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Abstract

IBISC Laboratory

University of Evry Val d’Essonne-University of Paris Saclay
Doctor of Philosophy

Contributions to Parametric Identification and Observation of Powered Two-Wheeler
Vehicles.

by Majda Amina Aida FOUKA

Nowadays, PTWYV are an increasingly popular means of transport in daily urban and rural displacements,
especially for the possibilities it offers to avoid traffic congestion. However, riders are considered as the most
vulnerable road users. In fact, the unstable nature of the PTWYV makes them more susceptible to loss of
control. This problem is even more complex during emergency braking or on cornering. As matter of fact,
passive and active safety systems such as Anti-Lock Braking (ABS), Electronic Stability Control (ESP), seat
belts, airbags developed in favour of passenger vehicles have largely contributed to the reduction of risks on
the road. However, the delay in the development of security systems for motorcycles is clear. Moreover,
despite some existing systems, motorcycle riders use them badly or they don’t at all. Therefore, it is not
trivial that this delay, in the development of Advanced Rider Assistance Systems (ARAS), coming from a
delay in the development of theoretical and research tools.

This thesis fits into the context of designing ARAS for PTWYV. Indeed, the development of ARAS is based
on risk indicators computed from some pertinent dynamics variables. Our work deals with observation and
identification techniques to estimate the PTWYV dynamic states and physical parameters. These latter are
fundamental for risk quantification and to assess the safety of the PTWYV, which are the main focus of our
research work. The first part of the thesis concerns classical identification techniques for estimating the
physical parameters of PTWYV. The second part deals with model-based observers proposed to estimate the
dynamic states of the PTWV. We proposed an unknown input observer (UIO) for steering and road geometry
estimation and an interconnected fuzzy observer (IFO) for both longitudinal and lateral dynamics. An
alternative methods to identification algorithms are observer-based identifier which allow both the parameters
identification and the states estimation. Therefore, a Luenberger adaptive observer (LAO) for lateral dynamic
states and pneumatic stiffness as well as a delayed unknown inputs observer (DUIO) with an arbitrary relative
degree, have been developed.

As matter of fact, all these techniques allow to estimate the motorcycle dynamics while reducing the number
of sensors and overcoming the problem of non-measurable states and parameters. These proposed methods
require a simple combination of sensors and take into account realistic assumption like the longitudinal speed
variation. Among others, this manuscript introduces a self calibration algorithm for Inertial Measurement
Units (IMUs) alignment. Such a self-calibration method is focused for telematic boxes (e-Boxes) installed
on two-wheeled vehicles, whose IMUs’ axes often result not to be aligned with the vehicle reference system.
Finally, objective indicators are setting up for quantifying the risk. These functions were studied for ARAS
purpose. To highlight the performance of these approaches, we have acquired data from high-fidelity mo-
torcycle simulator or even with data from real motorcycles. To conclude, we have drawn up a comparison
tables with the proposed approaches. The results of both the numerical simulations and the performed
experimentations seem to be quite promising.
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General Introduction

The powered two-wheeler vehicles (PTWV) which include motorcycles, scooters and mopeds has been con-
stantly increasing much faster than the passenger cars. The technological progress of PTWYV brought a
noteworthy convenience to its users through a significant reduction of transportation journey, especially for
the opportunities it offers to avoid congestion. Nonetheless, their proliferation also has highlighted serious
safety issues as well which requires adopting safety interventions and assistive systems targeting this mode
of transport. As a matter of fact, the growing vehicle traffic has increased the number of accidents and
road fatalities. The global status report 2018 (WHO, 2018) on road safety highlights that the number of
annual world road traffic deaths has reached 1.35 million. Henceforth, the road traffic accident is the 8
leading cause of violent death, after everyday accidents. As well, road crashes statistics reveal that more
than half of all road traffic deaths are among Vulnerable Road Users, VRU, (Otte, Facius, and Brand, 2018).
Although pedestrians, cyclists and riders of powered two and tree-wheelers are more vulnerable as a result
of being less protected than car occupants, the heavy burden of deaths arisen from these road users is also
a reflection of infrastructure and vehicle design that prioritizes cars and other motorized transport. The
study of road accidents shows that human factors (57%) appear far before the meteorological or technical
issues. The two most frequent human causes (alcohol and speed) are respectively responsible for 31% and
25% of fatal accidents. Distraction and tiredness are also an important human factors in a road accident
that can be highlighted by, for instance, unsuitable lane crossing or abnormal steering behavior. In the scope
of improving road safety, insight into preventable causes of road accidents is of interest.

Currently, intelligent safety technologies have mainly targeted four-wheeled vehicles and continue to be
developed and tested primarily for passenger cars and commercial vehicles. Unlike four-wheeled vehicles,
the design of motorcycles does not include primordial components that inherently increase safety. As a
result, the consequences of a motorcycle crash are often quite serious for the motorcyclists. Besides, road
accident statistics underline the importance of improving motorcycle safety and highlight key safety concerns,
that new safety technologies should target. Notwithstanding the high risks associated with motorcycle use,
relatively little research on motorcycle safety design has been carried out. In spite of that, with the increasing
popularity of this transport mode and increasing casualty levels, new safety systems, traffic laws, national
and international attentions are currently being given to this area. Towards this end, many research broadly
surveyed a wide range of Intelligent Transportation Systems (ITS) technologies with the potential to advance
motorcycle safety. The integration of Advanced Rider Assistance Systems (ARAS) and ITS for PTWYV is one
of the forward objectives of automakers and suppliers, to help make partially automated riding and serve
as safety system to support/alert the rider of potentially hazardous situations. Further, the integration
of various safety systems into one architecture can leads to an unexpected behavior in hazardous riding
situations. The supply of road safety for PTWYV riders remains useless, as long as some driving rules, are
not always adapted to riding psycho-physical capacity like the visual fields, distance assessment, dynamics
evaluation and loss of attention. Hence, the development of ARAS to improve rider safety should integrate
riding experience and vehicle controllability in different riding situations.

On-board roadway departure assistance systems are already integrated in modern car. In order to avoid
damage or even fatal crashes in dangerous steering situations, these systems make the vehicles more au-
tonomous, allowing to inspect the surrounding vehicle’s position and to detect the driver hypo-vigilance. In
spite of this fact, departure lane systems are not yet developed for motorcycles and those implemented for



four-wheeled vehicles are not entirely transferable to motorcycles. As a matter of fact, the PTWYV size can
be seen as a weakness. They tend to frequently change travel direction and speed, regardless number of lanes
or their width. Therefore, departure avoidance systems for motorcycles are the next step, aimed to detect
as early as possible, when the motorcycle is involuntary getting out of the lane. Needless to say, designing
warning systems for motorcycles or even vehicles requires risk quantification function, which can be used to
warn the rider, in the case of passive assistance or engage the control action in the case of active assistance.
Car Departure Lane Assist (DLA) system usually defines a Lane Crossing Time (TLC) and Distance to Lane
Crossing (DLC) as a risk index, to assess the time for involuntary trespassing the boundaries. An estimation
of the DLC provide with a clear view of emerging traffic situations, so that if rider makes a mistake, he
will have more time to respond, more space to maneuver and correct the trajectory. Among other, steady-
state analysis and handling capabilities issues are also very related to vehicle safe trajectory and roadway
departure. The analysis of the handling properties highlights certain dynamic aspects that are important to
define dangerous/safe stability threshold conditions, as the neutral, overturning or underturning behavior.
Nevertheless, there is a lack of warning systems related to the problem of Lane Crossing Point (LCP) de-
tection for motorcycles. Therefore, DLA systems for motorcycles need more thorough investigations to be
embedded in modern two-wheelers.

In the last decade, the challenge of creating more accurate models for active safety systems has increased.
Concerning PTWV, which are highly dynamic, nonlinear and coupled systems, many models have been
developed in the literature, with various levels of complexity and completeness. In fact, the uncertainties,
caused by the environment and induced by the aerodynamic phenomena as well as the motorcycle’s intrinsic
unstable platform and complex tire/road interaction make the modeling task more challenging. Withal,
even if a parametric model can be derived, the parameters values are not always available. Indeed, it
is well recognized in the automotive research community that knowledge of the real-time pertinent vehicles
parameters can be extremely valuable for active safety applications. In this scope, a thorough improvement of
this systems requires accurate motorcycle states information. Nevertheless, the measurement of all dynamic
states and inputs with conventional sensors is inconceivable for economic or technical reasons. To counter the
latter, virtual sensors are one of the key research fields using model-based estimators to overcome previous
shortcomings in providing estimates of unmeasured states and relevant parameters of the PTWV’s dynamics.
Besides, the emergence of new applications in many fields of mobile systems and robotics has promoted the
development of various approaches for estimation and identification. Nonetheless, each approach is suitable
for a class of mathematical representation of the system under consideration. Hence, developing ARAS
for PTWYV remains a high theoretical and technical challenge because of the self-unstable characteristic of
PTWYV, which gives rise to various difficulties in design of identification and observation methods of the
motorcycle. This topic is one of our research interest which intends to develop these systems starting from
a minimum set of vehicle self-integrated sensors to acquire measured states.

Withal, parametric identification is the process of finding a set of optimal system’s parameters, from available
input-output data, and a prior knowledge of the system’s structure. Several research works attempt to solve
the identification problem for a predefined class of systems. Among others, these techniques are designed for a
specific systems form and their direct transposition to the more general case is a complex task. Furthermore,
the identification problem is formulated assuming that all the system states are measured, which is really
untruthfully. Usually, identification is performed offline where online identification lays with some challenges.
Hence, enabling efficient solution of an identification experiment is conditioned by a purposeful set of input
signals related to persistence of excitation in order to reach an optimal solution. Hence, suitable rich input
signals should be considered, while in practice, these signals can not be freely applied to excite the PTWV
due to the system constraints, and the global optimization problem can settle to a set of incompatible
parameters. Alternative approaches suggest the use of observer-based identification. In this scope, observers
based identifier presents a convenient approach to deal with both dynamics states and parameters estimation.

In almost literature references, the estimation of the PTWYV dynamics is done by considering restrictive
assumptions regarding riding motorcycle practices, constant longitudinal speed, parameters variation, road
geometry and/or neglected tire-road contact and also by considering a known tire friction. Indeed, the
coupling motion of the lateral and longitudinal dynamics of two-wheeled vehicle has not received much
attention in the literature related to motorcycle. All these assumptions simplify the estimation problem
but lead to an inaccurate estimation with respect to the real dynamics. Furthermore, it is commonly
known that a physical system may include unknown parts and subjected to various intrinsic parameters
and external perturbations. In this context, designing a virtual sensor for these systems has got significant



consideration. Withal these approaches, in almost real systems subjected to unknown inputs, parameters
and/or disturbances, the matching condition does not hold every time. The motorcycle model is one of these
complex systems which does not fulfill the requirement to design a classical observer. Several open topics
related to PTWYV field of research need more thorough investigations as for structural constraints and the
convergence of the state estimates jointly with a parametric identification.

Concerning instrumentation and data acquisition, axes calibration is a mandatory operation when inertial
sensors mounted within some sort of Electronic Control Unit (ECU) installed on a vehicle must be used
for measuring or estimating variables of interest for vehicle control and/or estimation purpose. In fact,
inertial sensors are strongly affected by mounting angles, and the correct rotation to be applied in order to
recover an alignment which is consistent with the vehicle motion is paramount to obtain sensible data to be
employed as representative of the variables of interest. In general, the aim of the calibration is to align axes
of sensors present in various aftermarket equipment, which may be installed in non-standard positions, and
for which the internal alignment of the sensors is also in general not known. In two-wheeled vehicles, such
a calibration step becomes even more crucial than in cars, as space and vibration constraints often do not
allow installations of the needed inertial measurement unit (IMU) in such a way to obtain a nearly natural
alignment with the direction of motion, so that the mounting angles can result in being quite significant.

For all these reasons, this thesis manuscript provides several contributions to the identification and estimation
of the dynamics of powered two-wheelers vehicles. In this particular context, the objective of this thesis is
to identify the main problems related to PTWYV and to study its critical cases. A part of this PhD is
dedicated to identification algorithms, these techniques are designed to estimate the unknown parameters of
the motorcycle parametric models. The second part deals with model-based observers proposed to estimate
the dynamic states of the PTWV. An alternative methods to identification approaches are observer based
identifier which allows both the parameters identification and the states estimation. Further, this manuscript
introduces a self calibration algorithm for Inertial Measurement Units (IMUs) alignment. The last part of
this thesis deals with objective indicators for risk quantification.

Thesis Organisation
This manuscript is organized as follows:
Part I: presents the general context and the motivation of these three years of research.

e Chapter I provides a state of the art on road accident analysis and road safety systems as well as
the important features of these systems for powered two-wheeler vehicles.

e Chapter 2 offers a brief review of PTWVs and we show the motivation of our choice to consider the
motorcycle as typical vehicles for the research study. Indeed, this chapter provides mathematical
modeling of tire-ground forces and moments as well as, the powered two-wheeler vehicle kinematic
and dynamic modeling. For the sake of validation, we present the instrumented motorcycle
(Scooter lab’s) and we introduce a self calibration algorithm to align Inertial Measurement Units
(IMUs) data.

Part II: is dedicated to open-ended questions related to parameter identification for motorcycle. With
regard to the modeling scope, we have studied two structures of models according to the expected
fineness. The first is a rigid body model (Inverted pendulum), then we have extended the model to
two-body model according to our requirements. This part is divided in two chapters:

e Chapter 3 considers the identification of the rigid one-body motorcycle model. Three design meth-
ods are studied in this chapter: using static test, an algebraic identification approach compared
to an iterative gradient descent algorithm.

e Chapter j focuses on the identification of a mathematical two-bodies model of a two-wheeled
vehicle. Two methods were proposed: a cascade, multiple-objective optimization algorithm and a
Levenberg-Marquardt (LM) identifier.



Part III: focuses on the states estimation and the parameters identification of the PTWYV dynamics with
observers synthesized from the two-bodies PTWV model. To this end, four observers are introduced:

e Chapter 5 introduces Unknown Input Observer (UIO): for road and steering dynamics reconstruc-
tion.

e Chapter 6 addresses an original method for designing a delayed unknown input observer (DUIO)
for nonlinear system with mismatched condition.

e Chapter 7proposes an LPV Luenberger Adaptive Observer (LAO) for the PTWYV dynamics states
estimation and tires’ cornering stiffness identification.

e Chapter 8 presents Interconnected fuzzy Observer (IFO) for PTWV: both lateral and longitudinal
dynamics estimation of the two-wheelers.

Part I'V: aims at identifying objective indicators for the quantification of risk as well as carry out and

discuss the design of possible warning system for riders of PTW vehicles. To do this, we divided this
part into two chapters:

e Chapter 9 presents a neutral-path departure (NPD) algorithm towards getting circular stationary
states and analytical handling conditions.

e Chapter 10 focuses on Lane Crossing Prediction (LCP) for PTWV.

This design requires a precise knowledge of the various dynamic states and parameters of the motorcycle
as well as the external effort acquired either from measurement, estimation or identification techniques.

Last chapter provides a general conclusion to end-up this thesis and introduces the perspectives opened
by the work presented in this manuscript.
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Chapter

Road fatalities and ARAS for PTWV

——— Abstract \

Limited access to certain territories, the environmental and climatic urgency, the ever-increasing
daily transportation needs, faced to these challenges, it is time for a general overhaul of transporta-
tion policy and to rethink new mobility solutions for forthcoming decades. In France, the mobility
orientation project is started in 2018 and is structured around four main objectives: to provide all
and everywhere alternative solutions to the individual cars, to develop innovation and new mobility
solutions, to reduce the environmental footprint of transport and to invest more to improve the
infrastructures. While waiting for those promised solutions, several alternatives have already been
democratized all over the world to simplify mobility and especially two-wheeled vehicles. The prac-
tice of such vehicles is no longer exclusive to a few crops or cultures. Using bicycles and motorcycles
is an economic and social reality. However, from a road safety point of view, the increase in the
traffic of two-wheeled vehicles has not been foreseen in time and the lack of security systems and
adequat infrastructure testifies this.

This chapter gives a review of road fatalities and safety of ground vehicles and in particular the
Powered Two-Wheeled Vehicle (PTWV) to show the motivation of our choice to consider the PTWV
as typical vehicles for our research study. In section 1.1 road accident analysis is studied. Section
1.2 discusses the most frequent factors contributing to PTWYV crashes. They are described following
the interaction between the three basic components of the traffic system: PTW riders and other
road users, road environment and vehicle factors. Indeed, section 1.4 describe the existing methods
in the literature of Advanced Rider Assistance Systems (ARAS), also we present their limits and
recommandations to future works to improves the reliability and safety of motorcycle rider. Our
motivations and the specific challenges within the framework of VIROLO++ project are highlighted
in section 1.6.

1.1 Road Traffic Fatalities

In roadway safety, the road traffic accident is the usual term used to describe a collision between two vehicles
or a fixed/mobile obstacle. It refers to any accident occurring on a road open to public circulation, and in
which at least one person is injured or unfortunately killed.

The road accidentology consists essentially of decrypting the accident reports in order to identify their causal
factors, consequences, and to suggest corrective measures at potential location (Faheem, 2017). This can
be achieved by an in-depth knowledge of accidentology and statistical methods to evaluate the number and
the severity of accident and also their frequency and circumstances. Several risk variables can be used
analyzed including population, road kilometer, distance traveled and economic cost. The statistical analysis
of accidents is carried out periodically at critical locations or road stretches which will help to arrive at
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suitable measures to effectively decrease accident rates. The interpretation of the statistical data is very
important to provide insight to the accidentology problem (Faheem, 2017).

In France, the National Inter-ministerial French Road Safety Observatory (ONISR) is in charge of the
National Road Traffic Accident database (BAAC) and leads various research programs about road safety.
It quantifies results and elements of assessment on roadway users’ behavior, public authorities’ actions and
comparison at the international level.

1.1.1 Fatal Accident Statistics

The road traffic accident is now the 8" leading cause of violent death, after everyday accidents, suicides,
surpassing HIV/AIDS, tuberculosis and diarrhoeal diseases. It is the first cause of death for children and
young adults aged between 5-29 years old?. Pietrasik, 2018

Fatalities Target 2010-2020 ) Fatalities|
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FIGURE 1.1: Fatalities statistics and global target in France (ONSIR, 2018).

According to the World Health Organization traffic accidents claim around 1.35 million lives annually (WHO,
2018). Additionally, accidents lead to an estimated annual cost of around 500 billion euros, or 3% of the
world Gross Domestic Product (GDP). In 2018, the ONISR reports that nearly 3,259 people died on french
roads with light decrease with respect to 2017 (—189 or —5.5%), this is also the case for the remaining
indicators: injury accidents —4.8% and injured people —5.4% (Table 1.1).

TABLE 1.1: Annual number of road fatalities in France.

