow turns and just after a big turns. This
configuration allows to solicit the PTWv roll dynamics and to
maximize as possible as the persistency condition.

Fig. 8: Scooter.

Experimentation is carried-out by using a fully electric
propulsion scooter of Fig. 8. The rear suitcase encloses an
Intel Core i7-3610QM embedded computer manufactured by
Neousys Technology dedicated to embedded applications,
which also integrates a GPS receiver to measure the speed
and position of the PTWv. A digital-analogue input-output
card from National Instrument is plugged to interface the
various sensors and actuators. On the other hand, a high-end
Inertial Measurement Unit, SBG IG-500A is installed near
the rear body center of mass. It incorporates an accelerom-
eter, a gyroscope and a magnetometer providing an accurate
measurements of the three Euler angles and their associated
rates and the three axes acceleration. Also, the steering system
is equipped with an IOV GA210 absolute encoder directly
installed on the steering column without reduction stage, and
offering a 10-bit resolution for 1024 steps per revolution. Data

acquisition is performed at 100 Hz except for the computer-
integrated GPS which is slower with a maximum frequency
of 10 Hz [31].

In Fig. 7a, estimated steering angle, yaw rate and roll rate
are compared to their respective measurements provided by
the various sensors previously described. Once again, since
these states variables are measured, we obtain a finite-time
exact convergence. On the other hand, Fig. 7c reports the
estimation of unmeasured state variables namely the lateral
velocity vy and the front/rear tire forces Fy f ,Fyr. For validation,
the estimation of unmeasured states are used to reconstruct the
lateral acceleration ay at the center of mass of the rear body Gr
as shown in Fig. 7b. Fig. 9 shows the estimated tires stiffness
deviations from their nominal values.

According to these results, it can be seen that the observer
has a good dynamic transition and a finite-time convergence
even for a riding scenario in the roll region away from
the straight line dynamics linearization. In the experimental
maneuver, it can be appreciated that the proposed observer
shows a good estimation, however we note that the transient
performance suffers slightly. It should be noted that in this ma-
neuver, the true effective cornering stiffness should fluctuate
somewhat.

Fig. 9: Estimation performance of tire cornering stiffness.

In the experimental maneuver, it should be noted that, the
true effective cornering stiffness are unknown. For more faith-
ful estimations, the mean values of the estimated parameters
are given in Table III to quantify the performances of the
observer adaptive law through the mean values comparison.
Comparing the adaptive law with the two others methods,
one can see the small difference on the mean values results

(a)

0 5 10 15 20 25 30 35 40

time [s]

-10

-5

0

5

10

τ
[N

.m
]

Rider torque

(b)

0 5 10 15 20 25 30 35 40

time [s]

5

10

15

20

25

30

35

40

v
x
[k
m
/h

]

Longitudinal speed

(c)

Fig. 6: Vehicle trajectory, rider steering torque and longitudinal velocity.
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Fig. 7: Real measurements (red) and observer estimation (dashed blue).

between estimated parameters, direct and inversion methods.
This confirms the performance of the estimation scheme.

Parameters Estimated Inversion Direct

Θ1 178.6438 181.7665 184.5632

Θ2 2134 2065.7 2173.9

Θ3 2513 2496 2589.3

Θ4 643.2011 658.8327 618.1787

TABLE III: Scooter Parameters Mean values comparison

VII. CONCLUSION

This paper deals with observer-based identification frame-
work to estimate both motorcycle lateral dynamic states and
tires’ cornering stiffness. Our main contribution concerns the
design of an LPV-adaptive observer adapted to a class of
systems in the context of ADAS design. For that purpose, an
adaptive law is proposed, associated with an LPV formulation
to deals with the variable measured longitudinal velocity. An
optimization problem in forms of LMI is resolved to compute
the states observer gains.

An evaluation methodology based on a co-simulation with
a high-end motorcycle simulator and with real experimental
data-log are presented and discussed. The fundamental evalu-
ation is made by estimating the tires’ cornering stiffness using
the adaptive law, a direct method and an inversion dynamic
system. The direct method is simple and straightforward but it
is very sensitive to states differentiation and singularities. The
inversion based algebraic method requires the computation of
the outputs derivatives which can be obtained for example
by a high-gain second-order sliding mode observer. This

method might be unrealistic in practical applications where
measurements suffer noises and disturbances, leading also to
singularities in the solution of the inverse problem. The LPV-
adaptive observer achieves a good estimation of unmeasured
states and unknown parameters vector starting from self-
integrated PTWv sensors.

Future works will be dedicated to the improvements of the
observer performance by adding the rider motion and taking
into account road geometry which has been considered flat.
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TABLE IV: Numerical values

M = 303.31
e34 = 6.32 e35 = 171.38 e36 = 0.187 e44 = 34.73
e45 = 1.97 e46 = 0.66 e55 = 118.02 e56 = 0.383
e66 = 0.614
ā34 =−303.31vx ā44 =−6.319vx ā45 =−3.665vx ā46 = 0.682vx
ā47 = 0.856 ā48 =−0.624 ā51 = 1681 ā52 = 164.34
ā54 =−175.048vx ā56 =−1.4622vx ā61 = 164.34 ā62 = 69.45
ā64 =−0.8685vx ā65 = 1.47vx ā66 =−12.67 ā67 =−0.0894
ā71 =−5319vx ā72 = 104503vx ā73 =−112430 ā740 =−84997
ā760 = 10051 ā77 =−5vx ā81 = 3221.8vx ā83 =−100890
ā84 = 79098vx ā88 =−5vx



TABLE V: Matrices expression and data

e33 = M e34 = M f k
e35 = M f j+Mrh e36 = M f e
e44 = M f k2 + Irz + I f x sin2

ε + I f z cos2 ε

e45 = M f jk−Crxz +(I f z− I f x)sinε cosε

e46 = M f ek+ I f z cosε

e55 = M f j2 +Mrh2 + Irx + I f x cos2 ε + I f z sin2
ε

e56 = M f e j+ I f z sinε e66 = I f z +M f e2

ā34 =−Mvx ā44 =−M f kvx

ā45 =
(

i f y
R f

+
iry
Rr

)
vx ā46 =

i f y
R f

sinεvx

ā47 = l f ā48 =−lr
ā51 = (M f j+Mrh)g ā52 = M f eg−ηZ f

ā54 =−
(

M f j+Mrh+
i f y
R f

+
iry
Rr

)
vx

ā56 =−
i f y
R f

cosεvx ā61 = M f eg−ηZ f

ā62 = (M f eg−ηZ f )sinε ā67 =−η

ā64 =−
(

M f e+
i f y
R f

sinε

)
vx ā66 =−K

ā65 =
i f y
R f

cosεvx ā71 =
C f 2
σ f

vx

ā72 =
1

σ f

(
C f 1 cosε +C f 2 sinε

)
vx

ā73 =−
C f 1
σ f

ā74 =−
C f 1
σ f

l f

ā76 =
C f 1
σ f

η ā77 =− 1
σ f

vx

ā81 =
Cr2
σr

vx ā83 =−Cr1
σr

ā84 =
Cr1
σr

lr ā88 =− 1
σr

vx

c57 =
1
M c57 =

1
M

c67 = M f k−Ml f c68 = M f k+Mlr

TABLE VI: Motorcycle dynamics variables

symbol signification
vx, vy longitudinal and lateral speeds
φ , ψ , δ roll, yaw, steering angles
φ̇ , ψ̇ , δ̇ roll, yaw, steering rates
Fy f , Fyr cornering front and rear forces
τ , ay rider torque and lateral acceleration
M f , Mr , M front and rear body mass
j, h, k, e, l f , lr linear dimensions
i f y, iry polar moment of inertia of wheels
R f , Rr front and rear wheel radius
ε , η , K caster angle, trail, damper coefficient
I f , Ir front and rear body inertia
g, Z f gravity acceleration and front vertical force
σ f , σr front and rear tire relaxation

Ē =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 e33 e34 e35 e36 0 0
0 0 e34 e44 e45 e46 0 0
0 0 e35 e45 e55 e56 0 0
0 0 e36 e46 e56 e66 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


B̄ =



0
0
0
0
0
1
0
0



Ā(vx) =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 a34 0 0 1 1
0 0 0 a44 a45 a46 a47 a48

a51 a52 0 a54 0 a56 0 0
a61 a62 0 a64 a65 a66 a67 0
a71 a72 a73 a74 0 a76 a770 0
a81 0 a83 a84 0 0 0 a88



C =


0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 c57 c58
0 0 0 0 0 0 c67 c68


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interests are driving simulators, driver assistance, modeling, control, and
observation of complex systems

Hichem ARIOUI received the Dipl.-Ing. degree
on control systems from Badji Mokhtar University,
Annaba, Algeria, in 1998 and the M.S. and
Ph.D. degrees in robotics and automation from
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