Result for the year 2018 | Injury accidents | Killed within 30 days | Injured people | Inc hospitalized 24h
2018 estimates 55800 3259 69434 20864
2017 final results 58613 3448 73384 27732
Difference 2018/2017 —2813 —189 —3950 —6868
Variation 2018/2017 —4.8% -5.5% —5.4% —24.8%

Despite these alarming statistics, it should be noted that after four years of rising or stagnating road deaths
in France, the year 2018 recorded the lowest mortality numbers in the history of Road Safety statistics as
shown in Figure 1.2 and Table 1.2. The decrease in road traffic fatalities between 2010 and 2018 is estimated
at —18.4% which represents 733 lives saved in 2018 compared with 2010.

Another remark concerns the fatalities among young people aged between 18 to 24 which decreased by 12%
in 2018 and nearly 41% with respect to 2010. This decrease in fatalities and serious injuries is particularly
pronounced for young riders. Notwithstanding, it has increased again among young motorcyclists, particu-
larly inside built-up areas and on motorways. Nonetheless, in spite of ascertainment, this age group remains
the most exposed to road risks.

Lhttps://www.onisr.securite-routiere.interieur.gouv.fr/
2https://www.who.int/violence_injury_ prevention/road_ traffic/en/
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TABLE 1.2: Fatalities per age group in France

0-17 year | 18-24 year | 25-34 year | 35-49 year | 50-64 year | >465 year Total
2010 291 831 547 704 809 592 3992
7% 21% 18% 20% 15% 19% 100%
2013 199 636 547 666 532 688 3268
6% 19% 17% 20% 16% 21% 100%
2017 205 562 571 638 603 869 3448
6% 16% 17% 19% 17% 25% 100%
2018 190 493 523 621 580 852 3259
6% 15% 16% 19% 18% 26% 100%
Variation
2017-2018 7% —-12% —8% —3% —4% —2% —5.5%
Variation
2013-2018 —5% —22% —4% 7% +9% +24% —0.3%
Variation
2010-2018 —35% —41% —26% —23% —2% +12% —18.4%
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FIGURE 1.2: Trends per road users categories in France

As reported in Tablel.3, the car user fatalities represent the majority of the fatalities in France. While using
passive security system can largely improve the safety of road users, it is concluded that the miss of a proper
3. Make a seat-belt reduces the risk of death or serious injuries
by 50% for the driver and the front seat occupant, and by 25% for the rear seat occupants. On the other
side, the number of fatalities among PTWYV is still significant with 620 case in 2018. Compared to 2017,
fatalities have decreased by —7% among motorcyclists, —3% among pedal-cyclist and —2% for pedestrian
but it increased by more than +14% among moped riders. As for car users, failure to take a helmet concerns
half of fatalities while wearing a helmet decrease the risk of fatal injuries by 42%.

use of seat belts is the major death factor

Shttps://www.securite-routiere.gouv.fr
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TABLE 1.3: Fatalities per road users categories in France (ONSIR, 2018).

Pedestrians Pedal-cyclist Moped user Motorcyclist Car users HGV users Other users Total
A b Mo o =y L -
2010 485 147 248 704 2117 65 226 3992
12% 4% 6% 18% 53% 2% 6% 100%
2013 465 147 159 631 1612 57 197 3268
14% 4% 5% 19% 49% 2% 6% 100%
2017 484 173 119 669 1767 51 185 3448
14% 5% 3% 19% 51% 1% 5% 100%
2018 475 167 136 620 1647 48 166 3259
15% 5% 4% 19% 51% 1% 5% 100%
Variation
2017-2018 —2% —3% +14% —7% 7% —6% —10% =5
Variation
2013-2018 2% 14% —14% —2% +2% +16% —16% 0
Variation
2010-2018 —2% —14% —45% —12% —22% —26% —27% —18%
Variation
2000-2018 —44% —39% —70% —35% —69% —61% —60%

Particular weather conditions can affect road mortality. In winter, the number of road fatalities decreases
(figure 1.3), road users avoid hazardous weather situations. However, July is extremely marked by road
fatalities. In fact, good weather conditions lead to an increase in travel, especially for vulnerable road users
as motorcycles. On the other hand, degraded weather conditions can increase the individual risk of each
user’s for many reasons as poor visibility, loss of grip in case of rain, ice storm. It is therefore generally
difficult to point the influence of meteorology on mortality month by month apart from the most extreme
variations.
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FIGURE 1.3: Monthly number of road fatalities: Killed in 30 days per year in France.

Furthermore, a strong increase in road victims is recorded in February 2019 compared to 2018 as shown
in (figure 1.3). According to preliminary estimates of the ONISR* (Table 1.4), 253 people died on the
roads, against 216 in February 2018 (Figure 1.3). The same conclusion can be formulated for the remaining
indicators: the number of injured persons and accidents. Also, this increase in road mortality concerns
mainly pedestrians, cyclists, young people between 18 — 24 years old and seniors aged 65 and over®.

TABLE 1.4: Monthly number of road fatalities in France (ONSIR, 2018).

February
2019 | 2018 | Difference | Variation
Accidents | 4091 | 3345 +746 +22.3%
Victims 5274 | 4348 +926 +21%
Killed 253 | 216 +37 +17.1%
Injured 5021 | 4132 +889 +21.5%

1.2 Fatal Risk Factors

Research investigation and analysis show that human-inherent errors by distraction, drowsiness or under
evaluation of driving situation are the primary fatal risk factors in almost accidents (WHO, 2018). Indeed,

“https://www.securite-routiere.gouv.fr
Shttps://www.europel.fr/societe/securite-routiere-le-nombre-de-morts-sur-les-routes-en-hausse-de-171-en-fevrier-3881783
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half of fatal car accidents are caused by alcohol consumption or any other psychoactive substance that affects
driving skills and decreases human’s reaction time. Next, we find the use of distraction devices in particular
the cell phones increases the risk to four times more likely to be involved in a crash.
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FIGURE 1.4: Annual Global Road Crash Statistics (ZindaLawGroup, 2015).

Even if a remarkable progress has been achieved from driving legislation laws and vehicle standardization, it
is still very difficult to deal with the human behavior. The non-compliance with the basic traffic laws leads
to dramatic consequences. Ignoring the speed limit, aggressive driving, improper overtaking, running a red
light are all examples among others which demonstrate a bad driving behavior. For example, excessive or
inappropriate speed is responsible for one in three car fatal accidents in France. Finally and not ultimately,
the loss of the vehicle control as unsuitable braking and over-steer /under-steer, due to the driver inexperience
can also be fatal. In this sens, the continuous intrusion of driver assistance systems plays a critical role in
averting crashes and reducing the likelihood of serious injury.

Other factors are also related to infrastructure defects, weather conditions and technical failure. Ideally,
roads should be designed keeping in mind the safety of all road users including pedestrians, cyclists, and
motorcyclists. Measures such as footpaths, cycling lanes and safe crossing points are necessary to improve
visibility and reduce the risk of injury for those vulnerable road users. Regrettably, 40% of crashes occur
on road curves in France and 42% of accidents in curves occur at night. Thereby, curves cause a serious
problem for visibility. In fact, the risk of accident in curves is five to ten times higher than in straight line °.

1.3 Motorcycles Safety Issues

The fleet of PTWYV, including motorcycles, scooters and mopeds, is constantly evolving and their use is
increasing much faster than traditional car vehicles. The technological progress of the PTWYV and their
proliferation not only brought a noteworthy convenience to its users through a significant reduction of trans-
portation time, but has given rise to serious safety issues as well. The growing traffic of PTWYV requires to
rethink the road security by developing new safety assessment methods which takes in consideration the var-
ious constraints introduced by such class of vehicles in the global context of road traffic. In addition, PTWV
present numbers of intrinsic specifications which make the direct transposition of the existing Advanced
Driver Assistance Systems (ADAS), originally developed for cars, not feasible.

In this section, we discuss the important issues about PTWYV specification. We will see the advantages
of motorcycles and we will examine the main differences between PTWYV and passenger cars in terms of
dynamics. Next, vulnerability is discussed to highlight some urgent needs to improve rider safety. Finally,
a state of the art of the possible Intelligent Transportation Systems (ITS) and Advanced Rider Assistance
Systems (ARAS) for PTWYV is presented.

Swikipedia.org/wiki/Accident



14 Chapter 1. Road fatalities and ARAS for PTWV

1.3.1 Attractiveness of PTWV

Beyond the fun side, PTWYV have specific features that make them an effective means of transportation. In
urban areas, PTWYV have the potential to go relatively quickly by their capacity to overtake vehicles and
the use of traffic ways dedicated for other public transportation. In addition, PTWV users save time when
searching for a parking place, by parking legally or not very close to their destination. In rural areas, they
offer mobility options for users who do not have access to a car and where public transport is sometimes
non-existent. PTWYV can bring benefits from an environmental perspective with respect to car vehicles,
less fuel consumption and less emissions. The emergence of electric PTWYV, which are much cheaper than
electric cars, may bring additional environmental benefits.

FIGURE 1.5: In Bangladesh, riding a PTWYV has become an efficient solution for urban
mobility (Dhaka Tribune, December 2017).

However, PTWYV have also a number of drawbacks compared to car vehicles: vulnerability, more riskier, less
comfort, less visible and very few riding assistance system. PTW riders have a higher risk of injury due to
their greater vulnerability, resulting from a lack of protection compared to passenger cars, which can lead to
very severe consequences in the event of collisions above a certain speed. Safety measures that are already
well-recognised, such as helmets, protective clothes, etc., have diminished this vulnerability up to a certain
point, but further progress still needs to be made. Also, the intrinsic difficulty of riding a PTW, due to
the necessity to balance the vehicle, its lower friction capacity and its greater sensitivity to environmental
perturbations (wind, gravel, any change in road surface, etc.) which may destabilize the vehicle. Finally,
PTWs are a significant source of noise.

FIGURE 1.6: Gendarme dead in Trieux, Meurthe-et-Moselle, 2015.

1.3.2 Dynamic Specification of Motorcycles

As discussed in the previous section, PTWYV presents a different dynamics behavior due its design and
motorization. Unlike car vehicles, a PTWYV is inherently unstable and can’t be balanced without rider
actions. They also exhibit a non-minimum phase steering behavior and non-linearities due to the steering
geometry and tire-road interactions. Generally, the stability of the vehicle is guaranteed by a combination of
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several effects that depend on the geometry, mass distribution, riding torque applied on the handlebar and
forward speed. Also, its lower friction capacity and its great sensitivity to the environmental perturbations
(wind, gravel, any change in road surface, etc.) make them more difficult to control. The PTWV’s balance
issue is one of the biggest challenges to develop active safety systems.

FIGURE 1.7: Honda’s self-balancing motorcycle (Honda, 2017)

Beside the vehicle’s balance, the lateral motion of the PTWYV is also a complex dynamics of PTWYV. This
dynamics arises from the rotation of the handlebar or the inclination of the vehicle. It includes cornering,
driving in a roundabout, overtaking, etc. The lateral motion of a PTWV are controlled by the steering
torque applied to the handlebar. The latter is directly linked to the front wheel (via the suspension system)
without reduction stage. While for four wheeled vehicles, the driver controls the lateral dynamics through
the steering angle of the steering wheel which is connected to the wheel by a reduction gear. In addition,
the steering angle is, in general, very low especially at high speed. As a result, the PTWYV rider feels more
the effort resulting from the road on the steering mechanism. Also, the rider can act with the inclination of
his bust/posture to better control the lateral dynamics which is an additional degree of freedom of control.
In addition, the PTWV must lean during a turn to compensate the generated lateral force at the tire/road
contact. Whereas the roll angle is limited by suspensions geometry in car vehicle, it can reach 60° in
competition motorcycles.

FIGURE 1.8: Loss of control in curve (Machézal, Loire, July 2012)

Counter-steering is a transient phenomenon which results from gyroscopic effects which contribute to generate
a roll motion of the front wheel. Thus, a right steering motion generates a rolling moment on the left and
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conversely. Nevertheless, the amplitude of the rolling moment is small compared to other moments acting
on the wheels, but its transient nature is very important when cornering.

FI1GURE 1.9: Counter-steering phenomenon.

Among others, the rider to the motorcycle mass ratio is much higher for PTWYV than for cars. It is a very
important factor to consider, particularly for the robustness of the estimation and control algorithms. The
weight of a PTWYV varies between 50 kg for moped vehicles up to 400 kg for high-end motorcycles. As a
result, PTWYV are very sensitive to the rider’s posture and its riding style which highly affects the roll and
the lateral dynamics.

Moreover, due to the geometry of the PTWV, and in particular the position of the Center of Gravity (CoG),
load transfer between the front and rear wheels is more important. This sometimes leads to dangerous
situations such as the stoppie or the wheelie (Figure 1.10). These phenomena, often neglected in automotive
ITS systems due to low charge transfer. This can be explained first by the lower position of the car CoG
and also by the heavy mass of the vehicle compared to the driver. Nevertheless, the load transfer must be
taken into account when designing I'TS systems for motorcycles, as this may cause instability, the fall of the
motorcycle and may affect the braking efficiency.

FI1GURE 1.10: Motorcycle wheelie and stoppie situations.

Consequently, riding a PTWYV may exhibit a specific behavior pattern on the road which is different from
the car drivers of four-wheeled vehicles. Such atypical behavior may surprise other road users. For example,
overtaking within a small space, turning on the incorrect side, positioning on one side of the lane, great
acceleration, are common practices which can be judged very hazardous for other road users and alter their
perception experience and decision making.

All these factors have attracted a great attention from transportation and research communities. From
control point of view, many interesting features are investigated such as instability, vibration mode, out-of-
plane control, non-linearities and the counter-steering concept. From behavior point of view, rider modeling
is a very active research field which aims to gives more insight comprehension about PTWYV stabilization
and rider’s risk assessment mechanisms.
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1.3.3 Vulnerability of PTWYV users

Vulnerable Road Users are defined in the ITS Directive as non-motorised road users, such as pedestrians,
cyclists, PTWYV road user, as well as all persons with disabilities or reduced mobility. More than half of
all road traffic deaths are among vulnerable road users. In this context, pedestrians and cyclists represent
26%, PTWV users 28% while 29% for car’s users (Otte, Facius, and Brand, 2018). In addition, being
less protected than car occupants, accidents involving this class of users are of heavy consequences. The
legacy reflections in designing infrastructure and traffic law making have amplified this vulnerability and,
despite the prominence of vulnerable road users worldwide, the measures taken during the last years are still
insufficient to significantly reduce their mortality”.
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M Pedestrians [ Cyclists

Rider of powerd two -three wheelers B Passengers of 4-wheeled vehicles and light vehicles
o Drivers of 4-Wheeled cars and light vehicles m Other
o Drivers and passengers of buses m Drivers and passengers of heavy trucks

FIGURE 1.11: Mortality by road user category (WHO, 2018).

Very few studies are published about the impact of vulnerability in fatal accidents. MAIDS, Motorcycle
Accidents In Depth Study, has conducted a very interesting study whose results are published in Penumaka
et al., 2014a. Also, according to the NHTSA, National Highway Traffic Safety Administration, PTWV
riders accounted for 14% of traffic mortality in 2016. The analysis prepared by the Insurance Information
Institute, five main factors influence the outcome of fatal motorcycle crashes®. It is showed that in 37.4%
PTWYV accidents, the responsibility of the rider is highly engaged whereas in 50.5% this responsibility is
endorsed by other users category. Next, the loss of PTWV control accounts for 32% and non adapted speed
for 34%. Also, one among four PTWYV riders involved in fatal crashes don’t hold a valid license”, compared
to 13% for passenger car drivers.

"https:/ /ec.europa.eu/transport /themes/its
8https://www.iii.org/fact-statistic/facts-statistics-highway-safety
9https://visual.ly/community/infographic/health/motorcycle-accidents
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- The NHTSA compiled the following motorcycle crash statistics:

“ e
35 of all fatal crashes Involved speeding.
29% of all fatal crashes involved drinking and riding.

22 % of victims of fatal crashes were riding without a license.

R o [ e * which are lig that can
peeds of up to 190 MPH, were 4 times more likely to be involved in fatal
crashes than riders of ether types of motorcycles.

FIGURE 1.12: Motorcycles Accidents (Oliveira, 2013).

1.4 Intelligent Transportation Systems

Transport has always been crucial and challenging for society. Research explores new approaches to transport,
in order to ensure its social, economic and environmental sustainability. In this context, this section discuss
the potential of ITS systems to reduce motorcycle safety issues. From the literature related to PTWV ARAS
and ITS, we present the gaps in motorcycle research and ARAS design.

- |
1'.'»
Sensors
Electronic stability control Anti-lock Autonomous emergency Lane.departure
(ESC) braking (ABS) braking (AEB) Warning (LDW)
Lane keeping assistance Drowsiness and attention Speed limit information Intelligent speed
(LKA) detection systems (SLI) assistance (ISA)

FIGURE 1.13: Safety System.

1.4.1 Overview on Road Safety Systems

Reducing the number of road accidents involves designing and developing safety systems to improve road
safety and ensure passengers integrity. Intelligent systems have a crucial role to play within the new vision of
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mobility. These ITS include a broad range of concepts, systems, and application of advanced computation,
new information and communication technologies to the transport sector in order to improve road safety,
reduce the number of accidents, optimize the use of infrastructure (Alam, Ferreira, and Fonseca, 2016).
Almost worldwide, the use of assistance systems including ADAS and In-Vehicle Information Systems (IVIS)
is quite commonplace. The road safety systems can be classified into two categories: passive or active.
Passive safety systems aim to reduce severe injuries and to protect the vehicle occupants from strong impacts
(Flanigan et al., 2018). Systems like airbags, seatbelt and active head restraint are deployed from several
decades ago on each sold vehicle. Nowadays, researches focus mainly on new chassis more able to absorb
accident shocks. Despite all these, the passive road safety remains restricted regarding human behavior,
driving skills limits and vehicle technical failure. On the other hand, the active safety systems embedded
different level of intelligence to prevent rider from hazardous driving situation even to act directly on the
car actuators. Many active safety systems have been developed and widely implemented to improve the
controllability of the vehicle and get the best dynamic behavior in almost driving situations, from the most
common to the most unexpected.

In particular, these systems help the driver by informing him about the driving conditions (Gordon, 2016).
For these reasons, car manufacturers are now able to develop ADAS that automate some low level driving
tasks. Figure 1.13 shows a summarized cartography of the main conventional active safety systems.

1.4.2 Towards Motorcycles ITS

Intelligent safety technologies have mainly targeted truck and car vehicles. With respect to the vehicles,
only a limited ARAS for PTWV have been developed. These systems are named ARAS, Advanced Rider
Assistance Systems and OBIS, On-Bike Information Systems. Nowadays, several researches try to evaluate
the possibility and the potential to transfer ADAS, developed for cars, towards PTWYV (Figure 1.14).

FIGURE 1.14: ARAS Systems for PTWV.

The literature review, presented in Flanigan et al., 2018 gives a thorough analysis and revealed a series of
trends and gaps in the current state of research on motorcycle safety and ITS. According to this review, the
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ITS services stood out as particularly relevant to motorcycle safety improvements, focus on the following
categories of investigation:

1. Adaptive Front Lighting and Daytime Running Lights,
2. Advanced Driver Assistance Systems (ADAS),

3. Anti-lock Braking Systems (ABS),

4. Collision Warning and Avoidance Systems,

5. Curve Speed Warning,

6. Electronic Stability Programs,

7. Inter-Vehicle Communication Systems and Motorcycle Detection Systems.

1.5 State of the art of Motorcycle ITS

1.5.1 Advanced Rider Assistance Systems

ARAS are assistance systems for PTW riders. They provide automated assistance for riding tasks such
steering, braking for collision avoidance, lane departure warning, lane keeping, and adaptive cruise control.
ARAS can include informing systems, warning systems, active assistance systems, and autonomous systems.

Almost of literature related to PTWV ARAS focused entirely on the safety benefits of ARAS for motorcycles
(Cossalter et al., 2006b; Kooijman and Schwab, 2013; Popov, Rowell, and Meijaard, 2010; Slimi et al., 2009a;
Kuschefski, Haasper, and Vallese, 2009 Beanland et al., 2013; Beanland and Lenne, 2013; Marchau, Heijden,
and Molin, 2005; Touliou et al., 2012; Bekiaris, Montanari, and Nikolaou, 2008; Huth and Gelau, 2013;
Sharp, 2012; Fiissl et al., 2012). In the European Commission’s SAFERIDER project (Montanari, Borin,
and Spadoni, 2011), five key ARAS functions for motorcycles are identified, speed alert, curve warning,
frontal collision warning, improving safety at intersections, and lane change support.

In addition, these works focus on the technical advancement of ARAS for motorcycles where dynamics
modeling occupies a prime place. It aims to study new models of motorcycle steering control, handling, and
roll angles, which can be used to better adapt ARAS to motorcycles. Also, modeling alows the development of
high-end motorcycle riding simulators to test the effectiveness of ARAS for motorcycles. Other interestingly
issues are also investigated which aims to evaluate the acceptability of ARAS by PTWYV riders (Touliou
et al., 2012). Acceptability is a major obstacle and ARAS does not bring together a consensus among the
whole bikers community.

Action unit

FiGURE 1.15: Rider Assistance System Architecture.

Figure 1.15 shows the general architecture of a rider assistance system. It is based on the perception of the
environment through proprioceptive and exteroceptive sensors which provide measurements of the vehicle
dynamics and collect information relating to the external environment. Each acquired data is then forwarded
to the fusion unit for processing to get an accurate knowledge about the current riding situation. Next, the
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data processed by the fusion unit is transmitted to the decision module which analyzes themdecide for the
adequate actions according to the environment, the rider’s behavior and the risk level. Finally, these actions
are sent to the action module, which produces either warning visual, sonore and/or haptic message, or an
active intervention to correct the vehicle trajectory.

According to Figure 1.16, we can also classify ARAS systems are classified with respect to the intrusion
level (Kuschefski, Haasper, and Vallese, 2009). Informing and Warning systems have an indirect influence
on the driving task and allows to inform the driver about the current driving situation. Assisting systems
indicate driving errors to prevent an hazardous driving situation. Partly autonomous system acts partially
to assist the driver to recover a safety riding situation, however, the driver is the only responsible for decision
making and hence can simply disable the system or readjust its risk function. Fully autonomous systems
have a greate margin of decision and operate directly on the low-level vehicle actuators, hence they cannot

be disabled by the driver as in case of the ABS.

= Fully Autonomous
systems

System that operate

autonomously and cannot be

influenced by the driver

Ml e

FIGURE 1.16: Classification of ARAS for PWTv.

1.5.2 On-Bike Information Systems

OBIS provide important information on weather conditions, as well as, they improve the vehicle visibility
through intelligent communication interfaces (Touliou et al., 2012 and Diederichs et al., 2010).

The four OBIS functions having the highest impact for PTWV safety are listed in SAFERIDER project 10 .
eCall system requires the capacity of PTWYV to detect and remotely provide information, as the location of
a crash. Tele-diagnostics services monitor constantly the functioning conditions of the vehicle. Navigation €
Route Guidance provides a key function for novice riders by integrating OBIS and positioning data. Weather,
traffic & black spot warnings integrate the navigation system with weather, traffic and accident data, in order
to warn the vehicle occupant about potential dangers along the road.

1.5.3 Vision Enhancement for Crash Avoidance

This service deals with poor visibility riding conditions and aims to improve the road perception. It allows
to avoid potential collisions with other vehicles, railings, pedestrians, or obstacles and assist the driver
in complying with traffic signals and signs. Such examples are AFS and DRL technologies which focus
on the visibility problem. Almost research works aims to better understand the effect of AFS and DRL on
motorcycle conspicuity and their effectiveness (Cavallo and Pinto, 2014; Varlakati, Yogaraja, and Sudharsan,
2013; Cavallo and Pinto, 2012; Motoki, Hashimoto, and Hirao, 2009; Mohd Khairudin, Mohd Hafzi, and
Azhar, 2013).

10

www.saferider-eu.org
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e AFS, Adaptive Front-lighting System, is an active safety system providing an optimized vision to the
driver during night and poor-visibility riding conditions. AFS adjust dynamically the vehicle headlight
position and intensity according to the time of day, lean angle, the vehicle speed, road type, environment
and the position of other vehicles.

e DRL, Daytime Running Lights is a lighting device on the front of the vehicle in which a multicolor
lights are emitted to increase the visibilty of the vehicle during daylight conditions.

1.5.4 Motorcycle Autonomous Emergency Braking

These Collision Warning and Avoidance Systems are known as Motorcycle Autonomous Emergency Braking
(MAEB). MAEB are vehicle-based sensor system, which refer to systems that detect objects in the roadway
through sensors in the front of the vehicle and alert the rider if objects become a potential collision risk.
In most cases, MAEB would then apply autonomous emergency braking if the rider does not answer to the
collision risk warn (Tanelli et al., 2009a; Biral et al., 2010; Raphael et al., 2011; Rizzi et al., 2015; Savino
et al., 2013a; Corno et al., 2008; Ouellet and Kasantikul, 2006; Rizzi, Strandroth, and Tingvall, 2009).

e FCW, Forward Collision Warning, detects and calculate the distance between the vehicle and a poten-
tial obstacle using laser sensors or camera. When a vehicle is approaching too close to the obstacle, it
provides alerts via an IHM.

e LatCA, Lateral Collision Avoidance, assists the rider to avoid collisions by providing warnings and/or
controlling the vehicle in imminent situation.

e LRM, Lateral and Rear Monitoring, aims to improve driver perception to reduce the risk of side and
rear collision.

e LgCA, Longitudinal Collision Avoidance, the same as LatCA but it cocnerns the front or rear of the
vehicle.

e ICA, Intersection Collision Avoidance, assists the rider to avoid potential collisions at intersections.

In SAFERIDER project, FCW is identified as one of the five key ARAS functionalities suitable to develop
and implement on a motorcycle prototype. It is shown that this system has a good predictive capability
under different riding styles and collision scenarios. However, the acceptability of this system reminds further
research.

1.5.5 Antilock Braking System Technology

ABS is a legacy safety system that allows vehicles to maintain contact with the road surface according to
driver inputs while braking and hence, preventing wheels locking up (Gail et al., 2009; Muller and Yildirim,
2011; Baum, Westerkamp, and Geiller, 2008; Huang and Shih, 2011; Roll, Hoffmann, and Konig, 2009; Rizzi
et al., 2015).

The ABS technology was firstly implemented on a PTWYV motorcycles in the 1980s and it is a mandatory
system since 2016. Many works related to motorcycle conduct statistical analysis of crash data to determine
the safety benefits of ABS-enabled motorcycles. Among other, some works have focused on improving the
braking distance and time for motorcycles with ABS or adapting ABS to lighter PTWYV. It is proven that
ABS technology has a great potential for motorcycle safety due to its relatively widespread acceptance among
the motorcycle community.

1.5.6 Precrash Systems and External Airbags
Precrash systems combine the active and passive collision avoidance technologies (Georgi et al., 2009)
e Airbag Jackets: functioning as a collision protection system for motorcyclists. When a motorcyclist is

thrown from the motorcycle during a crash, the airbag jacket instantly inflates to protect the rider’s
upper body.
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e External Airbags: act to disperse the force of the crash more slowly rather than directly protecting
the occupant, they prevent collision force from ever reaching the car.

1.5.7 Curve Speed Warning

CSW, Curve Speed Warnings, is a warning system for excessive cornering speed in particular when approach-
ing a turn (Slimi et al., 2010; Yuen, Karim, and Saifizul, 2014; Huth et al., 2012; Biral et al., 2010 Montanari,
Borin, and Spadoni, 2011). The literature review suggests that this system has a good applicability and a
real effectiveness for the PTWYV safety.

1.5.8 Roadway Departure Warning Motorcycle

The roadway departure warning system provides assistance by alerting the driver of an inadvertent line
crossing due to driver inattention or fatigue. This system uses information from a video sensor and road
line detection algorithms to define the vehicle position and orientation in the lane. This makes possible to
compute a risk indicator, almost the lane departure time such TLC or DLC. If TLC is below a threshold
value, the system issues an alert.

e LKA, Lane Keeping Assist, and DWS, Departure Warning Systems, are system which detects a line
crossing (Chiu and Lin, 2005, Lord et al., 2011) to generate a lane departure warning). It can also
take the vehicle control to correct the vehicle position within its lane.

e LDW, Lane crossing warning system, provides lateral control by warning the driver to unintentionally
cross the markings without activating the alarm ( Marumo and Katagiri, 2011a ).

e Following Distance Warning detects other vehicles in the front of the driver and generates a warning
when the inter-distance becomes under a predefined threshold. This technology may be combined with
collision avoidance warning system and adaptive cruise control (Katagiri, Marumo, and Tsunashima,
2007, Katagiri, Marumo, and Tsunashima, 2008a, Chung et al., 2006).

e RDCWS, Warning system to prevent road exit, a combination between CSW and LDW systems. It
provides a warning signal when with respect to the vehicle speed when approaching a turn. It allows
also to warn the rider for an excessive lateral displacement. It was developed as part of the RDCW
FOT project LeBlanc, 2006.

1.5.9 Electronic Stability Program

ESP is an electronic control system for dynamic stability or trajectory control. It allows to keep control
of the vehicle despite the hazards of the road, (Kidane et al., 2009; De Filippi et al., 2011a; Murakami,
Nishimura, and Zhu, 2012; Seiniger, Winner, and Gail, 2008; Seiniger, Schroter, and Gail, 2012; Nakagawa
et al., 2009; Yi et al., 2006). These research studied the implementation and performance of actual ESP on
difficult conditions: motorcycle ESP during challenging maneuvers while braking, on curves, and on rough
roads.

1.5.10 Inter-Vehicle Communication System for Motorcycle

IVCS facilitates communications between vehicles, e.g., car-to-car or motorcycle-to-car communications. It
is also a key part of evolving connected vehicle technologies V2X (Manzoni et al., 2010; Ling, Gibson, and
Middleton, 2013, Rajab, Othman, and Refai, 2012; Maruyama et al., 2014; Ku et al., 2008). Few researchers
have been working to advance the Motorcycle Approaching Indication (MAT) function in V2V systems for
automobiles. These technologies offer considerable safety benefits to motorcyclists because they lower the
risk of automobile-motorcycle crashes.

e Motorcycle Detection Systems use inter-vehicle communications to detect nearby vehicles and notify
the driver of potential risks or other relevant information (i.e., motorcycle in a truck’s blind spot).

e Road Surface Condition uses sensor systems that collect information on road surface conditions and
communicate that information to the driver via V2I and V2V systems (Slimi et al., 2009b Savino et al.,
2013b Svendenius, 2007).
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Future research efforts should investigate motorcycle-based communication and detection technologies as
well, especially given that human-machine interfaces for these technologies will need to be specially designed
for motorcyclists.

1.5.11 Helmet-Mounted Display

Helmet-Mounted Displays is a system that projects alerts, warnings and any possible other information such
as speed onto a helmet visor or as audible speech. Sensors in a helmet that sense light conditions, adjust
the darkness of the visor, and provide night vision capabilities in very dark conditions (Dee, 2009).

1.5.12 Longitudinal Control System

Riding in heavy traffic and maintaining the correct distance to the vehicle in front takes a great deal of
concentration and is strenuous over longer periods. As an example, ACC which maintains a safe distance
between the vehicle and another preceding it. This is made possible by an on-board sensors, radar or laser,
that detects the presence of a vehicle on the same track and measures the distance of the vehicle ahead as
well as its speed.

The Saspence (SAfe SPEed and Safe DistaNCE) project (Bertolazzi et al., 2009) develops a system capable
of helping the driver to maintain the maximum authorized speed and safety distance according to the given
driving conditions (road geometry, traffic situation and meteorological conditions). This system serves to
avoid the risk of accidents due to excessive speed and inappropriate distance to a particular situation.

1.5.13 Gaps in ITS for Motorcycle Safety

As crash causes for motorcycle safety issues are more precisely defined, Intelligent Transportation System
(ITS) solutions can be designed to address them, and improve safety issues across all users. The literature
presented in (Flanigan et al., 2018) revealed important gaps in current research on ITS for motorcycle
safety. Significant progress can be expected towards the development of devices for active and passive safety
by investigating future perspectives such that:

e Complete prototype systems for motorcycles allow assessing the safety benefits of such ITS and evaluate
their acceptability.

e Motorcycle safety data to overcome the lack of robust data sets. Improving safety also implies an
in-sight knowledge of PTWYV by investing in the collection of crash data.

e Harmonization of ITS to address the important issue of ITS interoperability as well as, multi-sector
collaboration.

e Connectivity is as an important ITS application for the near-term behind connected vehicle technology
for automobiles and ensure that motorcycles are considered and included in the development of such
technologies.

1.6 VIROLO++ Project Overview

Many research programs have been undertaken in Europe and abroad to understand the factors contributing
to crashes. In particular, the MAIDS and RIDER projects allowed to characterize accidents situations
(Penumaka et al., 2014b), which paved the way to other projects such as SAFERIDER (Evangelos, 2010)
for the development of ITS. 2BESAFE aimed to study the motorcyclists behavior and ergonomic factors
contributing to motorcycle crashes (Ng et al., 2018). The French ANR/Predit SUMOTORI and DAMOTO
collaborative projects proposed an automatic fall detection algorithm for early inflating of a wireless air-
bag jacket. SIM2CO+ (French National Research Agency (ANR)/Predit) aimed at identifying the risky
situations experienced by novice motorcyclists who have just passed their test, in order to improve pre-test
training in France (ANR, 2014).

The VIROLO-++ Project is an French ANR project, proposes to emphasize on bend-taking maneuvers. The
aim is to fill the knowledge gap on bend-taking practices for a group of experienced and novice riders, to
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understand how riders enter a bend, maintain control and exit a bend. This system is mainly intended to
operate on highways, national and departmental roads and in adverse conditions. In particular, the goal
of this project is to develop tools and methods suitable for the study of the riders’ behavior and for the
understanding of the way they interact with their vehicle when negotiating a bend (Figure 1.17).

* In-depth study of
bend taking
practices, towards
evaluation and
(re)training tools

« Design/tunning of
Top of the range
« riding simultors »

Modeling of

Y rider/PTWV

Instrumentation

interactions

Bend risk
functions

Trajectory
reconstruction

 Design of an ITS
riding aid device
for taking bends
(novice an
returning riders)

* Design of an
assessment tools,
design of training
modules on « low
cost simulators »

FIGURE 1.17: VIROLO++ French ANR Research Project.

The design of riding aid devices, and the training of riders to use them, are at the core of the VIROLO++
research project. The consortium’s ambition is to mitigate PTWYV rider road fatalities and injuries linked
to a loss of control in bends, through the study of bend-taking behavior of motorbike riders application to
training and intelligent transport systems is undertaken by the the VIROLO++ research project.

The project looks for more knowledge about how motorcyclist effectively take bends. Experiments were
objectively measure the motorcyclist behavior and the rider-vehicle interaction. A cybernetic model of
steering control is expected that will represent the rider control mechanism. The trajectory reconstruction
is one of the important way to improve turn riding by comparing them to safe reference trajectories.

The project is organized into six work-packages (WP). WP1 deals with the PTWV instrumentation. The
goal is to design an embedded architecture for the acquisition and recording of data. This embedded system
will work in real riding situation to collect information about the rider behavior, vehicle behavior and
driver/vehicle interaction in real-time. The WP is organized in four different tasks:

1. Deploy the embedded logger on two motorcycles belonging to the national gendarmerie in order to
measure and evaluate trajectories;

2. Add on a third motorcycle a sensor system to measure forces exerted by the rider on the PTWV;

3. Design an IHM based on tablet or a smartphone application to display on-line information and the
different warning signals;

4. Design a minimal low-cost sensor architecture.

WP2 concerns the estimation of the PTWV dynamic states and trajectory in turn curves or lane change. This
task allows identifying the relevant parameters for a better reconstruction of dynamic states and external
actions applied to the motorcycle: in terms of validating any observations, several track tests must be carried
out. This validation requires good instrumentation, something that is already widely available on the target
prototypes.

In WP3, the rider-motorcycle interaction is studied to propose cybernetic model for the steering control
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task. Measurements on a test track will be conducted with the instrumented vehicles in the WP1 and to
investigate the practices of a diverse population of riders and compare how these riders describe their control
strategies with how they actually perform. The results will serve as the basis for the development of a
cybernetic model by a multidisciplinary team of control theory, roboticists and experimental psychologists.
WP4 concerns the development of a risk function by defining objective indicators to quantify a hazardous
riding situation. The risks considered here is related to unsuitable approach speeds, leading to a possible loss
of control or a collision with a third party. The risk functions to be synthesized will be mainly based on purely
dynamic considerations of the lateral dynamics and the mobilized adhesion. However, the implementation of
the road-risk assessment function requires the best possible knowledge of the various dynamic states of the
motorcycle and the external effort. So, an extensive effort will be done to propose and evaluate estimation
and observation algorithms.

WP5 develops application to training and safe bend-taking. This covers the development of products for
industry based on the results of all previous WP, mainly targeting innovative training applications for safe
bend-taking: off-line and on-line devices for the evaluation of motorbike paths, and new scenarios for the
low-cost riding simulators. These new products will be evaluated by riding trainees and experienced riders
(including professional teachers).

WP6 deals mainly with project management. All partners will contribute to this work package, to define
the dissemination strategy and its execution during the project.

1.7 Conclusions

Throughout this chapter, we have discussed the context and motivations of the thesis. In summary, Powered
Two-Wheelers riders are the most vulnerable road users. The accident analysis studies have shown that
reducing the number of road accidents requires designing and developing safety systems to ensure passengers
safeness. Nevertheless, assistive systems for cars are well known and increasingly popular but for PTW
riders the development of Advanced Rider Assistance Systems and On-Bike Information Systems have not
progressed far enough yet. The lack of consideration of these users explains these alarming statistics. To
overcome these problems, it is necessary to improve vehicles and road network infrastructure through the
proposal of intelligent systems. Now and in many countries, the use of safety-enhancing assistive systems for
passenger and commercial vehicles, including advanced driver assistance systems and In-Vehicle Information
Systems are quite commonplace. Nevertheless, only a limited amount of the PTW equivalents systems
have been developed so far. A better understanding of rider behavior would make it possible to sensitize
experienced riders who show good practice, but also to set up new training and retraining measures, to
improve the road design, to amend the highway code, and to identify areas for the design and/or assessment
of driving assistance devices dedicated to PTWVs. Indeed, the design of active safety systems strongly
depends on an accurate knowledge of rider behavior, because the acceptability of such systems relies on the
guarantee that they do not affect the equilibrium of the rider or PTW system. Finally, knowledge of the
interaction between riders and their PTWVs is critical for the tuning of riding simulators, which can then be
used by a broader set of the rider population. The above analysis of safety gaps indicates several opportunities
to advance the state of research on motorcycle safety and Intelligent Transportation Systems by addressing
key gaps and needs. To help take action to address the identified gaps and challenges in research on ITS
for motorcycle safety many recommended areas of research were identified to enhance ITS for motorcycle
safety, include: synthesizing ITS technology and implementation with the already successful technology of
antilock braking systems (ABS) in motorcycles, rider-motorcycle interface, motorcycle safety data including
preparations to take full advantage of big data moving forward, applied research and assessments of safety
benefits; and the harmonization of ITS technologies and standards such as inter-operable connected vehicles.

This thesis fits into this context by proposing a contribution to the development of rider assistive systems for
motorcyclists, also known as Advanced Rider Assistance Systems. During these three years of research, within
the VIROLO++ project, we have placed so much emphasis on the development of realistic solutions and
their validations. In this validation process, we used the BikeSim software and the experimental platforms
of the laboratory. Therewith, to accomplish ARAS design, the main elements of the PTWYV structure and
the basic phenomena at the origin of its specific dynamic behavior are discussed. Indeed, to characterize the
behavior of the two wheeled vehicles, it is important to understand the V - T - R (Vehicle - Infrastructure
- Rider) system. These characteristics have to be considered in the synthesis of PTWV model, estimation
and control problems. In the next chapter, we present a detailed kinematic and dynamics modeling of the
motorcycle, taken into account various factors influencing this dynamic.
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Chapter

PTW Vehicle Modeling

——— Abstract

Accurate modeling is important to validate and test the effectiveness of various control strategies
and estimation methods. This chapter concerns mathematical modeling of powered two wheeled
vehicle. Since there is no affordable way to measure the pneumatic forces and moments of a PTWV
in riding tasks. This chapter discusses also tire modeling for PTWYV whose characteristics have a
strong influence on tire/road interaction. As a first step, an overview of PTWVs is given in section
2.1. Thereby, we introduce the issues related to tire modeling for a dynamic model in section 2.4. A
brief description of the tire/road contact forces is introduced based on the magic formula of Pacejka
to understand the tire dynamics and consequently the parameters of the tire model in section 2.5.
The expressions of the pneumatic moments are also derived. In section 2.6 a short review is presented
showing the progress of the PTWYV modeling. Some important preliminaries are presented in section
2.7. Some technical simplifications for the sake of implementation are reported in section 2.8. The
different motorcycles/rider models are introduced in section 2.9.

Last, we deal with an instrumentation stage and we introduce a new procedure for data calibration.
In order to have an experimental platforms, used as a reference for the validation of the two-wheeled
models and algorithms, we will present the motorcycle (scooter lab’s), the different sensors and their
characteristics in section 2.12. Indeed, we propose a self calibration algorithm in section 2.13 for the
estimation of the three mounting angles roll, pitch, and yaw of accelerometers and gyroscopes within
Inertial Measurement Units (IMUs). Such a self-calibration method is focused for telematic boxes
(e-Boxes) installed on two-wheeled vehicles, whose IMUs’ axes often result not to be aligned with
the vehicle reference system.

2.1 Overview of PTW Vehicle

PTWYV is a two or three-wheeled motorized vehicle such that motorcycle, bike, motorbike, cycle, scooters
and mopeds (Figure 2.1). They have gained popularity as an efficient transportation way especially in urban
areas. The PTWYV design varies greatly to fit a wide range of different purposes: long distance travel,
commuting, cruising, sport including racing, and off-road riding. More and more people are giving up their
four-wheeled vehicles and embracing life on two wheels vehicles. Motorcycles can be seen as a form of
transportation or as a way to be free to enjoy the open road. Furthermore riding a motorcycle offers several
advantages over driving a four wheeled vehicles. The most obvious, and greatest, advantage of traveling
by motorcycle, is the ability to get through traffic faster in highly congested areas. There are many fun
elements in owning a motorcycle but also a great disadvantage since the rider is most exposed to danger in
an accident and he is less protected from serious injured.
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FIGURE 2.1: Two-Wheeler Vehicles.

Therewith, the involvement of PTWYV in the daily life transportation has attracted the attention of industrial
and research laboratories around the world to face the new arising challenges. They are seriously thinking
about exploiting the promising capabilities of these vehicles, which may highly affect the global vehicle
economy. Although most of the topics have already been discussed for several decades ago, the particularity
of the two-wheeled vehicle has made some classical issues such as stability and maneuverability always a
very active research topic until nowadays. Several research groups are specialized in a specific topic related
to the PTWYV riding assistance systems and the related embedded solution for perception and control such
that the obstacles detection and avoidance, vision-based landing, localization techniques, data fusion, rider
acceptability and others.

The history of the study of motorcycle dynamics is nearly as old as the bicycle itself. In 1817, Karl Drais
invented the Laufmaschine®, or the running machine known later as the velocipede or draisine. This machine
showed that a rider could balance his device by steering the front wheel. But the first meaningful overview
about PTWYV dynamics are undertaken first at the Imperial College by the Robin Sharp works, in the early
of 1970s. He investigated regularly the stability behavior of motorcycles by studying its dynamics to deals
with the so-called instability modes. Next, the team of Vitore Cossalter at the university of Padova is
invested in an extensive research works for about two decades to analyze stability, handling, maneuverability
and control of the PTWYV. Their research, both experimental and numerical, has covered riding simulators,
vehicle modeling, tire modeling, suspension design and optimal time maneuver?.

Other institution are also interested to the PTWYV. The Automotive Systems Engineering, FZD?, at the
university of Darmstadt focuses mainly on the concepts for motorcycle rider assistance by developing new
active safety systems and by analyzing test results. Also, at the Polimi laboratory of Milano Polytechnic
institute, the research team is interested by the implementation and the evaluation of new motorcycle
prototype 4 °.

At IBISC laboratory of Evry university, the first works on PTWV goes back to the ANR project SIMACOM.
This project is intended to define the main specifications for designing a riding simulator for learning the
relevant behaviors in emergency braking situations, and for PTWV with or without braking assistance
system. Since, several works have followed concerning the analysis of PTWV dynamics, estimation and
observation of dynamic states, motorcycle cornering towards I'TS implementation. Recently, the VIROLO++
project® aims to better understand the causes and effects related to loss of control in curves. It includes tools
and methods for studying driving behaviors and understanding driver/vehicle interactions. This research is

Thttps://www.cyclinguk.org/cycle/draisienne-1817-2017-200-years-cycling-innovation-design
2https://www.unipd.it/en/saferider
Shttps://www.tu-darmstadt.de/adda/partner/fzd /index.de.jsp

4http:/ /www.sport.polimi.it/en/motostudent

Shttps://www.move.deib.polimi.it/

Shttps://www.ibisc.univ-evry.fr/portfolio/virolo/
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structured around the use of instrumented motorcycles to reconstruct a precise trajectories and to compute
risk function based on the collected data.

2.2 PTWYV Description

The PTWYV is a complex system that involves a set of mechanical parts connected to each other by several
links. These components are engineered, manufactured, and assembled in order to produce a particular
motorcycle model with the desired performance, design, and cost to better adapt and to cover all riders’
tastes and needs. The key components of a PTWYV are presented in this section.

the first part is the principal body or the chassis assembly which includes the frame and the engine. The
front and rear suspensions are connected to the chassis by a suspension arrangement and serves to enhance
the passengers comfort by filtering undesirable vertical vibrations arising from the road irregularities. They
also highly contribute to braking and handling of the vehicle. Beside the main chassis, we find the steering
mechanism composed by the front fork and the vehicle’s handlebar. The front fork holds the front suspension
and is connected to the front wheel though the wheel hub which houses the brake system. For handling,
the front body is the most critical part of a motorcycle since the combination of rake and trail determines
how stable the vehicle is. Finally, wheels and tires are the most important characteristic since they are the
only way of the vehicle to road interaction. The tire ensures a permanently contact within the its patch and
provides the necessary friction for acceleration and braking.

Gas Tank

Throttle

Steering
uspension

Wheels

Frame

FIGURE 2.2: Motorcycle components.

The parameters that describe the geometry of a PTWYV are defined in figure 2.3. The key parameters are
wheelbase e, caster angle €, and trail 77. These parameters has a significant effect on the vehicle handling and
varies with respect to the final vehicle purpose, long distance travel, commuting, cruising, sport including
racing, and off-road. For example, a cruiser motorcycle is often identified by its long and extended front
forks with more lean angle, whereas motorbikes has shorter and less extended front forks.

The figure 2.3 shows a vehicle with a positive caster geometric trail which means that the contact point Cy
between the front wheel and the road is behind the intersection point Cs between the extension of the steer
axis and the road. The caster or rake angle determines the steering ability of a motorcycle. A smaller caster
angle means the motorcycle will be easier to corner but less stable in a straight line.

The wheelbase length is an intrinsic property of the vehicle and determine the length between the two
vehicle’s axles. Longer wheelbase entails more stability while a shorter one means that the vehicle is more
agile in turn. Besides the wheelbase, the geometric trail is defined as the horizontal distance between the two
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FIGURE 2.3: Geometry for handling of of two-wheeled vehicle.

points Cs and Cy when the motorcycle is upright with zero steer angle. The trail length is what ultimately
decides the tire contact patch area. The contact patch is the part of the tire which remains in contact with
the road. A greater trail length means more straight line stability but it will be more difficult to maintain
balance while cornering or in curve maneuver.

2.3 Tire-Ground Interactions

The vehicle dynamics is governed mainly by the tire/road interactions. Indeed, the pneumatic is an essential
component of any vehicle since it allows filtering the road irregularity. But more important, due to its
materials, the pneumatic deformations allow to generate the longitudinal and lateral forces necessary to
accelerate, to brake and to make a direction change when steering (Hauser and Saccon, 2006). These forces,
combined to the rider actions, modulate the vehicle dynamics and the limit of its handling.

However, the interaction between tires and ground is a complex phenomenon and can make the dynamics
modeling to be a hard task. For this, tire-road interaction can be represented by three efforts, the lateral
cornering forces, the longitudinal braking or acceleration forces and the self-aligning moment (Pacejka,
2005). This decomposition simplifies the mathematical description of the pneumatic effort with respect to
the vehicle’s kinematics variables such that slip angles and the vehicle speed. Also, various intrinsic and
extrinsic parameters are necessary for the evaluation of the pneumatic efforts in particular, road friction, tire
cornering stiffness, steering geometry and the vertical load (di2005modeling). Road friction, or adhesion,
translates the capacity of the tire to transform the normal force, at the tire-road contact, to a pneumatic
forces. So, the loss of adhesion can leads to the motorcycle fall or the under-evaluation of this entity can be
fatal for the rider safety.

Beyond the tire-rood interaction, the vehicle is also subject to other external forces. Gravitational, aero-
dynamic and rolling friction are some examples of efforts which can highly modify the vehicle dynamics
behavior and also have an indirect impact on the pneumatic generated forces. we detail these aspects in the
remaining of this chapter.

2.4 Tire’s kinematics

In this section, the PTWYV wheels are considered as rigid, thin disks where the tire-road contact is located
at the point C'. Also, we assume that there is no lateral displacement of the contact point. At this point,
a local coordinate frame is introduced and denoted Rp(C, it ,jr ,kr) to describe the tire motion. The
vector k7 is the normal vector to the road surface. The vector i is obtained by the cross product between
the wheel rolling axis jg and the vector kp as i = jg X k. Last, the vector j7 completes the reference axis.
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FIGURE 2.4: Effort generated by the pneumatic.

As shown in figure 2.4, the camber angle v is the angle formed by the two vectors jy and kp. This angle
plays an important role in the PTWYV stabilization and handling. This angle is expressed by the following
scalar product:

Sin’y = kT -j@ (2.1)

Due to the tire deformation, the tire-road contact point velocity v, is no longer along the i axis. It forms
an angle a known as the side-slip angle. Also, during acceleration and braking phases, the relative velocity
between the linear velocity generated by the wheel rotation  and the forward speed at the tire-road contact
causes the well known longitudinal slip ratio usually denoted x. The two slip variables are defined by the
following equations:

po o Vo—rwl (2.2)
max (Ve, rw0)
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o = arctan | ——
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where ryy the effective wheel’s dynamic radius and Vio = ||vec|| is the speed at the contact point C'. Moreover,
assuming that the contact point C' must still belong to the road surface, the vertical deformation of the tire
can be calculated with the following equation:

w = kT Tvco (2.3)
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with ry¢ is the position vector between the contact point C' and the origin of the vehicle reference frame
Ry which will be defined later. This deformation allows to calculate the normal load necessary to avoid
wheeling.

Once the tire’s kinematics variables are defined, the equivalent pneumatic effort can be computed at the
wheel center R by the following expressions:

Fr = Fyir + Fyjr + Fokr (2.4)
My = Myir + Myjr + M kr + Fr X rer

Where F is the longitudinal force generated by the longitudinal slip x and assumed to be positive during
acceleration phase and negative when braking. Fj is the lateral force generated by the side-slip angle . F}
corresponds to the normal force at the tire-road contact point. M, is the tilting moment around i, M, is
the rolling resistance moment around jr and M, is the self-alignment moment around the horizontal axis
k7. In the next section 2.5, more details on the expressions of these forces and moments associated with the
model (2.4) are given.

2.5 Pneumatic efforts

The simulated motorcycle dynamics depend on the mathematical tire forces and moments (Sharp, Evan-
gelou, and Limebeer, 2004). In the literature, several theoretical, semi-empirical or experimental tire effort
representations are developed with respect to the intended complexity level.

2.5.1 The Magic Formula

The magic formula or Pacejka model is a non-linear representation of the pneumatic forces and moments,
introduced by Pacejka in 1993 (Pacejka, 2005). This model is the most widespread used for modeling tires of
land vehicles and also the PTWYV (Sharp, Evangelou, and Limebeer, 2004). It is also an empirical approach
which allows to approach the real tire behavior including tire saturation. According to Pacejka model, the
longitudinal force, the lateral force, and the self-alignment moment can be computed from the following
generic equation:

F(v) = D, sin <C,,atan (BZ,I/ - E, (Bl,l/ — atan (Bl,l/)))> (2.5)

with B, is called the stiffness factor, C, is the shape factor, D, is the peak value and E,, is the curvature
factor. These factors are related to the pneumatic intrinsic characteristics and determined empirically. v is
a generic variable which corresponds to the side-slip «, longitudinal slip x or the wheel camber . The tire
stiffness is the slope of the curve in its linear region as in figure 2.5.
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FIGURE 2.5: Normalised magic Formula or Pacejka model.

2.5.2 Lateral Force

Unlike a car vehicle, the camber angle is directly related to the PTWYV roll angle and can reach significant
values depending on the forward speed and path curvature. Then, when cornering, the contribution of the
tire lateral force F, depends mainly on the tire side-slip angle  and the camber angle v which is a geometric
angle (Pacejka and Sharp, 1991, Bakker, Nyborg, and Pacejka, 1987). Figure 2.6 shows the effect of the
camber angle on the generated lateral force Fy, as a function of the lateral slip angle a.

The choice of a specific representation for tire lateral force requires some attention since it impacts the
stability analysis of the PTWYV Cossalter et al., 2006b. If the tire is in its linear region, an additional
amount of the tire force can be generated and hence the vehicle remains controllable, however, in saturation
region, the tire force is at its maximum and the rider will lose vehicle control.

camber angle

-2 0 2 4 6 8

8 6 4
Sideslip angle o [deg]

FIGURE 2.6: The influence of v on the normalized Fy.

However, in control and estimation problems, the use of the magic formula is cumbersome. For small values
of side-slip and camber angles, the lateral force can be approximated by a linear model of the following form:

Fy = Coa+ Cyy (2.6)
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The parameters C, and C,, are respectively the side-slip and camber cornering stiffness expressed in %.
The previous magic formula or its corresponding linear form describes only the static behavior of the pneu-
matic efforts. However, due to its elastic deformation, a transient behavior occurs. To consider this transient

phenomenon, almost literature includes a first order low-pass filter to the model, known as the tire relaxation
given by:

T By = —F,+ F? (2.7)

Vg

where, ¢ is the relaxation length which models the transient time. F?S) is the steady-state value of the lateral
force obtained by applying the magic formula (2.5) or the linear form (2.6). By solving the differential
equation (2.7), we get the instantaneous lateral force.

2.5.3 Longitudinal Force

During acceleration or braking, a corresponding torque is applied to the tire which generate a longitudinal
force. Figure 2.7 shows the evolution of the tire longitudinal force with respect to the slip ration. Generally,
the longitudinal slip is considered as the normalized ratio as shown in the equation (2.2).
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FIGURE 2.7: Longitudinal tire force as a function of the longitudinal slip ration.

As for the tire lateral force, for small longitudinal slips ratio, linear formulation is possible where:

Fp, =Ckk (2.8)

C, is the coefficient of stiffness which depends on the vertical force F, according to the relation C, = ki F,
where k, is the normalized stiffness.

To consider the transient phenomenon, the tire relaxation, introduced in the previous section, can also be
applied here as following:

o .
—F, = —F, + F (2.9)

(%%

where, o is the relaxation length which model the transient time. Fg is the steady-state value of the
longitudinal force obtained by applying the magic formula (2.5) or the linear form (2.8). By resolving the
differential equation (2.9), we get the instantaneous longitudinal force.
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2.5.4 Vertical Forces

The vertical force F, is the image of the load force applied on the tire at its contact point with the road.
This force is very important since it governs the maximum values of the generated tire longitudinal and
lateral forces. The distribution of vertical forces between the two tires depends mainly on the position of
the vehicle’s gravity center (CoG) and on the longitudinal acceleration.

In vehicle dynamics, the distribution of the vertical force is commonly referred to as static load balancing
and the load transfer. If we write F.f, I, the vertical force on both tires, AF, the amount of the load
transfer and, F. o, F.ro the static vertical forces then it comes:

sz :szO_Asz
Fzr = Fero+ AFzr (210)

AF, is positive in acceleration phase and negative in braking phase. The expression of the dynamic vertical
forces F, as a function of the longitudinal acceleration of the PTWYV and its geometry is obtained from
equations of equilibrium forces:

_m (lfg—i—ha;E)
- Ly + 1,

m (lrg — hag)
lf-i-lT

(2.11)

F.r=

where m is the PTWYV mass, g is the gravity constant, a, the longitudinal acceleration, h the high of the
CoG and, [y, I, are respectively the longitudinal distance between the vehicle’s CoG and the front and rear
tires contact point. It goes that Iy + I, is the vehicle’s wheelbase.

It should be noted that the PTWYV are characterized by a low wheelbase and a relatively high CoG position.
This is why load transfer is much more important compared to passenger cars. It can lead to dangerous
phenomenon such as the wheelie or stoppie.

2.5.5 Self-Alignment Moment

In addition to the pneumatic forces, the tire generates moments about its different axes. These moments are
often neglected because of their small contributions. Nevertheless, pneumatic moments can be introduced to
compensate for simplistic modeling assumptions. Indeed, in section 2.4, the PTWYV wheels are considered
as rigid, thin disks where the tire-road contact is dot shaped. Such considerations are not real even for a
simple modeling task. To overcome this limitations, three main moments are introduced and discussed.
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FIGURE 2.8: Self-alignment Moment, M.

We start with the most important moment for the PTWV dynamics which is the self-alignment. The
distribution of the tire lateral forces generated by the side-slip angle is not symmetric. Hence, the lateral
force is applied at a different point from that corresponding to the vertical projection of the wheel center
on the ground as shown if figure 2.8. The resulting offset, called pneumatic trail 7, generates a stabilizing
moment that tends to rotate the wheel by the following equation:

M, = —n,F, (2.12)

2.5.6 Overturning Moment

This moment is introduced to compensate for no lateral displacement of the contact point assumption. With
regard to the geometry of the PTWYV tires, the real tire-road contact point C' moves transversely because
of the camber and hence it is located at a distance s, from the conventional contact point defined by the
vertical projection of the wheel center on the ground. As in figure 2.9, due to this lateral deviation, the
vertical force F), creates a moment called the overturning moment M, which has a destabilizing effect.
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FIGURE 2.9: Overturning moment, M.
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The overturning moment is expressed by the following linear equation:

M, = —s,F, (2.13)

2.5.7 Rolling Resistance Moment

If we consider a wheel that rolls without sliding on a flat surface then the rolling radius R is defined as the
ratio between the longitudinal speed v, of the vehicle and the rotation speed of the wheel 6. It comes:

R =v,0 (2.14)

3
M,
>

-—-

FIGURE 2.10: Rolling resistance Moment, My,.

The effective rolling radius is generally lower than the radius without load because of the deformation of
the tire. The latter depends on the type of tire, its radial stiffness, its inflation pressure, the vertical force
and the longitudinal speed of the vehicle. This difference, noted dp, between the effective radius and the
initial radius generates a rolling resistance moment of the vehicle M, as in figure 2.10. It is expressed by the
following linear equation:

M, = d,F. (2.15)

2.6 Literature of Motorcycle Dynamics Modeling

The PTWYV design coupled to the complex tire-road interaction makes the dynamics modeling a challenging
task. In fact, the dynamics study of the two-wheeled vehicles has been started for long time ago. Several
mathematical models have been proposed in the literature, with various levels of complexity and details. In
the following, a brief review is presented focusing on the progress of the modeling methodology. The choice
of a modeling methodology is very important since it affects the dynamics behavior analysis, the number
of degrees of freedom and the usefulness of the resulting model in the final application such as the control
application.

The first attempt to analyze the two-wheeled vehicle dynamics is published in (Rankine, 1869). Early work
progressed slowly and many conflicting conclusions were drawn initially. The main substantial contribution
was the work of whipple presented in (Whipple, 1899). In this work, the two-wheeled vehicle is a bicycle
modeled as a set of two rigid bodies linked via the rotation axis of the handlebars. A system of nonlinear
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differential equations describing the motion of a bicycle including the rider are established. At this time,
the numeric computers were not available to solve effectively these nonlinear differential equations. Hence,
Whipple has linearized the model and study it for small disturbances around the straight-line equilibrium
at a given constant speed.

However, the works cited above deal only with the dynamics of the bicycles which is very different from a
PTWYV in a manner of factors such : weigh, power, maximum speed, aerodynamics, and tire-road interaction.
In 1971, Sharp’s model is presented and it is considered as the most relevant reference in the PTWV dynamics
modeling field (Sharp, 1971). In this work, the dynamics of the PTWYV in free control is detailed to perform
a stability analysis from straight line equilibrium. Sharp highlights the presence of three unstable vibration
modes namely the capsize, the weave and the wobble. In the work published in (Eaton, 1975), the auto-
alignment and overturning moments are introduced by modifying Sharp’s equations. Nevertheless, there
were an inconsistency in the tire equations between the analytical and physical results. This work will be
taken over in (SEGEL and WILSON, 1975) to develop a more refined model of tire. Aerodynamic efforts are
considered in (Cooper, 1974) to demonstrate their importance on the performance and the stability of the
PTWYV in particular at high speeds. Afterward, Sharp includes the vehicle acceleration (Limebeer, Sharp,
and Evangelou, 2001) and the aerodynamic load transfer (Sharp and Jones, 1977) in the lateral dynamics to
prove their effects on the out-of-plane stability. Unfortunately, this is not enough to explain the discrepancy
between theory and practice.

Weir introduces the rider control in his modeling (Weir and Zellner, 1978) which presents the first motorcycle
stabilization approach (Weir and Zellner, 1978). In (Koenen, 1983), the author look for the influence of the
roll degree of freedom on the coupling between the in-plane and the out-of-plane vibration. (Katayama,
Aoki, and Nishimi, 1988) study the actions of the rider on the motorcycle control. The results indicate that
the PTWYV is mainly controlled by the handlebar steering torque while it is always possible to control the
vehicle with a small movements of the rider’s lower part. Sharp proposed an improvement of his first model
to evaluate the influence of the rider and bodies flexibilities on the unstable vibration modes (Sharp, 1994).

With the development of high-end numerical solutions, more complex modeling approach have emerged.
(Imaizumi, Fujioka, and Omae, 1996) consider a set of twelve rigid bodies to model the PTWV dynamics.
The rider actions have been applied via the proportional controller. Sharp proposed a multibody model
integrating the suspension and a more elaborate representation of the road-tire contact and the pneumatic
efforts are computed by using the magic formula (Sharp, 2001). This model allowed to study the PTWV
dynamics over large motions around equilibrium conditions and to better understand the coupling between
longitudinal, lateral and vertical dynamics. Cossalter presents an eleven degrees of freedom using a modeling
approach called the natural coordinates approach (Cossalter and Lot, 2002). In this model, the front and rear
chassis, steering system, suspensions and tires are considered and a more original tire model was developed,
which takes into account the geometric shape of tires and the elastic deformation of tire carcasses. A
realistic representation of the vehicle wheel is showed in (Sharp, Evangelou, and Limebeer, 2004) where the
geometry of the rim and the tire width are taken into account. This model was the most complete of the
literature and it constitutes the base of the PTWYV simulation environment BikeSim.

2.7 PTWYV Dynamics Modeling

2.7.1 Motorcycle Description

In its medium decomposition, the PTWV can be represented as the interconnection of a set of six bodies.
The rear body Gr includes the saddle, the engine and the fuel tank. The upper front body G includes the
handlebar and the upper part of the suspension assembly. The lower front body G| represents the lower part
of the suspension assembly and the brake system. The swing arm body G contains the swing arm mass
and the rear brake system. Finally, Ry and R, represent, respectively, the front and the rear-wheel bodies.
Note that we can also consider further bodies such that the rider upper body Gy, and rider lower body Gy,
as in figure 2.11. To characterize the PTWYV motion, we should introduce a set of generalized coordinates
as follows:

e the longitudinal, lateral and vertical positions (z, y, z) of the chassis,

e the roll, pitch and yaw orientation (¢, 6, 1) of the the chassis,
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e the steering angle ¢ of the front steering system,
e the front suspension travel Ay and the swing arm rotation u,
e and finally, the front and rear wheels spinning, 6 and 0,..

Next, we consider the Earth-fixed frame R (0, i0, jo, ko) and the vehicle reference frame Ry (V, iy, jv, ky)
in which the vehicle dynamics will be expressed. The axes iy, and jy are respectively along the longitudinal
and the transverse axis of the vehicle. For the axis ky/, there are two main standards defining the configuration
of reference frame used for modeling ground vehicles, the the ISO 8855 and the SAE J670e standards (Damon,
2018). They differs mainly in the direction of the z-axis. Point V corresponds to the projection of the point P
at the ground along the symmetry plan of the vehicle where P is the link attachment point of the motorcycle
swing arm.

irg

FIGURE 2.11: Geometry of the eight-body model of the PTWYV with rider.

The motion of the PTWYV is referred to the inertial reference frame Rp by a set of generalized velocities
vz, vy of point V, and the yaw rotation 1) around the z-axis of the inertial reference frame. Starting from
the reference frame Ry, the orientations of the other reference frames are defined in figure 2.12. The first
rotation corresponds to the roll ¢ about iy which gives an intermediate reference frame Ry (V,ig,jg, kg)-
The second rotation is the pitch motion around jg and gives another reference Ry(P, ig,jp, kp). Then,
a geometric rotation e around j, leading to the reference R(P,ic, je, k). Finally, the steering rotation ¢
around k. gives the reference Rs(E, 45, j5, ks). At the same time, the rotation of the swing arm p around j,
gives Ry (P, iy, jus ku)-
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FIGURE 2.12: Orientation of PTWYV coordinate systems.

The velocity vector of each body in the vehicle reference frame Ry, is given by :

vog; = vov +wov X rva,; +1va, (2.16)
wo@g; = wov +wyg,

where voy = [vz,vy,0]T and woy = [0,0,%]7 are respectively the linear and the angular velocity vector of
point V. Also, the acceleration vector of each body in the vehicle reference frame Ry is given by :

aoaG; = vov +eov X rvg,; +iva, +wov X (vog; +7va;) (2.17)
cog; = wov twov Xwyg; +wyg;

where oy = [0z, 7y,0]7 and woy = [0,0,9]T.

By using equations (4.13) and (2.17), all kinematic quantities for all bodies can be defined easily. The next
section discusses the basics of the virtual power principle for dynamic modeling of PTWV.

2.7.2 Virtual Power Principle

The virtual power principle is a dual formulation of the fundamental principle of Newton-Euler’s dynamics.
As stated by the third Newton law, when a body exerts a force on another body, the former simultaneously
exerts a force equal in magnitude and opposite in direction. So, the power of the constraint in this case is
null and we say that the constraint is compatible or conservative with the direction of motion. Then, the

virtual powers in a virtual motion provided by conservative constraint forces Fg, . and moments Mg, . is
null:
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n
Z {AUOGiFGi,c + AWOGiMGi,c} =0 (2.18)
=1

with n the number of bodies, Av and Aw are virtual linear and angular velocities.

From Newton/Euler dynamics principle, the conservative efforts Fg;, . and Mg, . can be separated from the
system motion and the external applied efforts F, , and Mg, , such that:

Fa,c = mg;a0ci — Fg,a (2.19)
Mg, =Jgeoa; +woa; X Ia;woa; — M, a

with mq, and Jg, respectively the mass and the inertial matrix of the body i in its C'oG;. Moreover, from
equations (4.13) and (2.17), the velocity and acceleration vectors of each body G; can be written as follows:

_ Ovog; _ Owog;
VoG; = 99 , Wog; = 90 (2.20)
0 . 0 .
aog; = ’UaoﬂGl’l?—l-aR . €OG; = L:;%Gzﬁ—l-ER (2.21)

where 9 denotes the vector of generalized velocities and the partial derivatives are called Jacobian matrices
of the velocity vector with respect to the generalized velocities vector. Vectors agr and eg are referred as the
residual acceleration terms.

Finally, by combining equations (2.18), (2.19) and (2.20) and after some algebraic manipulations, the system
dynamics can be described by the following first-order differential equation:

MO =Qq—Qr (2.22)

with 9 is the derivative of the vector of generalized velocities. M denotes the mass matrix:

- doc; \" dvoa; dwoc; '~ Owog;
M‘Z{mGi< 819) a0 T\ "aw ) %o (2.23)

=1

@, is the applied generalized effort vector and Qg is the residual generalized effort vector:

" dvog; T Owog, T
Qa_Z{( 90 ) FGiva_I_( 90 ) maG;.a (2.24)

= dvoa, \* dwoa, \ *
Qr= Z {mcl- ( 8(19@) ar + ( 8?9&) (Jg,er +wog; x jaiwoc:i)} (2.25)

2.7.3 Technical Simplification for Implementation Purpose

Although the development of many-body models is capable of faithfully modeling of the dynamic behavior
of PTWYV, it remains a strongly nonlinear and highly complex model. Such models are an excellent way to
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simulate the dynamic behavior of the vehicle as a basis for design or validation, but their complexity does
not make it a suitable candidate to solve control, estimation and identification problems.

A first approach consists to choose a reduced number of bodies with the minimum set of generalized coor-
dinates. Then, the lateral and longitudinal dynamics decoupling will simplify greatly the model. In both
models, the front and rear wheels are assimilated to virtual masses but their rotation dynamics are consid-
ered in the development of the models. Also, the upper and lower front bodies are merged into one body
and the swing arm is included in the rear body. This yields to a two bodies representation with decoupled
longitudinal and lateral dynamics. This issue will be the subject of the next section.

2.8 Two-Body Model for the Lateral Dynamics

This section presents the development of the lateral dynamics by considering the PTWYV and its rider as a
set of two bodies: the front body and the rear body. Once established, a linearization around a straight line
trajectory is discussed.

2.8.1 Assumptions

In this section, the PTWYV and its rider are represented by a set of two bodies linked by the steering
mechanism. We distinguish the front body G ¢, including the front wheel, the fork and the handlebars. The
rear body G, includes the chassis, the tank, the rider, the swing arm, the engine and the rear wheel. By
this simplifications, the dynamics of the suspensions is not taken into account which eliminates the pitch
dynamics and load transfer. Also, the longitudinal velocity is considered to be constant or at least it varies
very slowly allowing to neglect the longitudinal slip ratio for both tires.

For the development of the two-body model, we define a vehicle reference R4 = (A,i4,74,k4) attached to
the PTWYV at point A according to the ISO standard. The origin A corresponds to the projection of the
rear body CoG on the ground along the longitudinal plane of symmetry as in figure 2.13. Starting from the
vehicle reference 34, a roll rotation ¢ around i4 gives an intermediate reference Ry (A, ig, Jérke). Next, a
rotation e around jg gives Re(A, ic, je, ke ). Finally, a steering rotation § around ke gives Rs(B, 15, js, ks)-

L
ing
FIGURE 2.13: Geometry of the two-body model of the PTWYV and its rider.

The resulting model allows the simulation of 4 degrees of freedom namely the yaw 1, the roll ¢, the steer ¢
and the lateral speed v, with respect to the rider torque applied on the vehicle’s handlebar. So, we choose
a set of four generalized velocities:

V=, ¢ ¢ &7 (2.26)
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2.8.2 Rear and Front Body Kinematics

The position of the CoG of the rear body in its local reference frame Ry is a constant vector TﬁGT =

[0,0,2¢,]%. Then, in the vehicle reference we have:

rac, = Rerfie, (2.27)

By differentiating the equation (2.27), we can express the vector of the relative linear velocities by:

TAG, = We X TAG, (2.28)

where wy, = [¢,0,0]7. A second differentiation, the vector of the relative linear accelerations is:

FAG, = We X TAG, T We X TAG, (2.29)

By using equations (4.13) and (2.17), we can express the rear body kinematics in the vehicle reference as
follows:

V0@, = VoA +WOoA X TAG, T TAG, (2.30)
WOG, = WoA T WAG,

aoG, = oA +eov X rag, +iaa, +woa x (vog, +7ac,)

E0G, = WoA T WoA X WAG, T WAG,

where wag, = wg and wag, = [$,0,0]T. We recall that woa = [0,0,%]T and vos = [vz, vy, 0]T. By the set
of equations (2.30), it is straightforward to define the velocity Jacobien matrices for the rear body as:

ov . .
%GT = []A kaXrag, 1A XTaG, 03,1] (2.31)
dwoq ,
L = k 0
oY [0371 A A 3,1]

and the residual acceleration terms:

ARG, = WOA X (UOGT + TAGT) + we X TAG, (2.32)
ER,GT = w4 X w¢

The front body has only 1 DoF relative to the rear body G, corresponding to the steering angle 6. The posi-
tion of the CoG of the front body in its local reference frame R4 is a constant vector TéBGf = [atgf ,0, sz]T.

Also, the position of B in its local reference frame R is a constant vector 45 = [zg,0, O}T. Then, in the
vehicle reference frame we have:

rac; =raB 7RGy = Rerip + R¢,e,6réBGf (2.33)
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By differentiating the equation (2.33), we can express the vector of the relative linear velocities by:

TAG; = TAB +TBG; = Wy X TAB + Wy sTBG, (2.34)

where wg s = wg +ws and ws = R¢’6[0,0,5}T. A second differentiation, the vector of the relative linear
accelerations is:

FAGf =Wy X TAB T Wy X FAB + Wy s X TBG; + We.s X fBGf (2.35)

where Wy 5 = Wy + ws and ws = Ry ([0,0,0] + wg X ws.

By using equations (4.13) and (2.17), we can express the front body kinematics in the vehicle reference frame
as follows:

VOG; = VOA +WoA X TAG, +TAG, (2.36)
wWoG; = wWoA T wAGy
aoG,; = VoA teov X raG, +iac, +woa x (vog, +7ac,)

£0G; = WOA T woA XwAg; twaa,

where wag, = wp s and wag, = @y s. By the set of equations (2.36), it is straightforward to define the
velocity Jacobian matrices for the front body as:

6vOG . )

90 L=[ja kax TAG, GAXTAG; ks XTBG,] (2.37)
awogf _

90 = [03’1 k‘A 1A ]415]

and the residual acceleration terms:

arG; = woa X (VoG; +7AG;) + Wy X 4B + (Wp X Ws) X TG, +We s X TBG, (2.38)

ER,G; = WOA X Wy s + wy X ws

2.8.3 Rear and Front Tire-Road Contact Point Kinematics

In section (2.8.2), we have supposed that there is no lateral displacement of the tire-road contact point.
Consequently, the position of the rear tire-road contact point C. in its local reference Ry is a constant
|7

vector rﬁcr = [zR,,0,0]*. Then, in the vehicle reference frame we have:

rac, = Rerlic. (2.39)

By differentiating the equation (2.39), we can express the vector of the relative linear velocities by:
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f‘ACr = Wy X TAC, (2.40)
By using equations (4.13) we can express the rear tire-road contact point linear velocity in the vehicle

reference frame as follows:

VOC, = VOA T wWoA XTac, +TAC, (2.41)

<
(&)
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®
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>

FIGURE 2.14: Front tire contact point.

Nevertheless, the computation of the front tire-road contact point kinematics is quite clever. As presented
in figure 2.14, the position of the front tire-road contact point Cy in the vehicle reference frame is given by:

rac; =racy, trolo; (2.42)

where C’} is the intersection point of the steering axis with the ground. The position vector r 4/ remains

constant in the vehicle reference frame since it is not influenced by the steering rotation. Then, from
figure 2.14, we can express that position as:

rac, = 0 (2.43)

where 7 is the geometric trail. The position of the front contact point C'; with respect to C’} in its local

reference R is a constant vector rg,/ o= [-7,0, —n tan e]T. Then, in the vehicle reference, the position of

the front contact point C'y with respect to A is :

racy =rac, + Rwlgrg}cf (2.44)
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By differentiating the equation (2.44), we can express the vector of the relative linear velocities by:

7.”ACf = Wwg 5 X TC}Cf (2.45)

By using equation (4.13) we can express the front tire-road contact point linear velocity in the vehicle
reference frame as follows:

VOO, = VoA +WoA X TAC, +TAC, (2.46)

From equations (2.41) and 2.46, we can define the side-slip angle « for both rear and front tire.

Finally, the last issue in this section concerns the gyroscopic effect of both wheels. We assumed that the
front and rear wheels are mass-less bodies, hence, their contribution in the mass matrix is null. So, it is
useless to compute the linear velocity Jacobian matrices and also the linear residual acceleration. However,
each wheel is supposed to rotate about its axis with a given inertia. To count with the gyroscopic effect, we

should express the angular velocity Jacobian matrices and the angular residual acceleration.

The rear wheel rotates about jg, with an angular velocity wp, = 6, Jo,- Then, the angular velocity vector of
the rear wheel with respect to the vehicle reference frame is given by:

WAR, = Wg + W, (2.47)

where, in the vehicle reference frame jg, = Ry[0,1, O]T. By differentiating the equation (2.47), we get the
relative angular acceleration vector:

WAR, = W¢ T Wy, (2.48)
where wyg, = Q}jgr + we X wy,..

As for the rear wheel, the front wheel rotates about jg f with an angular velocity wg ;= 0 70 I Then, the
angular velocity vector with respect to the vehicle reference is given by:

WAR; = W¢ + w5 + Wy, (2.49)

where, in the vehicle reference frame jef = Ry ¢500,1, O]T. By differentiating the equation (2.49), we get the
relative angular acceleration vector:

WAR; = Wg + ws +we, (2.50)

where U.Jgf = 9fj9f + (w¢+o.)5) X wp, -

By using equations (4.13) and (2.17) we can express the angular kinematics of both wheels in the vehicle
reference frame as follows:
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WOR, = WOA T WAR, (2.51)
wWoC; = WOoA +WAR;

EOR, = WOA T WOA X WAR, + WAR,

EOR; = WOA T WOA X WAR; +WAR;

Finally, we can deduce the residual acceleration terms by:

ER,R, = Wy X (LU¢ + WQT) + We X Wy, (2.52)
ER.R; = Wy X (Wp +ws +wp,) +wy X ws + (wWg +ws) X w,

2.8.4 Non-Conservative Generalized Efforts

The PTWYV is subject to various forces and torque elements. In this section, we account for the gravity force,
rider steering torque, steer damper torque and tire lateral force on the front and rear tire contact points.

To express the contribution of gravity force in the generalized effort vector @),, we can make use of equation
(2.24):

™[ o
o T ov
Qug = mT< gofr) +mf< gﬁGf> 0 (2.53)
—g

In the same way, the contribution of the tire/road contact efforts into the generalized effort vector is given
by:

dvor, \ " dwor; \ "
Qur= ) {( %%Rl) Fr, + (ﬁ) (Fr, XTC,L-RZ-)} (2.54)

i=nr,f

where Fr, are defined in equation (2.4).

Afterward, to evaluate the contribution of the rider steering torque 7 and the steer damper torque Kgd in
the generalized effort vector, it may be tedious to use equation (2.24). Therefore, it is most convenient to
find the virtual power done by each effort and hence its associated contribution. So, it is more simple to
write :

a\ | O
Qap = (619) U (2.55)
T—Kgs0

2.9 Linearisation and State Space Models

The objective of this section is to set up PTWYV dynamic models taking into account the triplet motorcycle-
rider-environment. Motorcycle models can be accomplished in several ways depending on the use that will
be made and the desired precision. These models should represent all dynamics of interest as simply as
possible.
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e The out-of-plane model: this model incorporates the most important parameters and dynamic states
of the motorcycle. It is used to understand the lateral motion and estimate the included variables,
which is the topic of interest for this work.

e The one-body lateral model: this model is studied in a motorcycle-fixed reference frame with the origin
located at the Centre of Gravity (CoG). It is used in the sake of identifying the CoG and the total mass
of the motorcycle/rider. It allowed also to design a steady-state risk function to detect the abnormal
steering behavior.

e The in-plane model: this model is used to describe the braking and acceleration dynamics. It is used
in estimating the interconnected coupled dynamic between the longitudinal and lateral motions.

The differences between these models are the number of bodies, flexibility and degrees of freedom. These
requirements are imposed by the application. In this context, selecting a suitable model structure is pre-
requisite before its estimation and identification. This selection is also constrained by the availability of the
motorcycle measurements. Based on the available literature, these dynamic models are given in the following
sections.

2.9.1 Out-of-Plane Motion

The large number of accidents on the bend motivates the fact that many of our works deal with lateral
dynamics. The famous out-of-plane model is widely used for the development of estimation and control
algorithms of lateral dynamics of PTWV (Sharp, 1971).

) /"

\ 0, T
s

v

__________________________________ - _>
I, Fyr

FIGURE 2.15: Schematic side view of the PTWV two-body model with notation

The two-body nonlinear four degree-of-freedom (4 Dof) model considers that the main frame is subject to
lateral motion, roll motion about the x — azis, yaw motion about the z — azis and the front frame is subject
to steering motion, due essentially to the effect of pneumatic forces acting on the front and rear wheels
(Fyy and Fy,) with tire relaxation. By neglecting the nonlinearities associated with the products between
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dynamic variables, the motions are expressed by the following dynamic equations:
Lateral motion  e330y + 634172} + 635<}5 + 6365 = a341j1 + Z Fy
Yaw motion  egqty + e44t) + ea5d + €460 = a4atd + as5¢ + ased + > M.
Roll motion  e35vy + 64512} + 655d; + 6565 = a541[) + a565 + Z My
(2.56)
Steering motion 360y + €46Y + €560 + €660 = aga® + a5 + aged + »_ Ms

Front lateral force motion Fyf = a71¢ + a2 + arzvy + arath + argd + arrFy ¢

Rear lateral force motion Fyr = ag1¢ + agzvy + agah + agg Fyr

where:
EFy = Fyp+ Fyr
Z M, = a47Fyf + asg Fyr
> My = as1¢+ as20
> Ms = ag1¢ + ag20 + agrFys +7

Nevertheless, there is an interesting alternative to consider the nonlinearities of the roll and the steering

angle due to the potential energy. The expression 2.57 becomes:

Y Fy=Fyp+Fyr

Yo M. = asrFys + asgFyr

> My = as1 sin(¢) + asz sin(9)

> Ms = ag18in(¢) + agz sin(d) + agrFyp + 7

For further details on the motorcycle parameters (e;; — a;j) and expressions refer to the appendix.

Remark 1 The motorcycle, is instrumented with several sensors (odometer, GPS sensor, the central unit),
which allow us to measure different state variables, see section 2.11 :

e the roll and yaw rates ¢, vV,
e the longitudinal velocity vy,
e the steering angle 0 and its time-derivative rate 0, 5.

e the lateral acceleration which verifies the equation : may = Fyp + Fy, .

Finally with the appropriate measurement vector, it comes y = [5,1&, &, 96, ay]T

The motorcycle dynamic model given by equation (2.56-2.57) can be expressed by the following descriptor
model:

{E:t = M(vy)z+ Rr (257)

y = Czx

whereas z = [¢, 8, vy, %, $,8, Fy ¢, Fyr]T denotes the state vector, the matrix M (vy)=[a;;j]sxs is parameter
varying, R is a constant matrix, y is the vector of measures and C' is the observation matrix E=l[e;;] is a
constant nonsingular matrix, its inverse £~! exists. Let us consider ((t) = v.(t). The Linear Parameter
Varying (LPV) structure is expressed by:

{ i(t) = ﬁ(ﬁ)éi?J Bu(t) (2.58)

where 2(t) € R™, u(t) = 7(t) € R™, and y(t) € R™. The matrix A(¢) = E~'M(¢) € R™™, the matrices
CeRwW*" B=F1RecR"™" Whereas,n=8,m=1,p=6, ny = 5.
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2.9.2 Road Consideration

This section extends the earlier results in Sharp’s 71 model, taking into account the road bank angle, denoted
¢, at which the road is inclined about its longitudinal axis with respect to the horizontal one, it has the effect
of transferring a portion of the gravity force to lateral tire forces keeping the motorcycle in its path, also
and tilts the motorcycle in the direction of the curve to take a safer turn, to avoid skidding and overturning
of motorcycle, this force is noted Fy, = mgsin(¢r).

FIGURE 2.16: Motorcycle geometry with road banking angle.

Assumption 1 The road bank angle is constant piecewise or varies slowly.

Under this assumption, the motions of the motorcycle can be described by the following equations

€330y + e341) + €350 + €360 = azarh + Fyy + Fyr — mgsin(éy)

e34by + e44t) + €450 + €460 = asarh + assd + ased + asrFyp + asgFyr

€350y + a5t + e550 + e560 = asy sin(¢ + ¢r) + as2 sin() + aza) + ased ,
€36ty + eact) + €569 + 660 = ap1 sin(¢ + ér) + apz sin(6) + aeat) + acsd + aced + agrFyp + 7 22

Eyr = a71(¢+ ér) + ar20 + ar3vy + azath + ared + a7 Fy g

FyT = 081(¢ + ¢T) + agsvy + a84'¢’ + aSSFyT
Whereas (¢,) is the road bank angle.
As discussed before, the lateral front and rear forces Iy, ¢ and Fy;, are generated when there is simultaneously

side slip angles « and camber angles 7. The mathematical formulas of these lateral forces and angles,
expressed in the motorcycle-related reference frame, are given by :

{ o byp = —Fyp = Cpiag+ Cpa(¢ + 6, + dsin(e)) (2.60)

%Fyr = _Fyr — Ur1Qy +Cr2(¢+¢r)

with

— (Uy""lfw"‘s> —§cos(e), ap = (Uy—l“/’> (2.61)

Vg Uz

Ct; and Cy; refer to the tire forces coefficients (stiffness and camber coefficients i = (1,2)), € refers to the
caster angle, 7 is the mechanical trail, Iy (resp. [;) represents the distance between the center of mass and
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the front and rear axis. Considering the lateral forces in their linear form is not restrictive because we are
targeting urban scenarios where the camber and slip angles remain in the linear domain of the lateral forces.

2.9.3 One-Body Model of Lateral Dynamic

In this part, the lateral dynamics of the powered two-wheeled vehicle is considered by simplifying the two-
body model (Sharp, 1971), leading to a rigid one-body model (inverted pendulum), with the assumption that
the roll axis is considered on the ground. The inertial parameters of the motorcycle are generally represented

FI1GURE 2.17: The motorcycle geometrical description

by: it mass m, the moments of inertia : I, I, I, and the position of its center of gravity CoG.

Let us consider the following one body motorcycle model with 3 DoF giving the lateral, the yaw and the roll
motion dynamics:

m(vy + wvm) = Fyr+Fyr
) L) = aFy;—bF, (2.62)
Iz¢ — mh(vy +Yve) = mgho
and the tire relaxation dynamics
. _ = v 70,7,/'1 S
F,y = 7% yf'i‘Cfl((s* 'yvﬁ )+Cf2¢+AFyf (2.63)
. b .

Fyr = —%Fy -G (25 20) + Cra¢ + AF,

where AF;’;, AF ysf are the nonlinear parts of forces which characterizes the dangerous situations (sat-

uration of the forces), m: motorcycle mass and o is a scalar defining the length of relaxation. Let
z = [vy, 1, ¢, b, Fyr, Fyr]T, adding the trivial expressions ¢ = ¢. We deduce the following Linear Parameter
Varying (LPV) system :

{ i = A(Q)z+Bu+Q(()d (2.64)

y = Cx

where the input u(t) is the steering angle 6 and d(t) is the nonlinear part of the lateral forces, with ¢ = vy,
A() =E"'M(), B=E"I'N and Q(¢) = E~1F(vy).

2.9.4 In-Plane Motion

The performance study of PTWYV focuses also on the longitudinal dynamics which refers to the vehicle’s
ability to accelerate, brake and to develop traction in order to overcome obstacles. The behavior of the
motorcycle during straight-line movements depends mainly on longitudinal pneumatic and aerodynamic
forces. The in-plane model under the effect of lateral motions describes the tires and braking systems is
given by the following equations:

m(vlw_vgﬂb) F:rfJFFa:T_CdU%_Frr
ifwa = —R;F,r+ By (2.65)
lpyWy = —RFpr +T + By
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(.?’;}, f U:sz}/ For

FI1GURE 2.18: Kinematic representation of PTWV.

e F, = Cqv? is the aerodynamic force with Cy is the drag coefficient.

e F.. = f,Fz is the rolling resistance force with f,, is the rolling resistance coefficient, for more details
please refer to (Cossalter et al., 2006b).

e By and B; are the braking torques applied to the front and rear tires, considered as external moments
in the wheels’ rotational model, T is the total engine torque applied only to rear wheel.

e wy, is the wheel rotational speed |, i(fr)y the moment of inertia of the wheels, Ry, are the wheel
radius.

The longitudinal forces dynamics are given by the following equations:

2Fm =—F,;+ 0N, i= (f,?") (2.66)

(%%

(Riw;—va)
maz(R;w;,vz)’
are tire relaxation lengths.

where, \; = i = {f,r} are the longitudinal slip angles, C; are the tire longitudinal stiffness, o;

2.10 Stability and Handling

2.10.1 Gyroscopic effect

Any object rotating about an axis is subject to the gyroscopic effect. It is the ability of this object to keep
in balance its axis of rotation. Hence, the gyroscopic effect is a very important physical effect in a PTWYV.
It arises from the front wheel speed and its role is prominent to ensure the vehicle balance in straight line
and when steering (Grzegozek and Weigel-Milleret, 2015). It is worth noting that its amplitude is relatively
small compared to other moments, but its transitory character is crucial in cornering.

Once the wheel is in rotation with a given angular speed, the gyroscopic effect can be generated by one or
by the combination of three motion: steer, roll and yaw. First, the gyroscopic steer-lean effect is created
by a steering maneuver. For example, to initiate a left turn, the motorcycle’s handlebar is turned in the
counter sense allowing the vehicle to lean in the turn direction. When the desired angle of the lean is reached,
the handlebar is brought back to its neutral position to get a balance trajectory within turn. Second, the
gyroscopic roll-steer effect is generated by the motorcycle roll independently of any handlebar movement.
While a bike is rolling down to its desired lean angle for a left turn, if the back wheel were loosely constrained
in the frame and allowed to steer right or left, this effect would cause the back wheel to steer into the turn
to the left. Then, the gyroscopic yaw-righting effect arises from the circular motion of the vehicle as those
generated by rotation of the wheels in a constant turn. This is the only gyroscopic effect that tends to
destabilize the vehicle.
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2.10.2 Vibration Modes

While in motion, single track vehicle and its rider remain in an unstable equilibrium like a inverted pendulum
(Grzegozek and Weigel-Milleret, 2015). The term stable means that the vehicle leans at a predefined roll
without falling at constant speed (Slimi, 2012). Then, safe ranges of stability as defined earlier are determined
by the vehicle characteristic, the forward speed and the rider actions.

A PTWYV maintains a state of equilibrium as long as the applied external efforts are balanced with the
generated tire/road efforts. In a straight line, this stability is provided by the rider by controlling the
forward speed and a small handlebar torque to reject perturbations. On the other hand, the rider applies
a suitable handlebar torque to control the roll angle of the PTWYV. This also can be done by a lateral
displacement of the rider with respect to the vehicle’s main body. However, for an uncontrolled motorcycle,
three main modes of instability arises with respect to the vehicle forward steer (Sharp, 1971).
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FIGURE 2.19: Lateral stability curve of PTWV.

From figure 2.19, a first non-oscillating vibration mode and well damped at low speed appears, this mode is
called capsize. In this mode, the front wheel is steered toward the direction of the roll but not enough to
avoid a fall. Next, a second mode named weave appears as a slow oscillatory mode between the rear wheel
and the front steering wheel. This mode has a frequency ranging from 0.2Hz at low speed up to 4Hz at
high speed. It is unstable at low speeds less than 5m/s, well damped at medium speed and moderately
damped in high-speed and stable beyond 30m/s. It affects the whole vehicle whose trajectory undulates,
the steering is 180 deg out of phase of with the yaw and 90 deg with the roll. The weave mode is influenced
by several parameters including the distance from the center of mass to the steering head and the the height
of the center of mass. Last, wobble mode describes a fast vibration oscillation of the steering body with a
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frequency of 8 Hz to 10 Hz which is independent of the vehicle speed. In this mode, the vehicle’s handlebar
starts to swing from one side to the other until fall. This unstable mode is naturally present on the PTWV
mainly at high speed and it can be damped by adding a suitable steering damper.

Figure 2.19 shows also the concept of the critical speed, under which the vehicle self-stabilization is not
possible. Also, unstable modes are well differentiated and separated over the all speed range. In (Limebeer,
Sharp, and Evangelou, 2001), the authors studied the influence of other parameters on the out-of-plane
stability of PTWYV in particular the effect of the front and rear suspensions.

2.10.3 PTWYV Motion

For PTWYV dynamics, we distinguish two classes of motions around the equilibrium. The first one is the
in-plane motion which relates to the longitudinal motion of the vehicle in its plane of symmetry. It is mainly
affected by acceleration, braking, suspension motions and irregularities of the road. The other one is the
out-of-plane motion which refers to the lateral motion in turns and hence to the roll, the yaw, the steering
and the lateral displacement degrees of freedom. Besides these two main classes, other subdivisions can be
done by separating braking and acceleration phases from the turning ones (Cossalter et al., 2006b). Actually,
in the real world these phases happen together in a coupled way so that the result is that the vehicle turns
while it is braking or accelerating. Also, neutral phase occurs when the vehicle is going on a coast down
condition. Usually neutral phase is not developed in mathematical models.

2.10.4 PTWYV Control

Riding a PTWYV is not as simple and intuitive as driving a car vehicle. In normal riding conditions, the
PTWYV is an unstable system which requires the presence of the rider to stabilize his motorcycle and correct
its trajectory. Also, with a comparable dynamics, the vehicle power to the rider mass ratio is very important
and hence, each riding style gives rise to a specific control strategy which changes from one to another rider
depending on his sensation and his perception of the external driving environment. So, reproducing the rider
control behavior with a mathematical model is difficult and it is still the subject of several research works.

Optimal/Safe and desired path

\

Topology| ENVIronment Viewal

of erception
roads ! percep

Action:
Steer angle,
braking

Proprioceptive perception:
Acceleration, Yaw rate, Steering torque

FI1GURE 2.20: Motorcycle-Road-Environment.

Therefore, the PTWYV, the rider and the driving environment constitute a complex system operating in a
closed loop. The rider receive information from the environment on one hand and the motorcycle states on
the other hand, after, the rider decides the control actions to be applied to its vehicle (Lauffenburger, 2002).
Also, many other factors which have a significant impact on the riding behavior are difficult to quantify and
to model as a mathematical equations. These factor are generally related to the rider’s state evaluation, its
experience and riding skills. The miss-evaluation of a correct environment perception and self riding skills
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tend to ride beyond the limits of the vehicle motorbike under given conditions which result in an hazardous
riding situation.

2.11 Motorcycle Instrumentation and Data Calibration

In order to have an experimental platforms, used as a reference for the validation of the two-wheeled models
as well as the evaluation of the stability, robustness and reliability of the proposed model-based estimators,
this section deals with the instrumentation stage and introduces a procedure for data calibration.

First, we will present the motorcycle (scooter lab’s), the different sensors and their characteristics as well
as the instrumentation procedure in section 2.12. These sensors are used either to measure the physical
quantities of the dynamic behavior in order to validate the mathematical model, or for the identification of
the statico-dynamic parameters of the motorcycle, essentially for the validation of the different algorithms
developed during this thesis work.

The second part offers a brief review of a self calibration algorithm in section 2.13 for the estimation of the
three mounting angles roll, pitch, and yaw of accelerometers and gyroscopes within Inertial Measurement
Units (IMUs). Such a self-calibration method is focused for telematic boxes (e-Boxes) installed on two-
wheeled vehicles, whose IMUs’ axes often result not to be aligned with the vehicle reference system.

2.12 Instrumented Lab’s Motorcycle

For experimentation, a fully electric propulsion scooter is instrumented with various sensors as in figure 2.21.
It is equipped with a DC motor, powered by three battery packs, for a total weight of about 115 kg and
allowing a maximum speed of 45 km/h. The rear suitcase encloses an Intel Core i7-3610QM embedded
computer manufactured by Neousys Technology dedicated to embedded applications, which also integrates
a GPS receiver to measure the speed and position of the PTWV. A digital-analogue input-output card from
National Instrument (PCle-6353) is plugged to interface the various sensors and actuators. On the other
hand, a high-end Inertial Measurement Unit, SBG IG-500A is installed near the rear body center of mass.
It incorporates an accelerometer, a gyroscope and a magnetometer providing accurate measurements of the
three Euler angles and their associated rates and the three axes acceleration. Also, the steering system is
equipped with an IOV GA210 absolute encoder directly installed on the steering column without reduction
stage, and offering a 10-bit resolution for 1024 steps per revolution. This sensor measures the handlebar
position seen by the actuator axle. For wheel rotational speed, optical encoder has been selected. Data
acquisition is performed at 100 Hz except for the computer-integrated GPS which is slower with a maximum
frequency of 10 Hz (Damon et al., 2017).

emdedded computer and DAC card

IMU

Encoder

FIGURE 2.21: Instrumented Scooter at the IBISC Lab, university of Evry.
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2.13 Inertial Sensor Calibration

The results of this section were obtained during an internship at PoliMi laboratory (Politecnico di Milano,
Ttaly), lasted two months (April-May 2018). The work was published in (Fouka et al., 2018d).

2.13.1 Overview of Calibration

IMU axes calibration is an important step when installing on a vehicle to get accurate and significant
measurements of the different degrees of freedom of interest (Maeder and Morari, 2011; Syed et al., 2008;
Boniolo, Savaresi, and Tanelli, 2009b; Syed et al., 2007). In fact, IMU are strongly affected by mounting
angles with respect to the vehicle reference frame and this relative positioning should be recovered by an
alignment method (Syed et al., 2008; Groves, 2015; Vinande, Axelrad, and Akos, 2010). IMU calibration is
even more essential for PTWYV than cars vehicle since the roll angle can reach 50°. Also, the narrow space
occupied largely by the vehicle’s engine does not simplify the installation of the IMU closer to the center
of mass of the vehicle. So, natural alignment with the vehicle’s direction of motion may be impossible and
significant differences can be observed between measured variables and the real ones.

To perform such a calibration, some of the existing methods use the Global Navigation Satellite System
(GNSS) to compare positioning data with the IMU outputs (De Tommasi, 2014). However, these methods
imply that the GNSS must be always active and running at its highest possible frequency to cover all
possible measured signals bandwidth. This results have a significant increase in energy consumption, as an
accelerometer/gyroscope pair requires approximately 1 mA at 3 V, thus an energy of 3 mW, while GNSS
consumes 10 — 20 mA at 3 V, thus 30 — 60 mW. In applications where energy consumption is critical, as it is
in two-wheeled vehicles, and in general in electric vehicles, algorithms that make sporadic use of the GNSS
or even ovoid the GNSS are to be preferred. Furthermore, GNSS data are subject to errors which affect the
measurement precision (Groves, 2013).

In the present work, a self-calibration, energy-efficient, algorithm for triaxial IMU installed on motorcycles
is proposed. Also, this looks for limiting the use of geo-localization data. The objective is to estimate the
mounting angles defined as the angles between the IMU and the vehicle reference system, assumed constant
over time. Next, the estimated angles serve to virtually recalibrate the measured accelerations and angular
velocities according to the conventional vehicle longitudinal, lateral and vertical axes, denoted respectively as
Zy, Yu, Zv. The proposed approach is inspired from (Vinande, Axelrad, and Akos, 2010) which is extended
to provide practical conditions for data selection and methods for an online implementation.

An experimental setup, under mixed traffic conditions, on a Piaggio MP3 scooter has been carried-out to
prove the effectiveness of the proposed approach. This setup makes use of telemetry e-Boxes, equipped with
an IMU with a sampling frequency of 400 Hz, and a GNSS unit with a sampling frequency of 10 Hz. As
shown in figure 2.22, three e-Boxes are installed on the vehicle, two of them named e-Box 1 and e-Box 3 are
mounted according to the vehicle’s reference system, while the last one e-Box 2 is mounted under-seat on a
flat surface and slightly misaligned with respect to the vehicle’s x — y axis.

FIGURE 2.22: An overview of the experimental setup used to validate the algorithm.
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2.13.2 Self-Calibration Algorithm

Given a rotation matrix R € R3*3, where RT R = I, a vector v expressed in a reference frame Ry (X1,Y1, Z1)
can be projected to another reference frame Ry (X2, Y2, Z2) by using the following equation (Shabana, 2013):

v? = R-vl (2.67)

Otherwise, Euler theorem states that a general rotation of a rigid body about a fixed axis is equivalent to a
successive three elementary rotations (i, 6, 1) expressed by three direction cosine matrices (DCM):

1 0 0 cos(¥) 0 —sin(¥) cos(yp) sin(yp) O
DCMy,= | 0 cos(p) sin(p) |, DCMy = 0 1 0 , DCMy = | —sin(y) cos(y)) 0
0 —sin(p) cos(p) sin(d) 0  cos(d9) 0 0 1
" Z” E l’//
" f
Yy

FIGURE 2.23: The alignment of the axes x, ¥, z to the tern | 3, 2”.

The problem of aligning the measurement axis with respect to the vehicle reference frame axis is formulated
as the problem of estimating the angles (p, ¢, ¥). We adopt the (X —Y — Z) convention, as illustrated in
figure 2.23, so the rotation matrix R becomes:

CyCy CYSy —Sy
R = | cysp89 = CpSyy  CpCy + 805989  CoSp | - (2.68)
SpSyp T CoCpSY  CpSepSy — CpSp  CpCy
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FIGURE 2.24: The flowchart of the self-calibration algorithm.

As illustrated in figure 2.24, the estimation of the mounting angles is achieved in two steps. First, the roll
o and the pitch 9 angles are estimated by aligning the vertical axis with respect to gravity vector. Then,
axes X and Y are aligned by estimating i) angle which is achieved by exploiting a prior knowledge about
the vehicle longitudinal dynamics.

To estimate ¢ and ¥, we assume that the vehicle is moving at a constant speed on a flat surface. Also, the
case of standing still is not taken into account to avoid an extra rotation due to the PTWYV kickstand, not

present in car vehicles.

Under these assumptions, the acceleration on the vehicle reference system can be expressed as
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ay= |0 |, (2.69)
g
where ¢ is gravity. However, since the telematic box is not aligned with the vehicle’s frame, the IMU’s

acceleration vector a,, is rotated by R. Defining a,,, ay,,, and a.,, as the accelerations measured by the
IMU, a,, can be expressed in the vehicle reference frame by:

_8199 aIm
am =R-ay = | cyso9 | = | ayn, (2.70)
CoCoy Az,

Tt is clear that the gravity vector and the mounting angles (¢, ¥) influence the measured acceleration along
the three axes. To estimate these two angles, a quadratic cost function J; is defined as the sum of the
squared error between a, and a,, as:

Jg(0,0) =(aay, + 599)° + (ay,, — c95,9)> + (az,, — coc99)>. (2.71)

The estimation of the pitch 9 and the roll @ angles is obtained by minimizing the following cost function:

[ 2 ] = argmin Jy (¢, ) (2.72)
9 ©,0
The optimization problem can be solved making % = 0 and %ﬁ’m = 0 which gives the following
closed form expression:
¢ = arctan ZZ—:Z) (2.73)
—Qz,, N
¥ = arctan Soag tesan +Cwa2m)

Before moving to the second part of the algorithm, few considerations need to be addressed:

e thanks to the result obtained in (2.73), at each new sample we obtain the value of the two angles which
minimize the mismatch, according to the assumptions made (numerically defined in (2.69)). Because
of sensor’s noise and drifts, the estimate is never constant. To remove these undesired effects, since
the mounting angles are assumed not changing over time, the estimated values are averaged;

e estimations of ¢ and 9 strongly depend on the assumption made. This means that, a data selection
is needed in order to limits the estimate to only the samples which satisfy the assumptions. This is

done checking that the acceleration norm (i.e., ||la|| = \/ a2 +al +a? ) is approximately equal to

gravity (i.e., |a| = g);

e during the averaging process, significant variations of the two angles may correspond to variations of
road slope, banking or any tilting action performed by the driver. To avoid the estimate to be biased,
any detected outlier is removed by resetting the average process.

To estimate the yaw, the vehicle longitudinal dynamics is used, then in the vehicle reference frame the
vehicle acceleration vector is a, = [ag,,0,9]. the IMU’s acceleration vector a,, can be expressed in the
vehicle reference frame by:
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Cnga,xv — S99
am = R-ay = | (cySpsy — CpsSy)az, + Cys,g (2.74)
(8¢ + CpCypsy)az, + cpcyg

in which ¢ and ¥ can be substituted with their estimates. The previous equation can be rearranged in the
following form:

Qg CyCy —89 gy
Uy | = | (CpSps9 —Cpsy)  Cosy [ g“ } (2.75)
a,, (Spsyp + CpCpsy)  cply

Thanks to the estimated pitch and roll angles, gravity can be compensated on the measured angles, as

Az, + 599 CyCy
Ay — CoS0g | = | (CypSpsy — CpSy) | aa, - (2.76)
Az, — CpCyg (s + CpCysy)
By factorizing cy, sy, we obtain
Agzp, TS99
—ms 0
R @)
a fc(P c -1 SepQazy,
Zm 0Cy9 t Sy 1
5 r2
® [ — 6
[ ——
y [

which can now be rewritten as a least squares (LS) problem y = ¢ - 6.

Once vector 6 is estimated from equation (2.77), the ratio of the two parameters is equal to % = zizz” =

%' Which is the tangent of ). Hence, 9 is then obtained by computing the inverse tangent of the parameters

ratio ¢ = atan (%) .

2.13.3 Experimental Results

Th proposed algorithm is tested offline by using experimental data collected over few hours of driving and
thus by considering three scenarios. Figure 2.25 shows a comparison between IMU raw data and aligned
(rotated) data obtained from the estimated mounting angles. Differences in the accelerations are due to the
forces experienced in the different locations of the vehicle. In Table 2.1, the estimated angles are compared
for the different datasets, proving that the estimated angles converge to a very narrow range.
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as, [m/s?]

ay, [m/s?]

0.y m/s?]

20

-20

Location | Test # | ¢ [deg] | ¢ [deg] | ¢ [deg]
1 —74.79 | —23.94 22.48
Box 1 2 —74.47 | —23.93 22.93
3 —74.66 | —23.81 22.98
1 4.02 3.56 38.53
Bozx 2 2 3.92 3.66 39.03
3 3.93 3.69 39.68
1 2.51 68.99 —1.94
Box 3 2 2.35 68.84 —2.51
3 1.93 69.06 —2.16

TABLE 2.1: Analysis of the estimated angles for the different boxes for all the tests conducted.
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FIGURE 2.25: Self-calibration and experimental measurements: (left) the raw acceleration
vector, (right) the acceleration vector along the virtual aligned axes.

A sensitivity analysis has been performed on the averaging window, as shown in Figure 2.26. The estimate
of the two angles converges in a close range even with few samples, but it settles for a window length of 4000
useful samples.

In order to study the estimation convergence rate of v, the least square (LS) problem is compared with its
recursive (RLS) version depicted in figure 2.27. The RLS converges to the final estimate with 400 useful
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samples, an order of samples smaller than the number of samples required in the averaging process of ¢ and
¥ (4000 samples). However, it must be remarked that the estimate of 1) depends heavily on data selection
and this explains the small mismatch between the LS averaged and the three conducted tests.

-74
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FIGURE 2.26: Sensitivity analysis: an overview of the sensitivity analysis of the averaging

window for the estimate of ¢ and 9. It is evident that with at least 4000 samples, the error

computed in the estimate is very small with respect to the one estimated when the vehicle
is standing still.

40 :
—————— Test 1
35} - -~ Test 2 7
Test 3
30 ——LS averaged | |
25+ i

Ere—

3204’/ |
154 .
10 .
5k —
[) 1 1 1 1

0 200 400 600 800 1000

Samples ]

FIGURE 2.27: Sensitivity analysis: the RLS convergence is compared with the averaged LS.
Estimates converge in less than 400 samples. Steady state error results to be smaller than
0.92 deg.

The last step is to test the robustness of the proposed algorithm. To do so, the self-calibration algorithm is
performed considering different initial conditions for all e-Boxes. This test procedure is iterated fifty times
for each dataset and the results are summarized in Table 2.2. We found that the standard deviation of the
estimated angles is within 0.6° except for the 1) angle. In fact, the former is more sensitive to sensors biais
and drifts. This is particularly more striking for the e-Box 2 configuration, in which the pitch and roll angles
are small to break up the vertical axis from the one of the vehicle’s reference system. In this case, the v
estimation is more sensitive to any bias in sensors measuring a, and a.

In the other hand, to check the consistency of the virtually aligned axes, the rotated signals are compared by
computing the cross-correlation between the three boxes. So, given two random signals x and y, the cross-
correlation is a similarity metric defined as Ry (k,1) = E{z(k)y(k + )T}, where | represents the delay
between the two signals (Verhaegen and Verdult, 2007). The cross-correlation coefficient can be normalized
with respect to the auto-correlation of the two signals, leading to:

Repuarn (1) = gy Bl Ry + 07 (2.78)

which is 0 when the two signals are orthogonal and 1 when they are completely correlated.
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- ¢ [deg] ¢ [deg] p [deg]

Location | Test # Mean Std Mean Std | Mean | Std
1 —74.57 | 0.15 | —24.06 | 0.11 | 23.33 | 0.52

e-Box 1 2 —74.31 | 0.12 | —23.95 | 0.06 | 23.65 | 0.60
3 —74.77 | 0.08 | —23.76 | 0.04 | 23.69 | 0.37

1 3.98 0.03 3.59 0.06 | 8.60 | 2.51

e-Box 2 2 3.94 0.02 3.59 0.08 | 12.47 | 3.75
3 3.92 0.04 3.82 0.05 | 11.15 | 2.89

1 2.31 0.08 | 68.01 | 0.29 | —1.83 | 1.25

e-Box 3 2 2.24 0.21 | 68.83 | 0.24 | —2.01 | 0.81
3 1.93 0.08 | 68.91 | 0.28 | —1.88 | 0.90

TABLE 2.2: Analysis of the estimated angles for all the boxes with different initial conditions.
In all the cases, the the standard deviation does not exceed 0.6 deg.

The normalized cross-correlation coefficient is computed on the rotated signals of all the e-Boxes and for
performed test. Results are listed in Table 2.3. The z-axis results to be perfectly aligned, with a high value
of the normalized cross-correlation coefficient. Besides, it has proved to be less excited, meaning that its
estimate is less influenced by the location of the device. Axes x and y show also a significant correlation
with the relative location of the e-Box. However, this mismatch is limited and the results can be considered
satisfying which proves that the effectiveness of the proposed algorithm can be considered to be independent
from the mounting location and orientation.

Location; | Locationy | Test # Cross — correlation
Qg ay ay

1 89.57 | 97.55 | 100

e-Box 2 2 92.34 | 59.69 | 95.66

e-Box 1 3 78.40 | 88.63 | 100
1 88.02 | 83.38 | 100

e-Box 3 2 95.15 | 78.70 | 100

3 80.89 | 82.43 | 100

1 81.23 | 82.54 | 100

e-Box 2 e-Box 3 2 84.68 | 95.29 | 95.64
3 77.15 | 71.68 | 100

TABLE 2.3: Correlation analysis of the rotated axes different boxes against all the considered
tests.

2.13.4 Final Remarks

This study focused on setting up the experimental platform. First, we presented the instrumentation of the
scooter from a practical point of view (sensors, mini PC, acquisition card, input / output ...), their charac-
terization and implementation on the vehicle prototype (scooter). After that, we presented an algorithm to
align the three axes of an arbitrarily mounted IMU on motorcycles. The algorithm consists in estimating
three mounting angles which allow to virtually align the sensing axes with respect to the vehicle’s reference
frame. The algorithm has been tested and validated against real experimental data. Results favourably
prove the effectiveness of the proposed approach, limiting the amount of energy needed with respect to more
classical methods due to the reduced use of GNSS system.

2.14 Conclusions

In this chapter, we presented the dynamic modeling of the motorcycle. It should be noted that tire modeling
is a key step for the derivation of a complete dynamic model of PTWYV. In fact, tires-ground interaction plays
a crucial role in the stability of PTWV. Thereby, we have seen that the forces generated by each tire can
be decomposed into a set of three forces and three moments. We used Pacejka’s magic formula to introduce
the expressions of these efforts (section 2.3). Withal, to accomplish the safety requirements of motorcycles,
a stability and handling analysis of PTWYV dynamic is also required. Due to their special characteristics,
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which allow to evaluate a various automatic tools, we focus on particular on the physical phenomena that
characterize two-wheeled category and in particular the instability modes.

Furthermore, the PTWV modeling deals with the derivation of a multi-body model of motorcycle dynamics.
First, we briefly presented the eight bodies motorcycle/rider model. Despite its high complexity and numer-
ous nonlinearities, this model simulates very closely the dynamic behavior of the motorcycle/rider system.
It allows the simulation of 16 Degrees of Freedom (DoF). In addition, it takes into account the coupling
effects between the longitudinal and lateral dynamics. In the following works, this model was used indirectly
during simulations and validations with the BikeSim software. Indeed, BikeSim uses this eight-body model
in the "dynamic engine" of the software simulations. Although, the fidelity of the eight-body model discussed
above, the latter is much more complex for the synthesis of control and observation algorithms. This is why
we proposed the derivation of simpler models based on the principle of Jordan, with one or two-bodies,
for the modeling of the lateral or longitudinal dynamics (section 2.8). To derive each of these models, we
have established the kinematic relations for each of the model’s bodies based on the principle of Jordan.
Then, from these expressions, we have explained the steps to calculate the mass matrix, and the vector of
generalized forces (non-conservative and residual efforts).

Then, we proposed a linearization of the equations around a straight line trajectory (section 2.9). This
allowed us to find the famous Linear Parameter-Varying (LPV) two-body model originally introduced in
(Sharp, 1971). Note that Sharp used Lagrange’s formalism to derive his model. Furthermore, this dynamic
models are the starting point for observer design or explicit identification algorithms in the following chapters.
The two-body model has been used in all model-based observation and/or identification approaches proposed
later in this manuscript (Chapters 5, 6, 7, 8). Indeed, we studied the one-body model of lateral dynamics
either in the identification of CoG (chapter 3) or in the derivation of the risk function related to steering
behavior in steady state situation in chapter 9. Finally, the in-plane model is presented to describe the
longitudinal dynamic. The derivation of this model allowed us to tackle an important subject, namely
the load transfers. In extreme cases, these phenomenon are also known as stoppie or wheelie respectively
corresponding to the detachment of the rear or the front wheel. This model was used in the estimation the
interconnected motion in chapter 8.

On the other hand, even if the one and two-body models seem simple in theory, identifying their parameters is
a hard problems in practice. Indeed, some of the dynamic states or parameters are accessible to measurement
while others require the use of advanced techniques. It is important to note that in parallel to the model
choice, definition of the parameters is also important. The terms of the matrix A(v,) and the vector B must
be well informed according to the characteristics of the vehicle. Although the Sharp model is quite faithful
to the behavior of the motorcycle in cornering, it contains no less than 34 parameters to identify. This issue
is complex since the Sharp’s model takes into account two types of parameters:

e Static parameters: masses, geometric parameters (wheelbase, position of gravity centers, etc.),
e Dynamic parameters: the inertia of the wheels, the front body and the rear body.

Some of these parameters are very difficult to estimate using conventional identification methods. If we take
the example of the inertia of different bodies (wheels, front body, etc.), they can be estimated through a
digital model by Computer Aided Design (CAD). This method can be very laborious. Otherwise, automatic
techniques of identification are perfectly suited to this problem. In this context, chapter 3 and 4 studies
parameters estimation problems. To go even further, we proposed observers able to estimate the dynamic
states and simultaneously identify the parameters, this will be introduced in chapter 6 and 7.

Furthermore, we have proposed a novel calibration approach for inertial sensors mounted on motorcycles.
This algorithm was validated on experimental data collected during tests performed with a motorcycle
equipped with three e-Boxes mounted in different positions and orientations. Finally, we thoroughly analyses
the experimental tests carried out to assess the performance of the approach, which favorably witness its
capability of performing calibration for subsequent use of the accelerations in various applications.
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Introduction

VER the last few decades, the challenge of creating more accurate models for active safety systems is
O increased. However, without a precise knowledge of the system’s parameters, any modelling effort stay
insufficient to evaluate the system’s dynamics. In the automotive research, the ability to get the pertinent
vehicles parameters, a prior or in real-time, allows to develop attractive efficient active safety applications
or model based vehicle control (Limroth, 2009 and Edwards, 2008).

The parametric identification consists in determining the best values of system’s parameters. It can be
formulated as an optimization problem where its resolution can becomes quickly arduous as the number
of parameters to be identified increases. One can distinguish two main classes of techniques to solve an
optimization problem. The first class are based on gradient computation of the objective function to be
minimized while the other class uses stochastic methods (Bartoli and Del Moral, 2001). The choice of the
optimization method depends strongly on the complexity of the model. Usually, gradient descent methods are
simple to implement and often gives good identification results, thus, they are generally applied in practical
applications (Khobotov, 1987, Mgller, 1993). Furthermore, multi-objective techniques applied to model
identification have achieved great results in many cases, as shown in (Yousefi, Handroos, and Soleymani,
2008, Herrero et al., 2007 and Rodriguez-Vazquez and Fleming, 1998). Among others, algebraic identification
method have been investigated to obtain an accurate model of real system modelled as continuous-time linear
transfer function (Fliess and Sira-Ramirez, 2003) and, it has been widely applied for electrical and mechanical
applications like flexible robots estimation, mass-spring-damper model, DC Motor and others (Mamani et
al., 2007, Becedas et al., 2007b, Becedas et al., 2007a, Reger and Jouffroy, 2009). This approach does
not require initial conditions and the algorithm can be implemented on-line. Further, in almost references,
the identification methods are designed under consideration for a specific systems form and their direct
transposition to the more general problem case is not straightforward for many reasons. Furthermore,
the parameter identification problem is closely related to persistence of excitation in order to enable the
parameters to reach an optimal solutions (Hildebrand and Gevers, 2002). Hence, for identification process,
suitable rich input signals should be considered.

It is common belief that I'TS use various vehicle parameters to produce a correct assistance and to minimize
the likelihood of false warning. If some parameters are easy to obtain such that vehicle’s mass, CoG position
and inertia, identifying or estimating others is much more complex especially in real-time like tire cornering
stiffness. For the PTWYV, a great effort has focused on state estimation of the vehicle dynamics and several
works are published since many years ago (Gasbarro et al., 2004a, Teerhuis and Jansen, 2012a, Ichalal et al.,
2012, Dabladji et al., 2013, De Filippi et al., 2011b, Nehaoua et al., 2013). However, to the author’s best
knowledge, a very few works deals with the PTWYV parameters identification. In fact, the motorcycle is
a complex and strongly nonlinear system. Almost attempt for parameters identification used behavioural
models and statistical methods. Also, the persistence is difficult to respect since it is not possible to freely
apply rich excitation signals to solicit the different dynamics due to the PTWV’s mechanical constraints and
instability.

For example, in (James, 2002), the author considers an auto-regressive model to describe the motorcycle
lateral dynamics behaviour and next used to estimate a state space representation which has no relation with
the physical parameters. Also, (Savaresi et al., 2008) and (Savaresi et al., 2006) have used a regression-based
estimation methods to recover the available road friction. Moreover, non model-based identification method
is described in (Corno and Savaresi, 2010), where the authors present a black-box identification. This method
allows to directly estimate the input/output engine-to-slip dynamics of sport motorbike from experiments,
instead of using the classical approach of multi-body modelling. In (Cossalter et al., 2006a), the authors deal
with the identification of the vibration characteristics of motorcycle riders. This work presents an analysis
to identify the properties of a rider multi-body model, which is used to fit the experimental data excited by
means of stepped sine testing. On the other hand, studies have shown that semi-active steering dampers
for motorcycles can be used in the design of innovative control strategies to improve two-wheeled vehicles
stability. In the study (Tanelli et al., 2009b), an analytical model of a two-wheeled vehicle tuned to capture
the weave and wobble modes to study steering related instabilities. The model is derived from first principles
and its parameters tuned to fit a hyper-sport motorcycle based on a grey-box identification procedure. Also,
in (Schwab et al., 2012; Schwab, De Lange, and Moore, 2012), the authors assume a linear PID controller
for the rider control model. First, this parametric control model is fitted to the experimental data using
black-box finite impulse response (FIR) model. After that, a gray box model is fitted to the response of the
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FIR model to identify the PID feedback gains. Then, these gains are used to compute the specific optimal
control linear-quadratic regulator (LQR) which the rider is using to control the two-wheelers.

Braking and traction control systems are commonly designed considering an integrated step of identification.
In the study of (Cabrera et al., 2014), the authors consider wheel slip control when excessive torque is applied
on driving wheels, using a fuzzy logic control block. The parameters that define the fuzzy logic controller
have been tuned, first according to experience, then, by means of an evolutionary algorithm in order to
design an augmented traction controller.

Other approaches have been investigated to study electric two-wheelers, in Wilhelm et al., 2012, the author
describes an algorithms based on a grey-box model for estimating four characteristic parameters of a linear
dynamics model, then the physical meaning has been interpreted from the identified parameter values.
Past works have been interested in motorcycle suspension system based on estimation theory. The recursive
least squares algorithm which incorporates a fault detection scheme can be a suitable approach to estimate
the time varying dynamics as proposed in (Ledwidge, 1995). It is shown using software simulations, a mass,
spring and damper model are selected to represent the dynamics of the suspension system, these parameters
were estimated from static tests.

Further, motorcycle simulator prototype has been investigated in the recent decades, due to the rising concern
of the rider safety. Their modelling claims informations about different parameters, as reviewed in (Nehaoua
and Arioui, 2008), where, the authors present the dynamics modelling and parameters identification of a
motorcycle simulator’s platform. The identified parameters can be used to improve control scheme, adapted
to driving simulation application. Also, the roll motion parameters of a motorcycle simulator prototype were
studied in (Shahar et al., 2014).

To summarize, parameters identification is a main step in motorcycle studies, either for control requirements,
safety purpose or even in behaviour and stability analysis. Previous studies have used various approaches
with some assumptions according to the model and the available driving data. However, the robustness of
these approaches across different motorcycle architecture, models and riding behaviour still needs a thorough
improvements. Withal, most of these works have been devoted at identifying only part of the dynamics.
Nonetheless, the identification of the full dynamic is a real challenge.

This part deals with the parameter identification for motorcycle model parameters. In the previous chapter
??, we have studied two lateral dynamics models, one rigid body and two-bodies model (Sharp’s model).
For Sharp’s model, more than 30 unknown parameters needs to be identified which is a hard task. We’ll
describe several approaches for motorcycle parameters identification where the conventional methods have
failed or are difficult to apply. To do this, we divided this part into two chapters. The first one deals with the
rigid body model, we’ll discuss static identification, gradient decent algorithm and algebraic identification
method The second chapter studied the two-rigid bodies model. We’ll present multi-objective optimization
and Levenberg-Marquardt algorithms.
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Chapter

Identification of a Single Rigid-Body model

——— Abstract

This chapter proposed an identification procedure based on the motorcycle geometry and the rigid
body dynamic model. In this part, we aim to identify motorcycle center of gravity (CoG) position
and the inertial parameters in order to conduct a preliminary study of the simulated behaviour and
interpret the motorcycle dynamics while riding. The motorcycle planar motion equations are first
synthesized in the modelling step. Then, the basic-principles of static is used to define the motorcycle
CoG from the measured forces on the static tests. When the geometric parameters are computed,
gradient decent algorithm and an algebraic identification method are applied to estimate the dynamic
parameters. Indeed, in order to be able to identify the parameters, persistent inputs should excite the
associated modes. Unfortunately, some modes can be solicited only through manoeuvrers generally
very difficult to achieve with or without riders. To get some feedback parameters, BikeSim model
parameters are considered for the comparison. On this software, some experimental measurements are
carried on to record data for excitation. Simulations in BikeSim/Matlab environment is useful to verify
if the proposed methods are capable of identifying motorcycle parameters. The theoretical aspects and
the practical validation of this idea were published in Fouka et al., 2017b.

The chapter is organized as follows. Section 3.1 presents a static method to identify geometric parame-
ters for a PTWYV single body model. We describe the static equations of forces and moments in different
configurations thanks to the fundamental principle of static. After that, we define an operating mode
that makes it possible to estimate these parameters.

Afterwards, section 3.2 and 3.3 deal with the identification of the inertial parameters of the motorcy-
cle body model using two estimation methods. First, section 3.2 describes the gradient optimization
algorithm which intended to minimize a differentiable real function while processing of input/output
data through a recursive method. The results of this method are compared with an algebraic identifi-
cation approach introduced in section 3.3, this section presents a step by step the algebraic method for
continuous-time linear system modeled by a rational transfer function. After the identification meth-
ods are outlined, simulations results are presented in order to confirm the accuracy of the parameters
estimation in sections 3.4.

3.1 Parametric Identification-Geometric Approach

The geometry of the frame, as well as the weight distribution, are features that influence stability, handling
and manoeuvrability (Cossalter and Lot, 2002). The definition of the properties of manoeuvrability and
stability of a PTWYV depend among others, on the following geometric parameters: the wheelbase, the
caster angle, the trail, and the CoG position. For example, the wheelbase affects the load transfer between
the two wheels and enhance the vehicle stability but in the same time, it makes the vehicle less manoeuvrable
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in curves with small curvature radius. Also, the position of the CoG has a significant influence on the PTWV
dynamic behaviour. So, a forward CoG makes over-steer in curves while a rear CoG promotes under-steering.
Moreover, high CoG makes the vehicle to lift in acceleration/braking while a low position amplifies the rear
and front wheel slip in acceleration/braking.

Sy

\

FIGURE 3.1: Single body geometry of motorcycle.

In this section, we aim to identify the CoG position by considering a single body representation of the
motorcycle as in figure 3.1. The position of the CoG, G, is characterized by three geometric parameters a,
b and h. First, the front and rear wheel load is measured where the two wheel’s contact point are on the
same flat surface. Next, the same measurement is done by tilting the motorcycle with a given known angle
« as shown in figure 3.2. The first scenario allows to determine a and b and the total motorcycle mass. In
the inclined scenario, front and rear masses my, m, and CoG’s height h can be calculated.

z

F1cURE 3.2: The balance of forces - Motorcycle on the slope in the opposite direction.

In the horizontal scenario, we have the static equilibrium of vertical forces F,f + I, = mg and the corre-
sponding moments af% = bF,, where I,y and I, are respectively the vertical force applied on the front
and the rear wheels. m is the total vehicle mass. So, in the horizontal configuration, the distance between
the front and rear contact point and the position of CoG is estimated by:
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F
b= ife and a =
myg mg

2 (3.1)

For the inclined configuration of figure 3.2, the static equilibrium for two different slope angle a; and a9
allows to write:

mgh sin a1 + (szla — Fzrlb) cosa; =0 (3.2)
mghsin ag + (—szza + Fzmb) cosag =0

F.p + Fopy =mg

F.p + Fory =mg

By solving this set of linear equations with respect to a, b and h, we get the motorcycle CoG position :

Fz’rl +Fzr2
a 2mg
b = e—a (33)
h Ferb—F.5 a
- mgtan o

In experimental test, the previous procedure is iterated by taking into account the rider to measure the
position of the new CoG as in figure 3.3.

O . Center of gravity
‘of the motorcycle
Center of gravity, | , without rider

Global Center_‘:, _____ N h \
of gravity ‘ AN /a r
< X
" Yy Fo ‘sz h

\

FIGURE 3.3: The position of the CoG o of the motorcycle and the rider.

3.2 Gradient Decent Algorithm

The gradient descent (GD) method is an iterative optimization algorithm for solving problems of the form
mingegn f(0), where f(6) is the parametric form model and § € R™ are model parameters. Starting from an
initial value of the corresponding parameters vector, we take a first step downhill in the direction specified
by the negative gradient, and this process is iterated until reaching a local minimum. The step rate «
determines the rate of the algorithm convergence.

In the present context, the objective is to derive the gradient-based iterative identification algorithm for the
motorcycle rigid body model to estimate the moments of inertia {I,,I,}. Let consider the following one
body motorcycle model:
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m(vy + wvm) = Fy+Fy,
. Ly = aFy;—bFy (3.4)
I.¢ — mh(vy +9Yvy) = mgho

Suppose that the set of the observed output data is y(¢t) = {w, (b}, the identification process is schematized
in figure (3.4). We define the following quadratic function:

C(1,0) = 3 Y (um{tr) — (ts,0))? (35

k

With 6y = I, and 05 = I, are the z-axis and y-axis moments of inertia. y,, is the measured outputs vector,
y is the outputs vector of simulated model and ¢, is the current sample time.

(s R \

T? PTWV

Motorcycle Model

Optimisation  [*=—"""""""¢
K 0 Algorithm J

FIGURE 3.4: Functional diagram of Gradient Descent.

The optimization algorithm allows to find the parameter value of I, and I, by minimizing the criterion
C(t,0) by computing the following gradient:

6(0) = 200 S (yu(10) - )0 10) (36)

Sz is the output sensitivity functions and is evaluated from equation (9.1) as following:

&y aFyp—bF,,

ar, — 12 (37)
do B mghay, + mh(vy + o

dr, I2 ¢ (3.8)

For a given initial value of #; and 62, the standard GD update equation is given by the following:

O = Or—1 — aGr_1 (3.9)
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Algorithm 1: Gradient Algorithm (GD):(C)

Require: 0y = 0(ty), epsGrad = le — 5, epsCrit = le — 5,
Kiae =100, aa =1, stop =0, K = 0.
while (stop # 1) do
for (t;,_1 =1to and 0 = 6y) do
Cr—1 = 0.5 (ym(fo) —y(1))?,
Gr-1=—>(ym(60) —y(1))S
Qk = 90 - OzGo
Cr = 0.5 3 (ym (0k) — y(t))?
L Gr=—2(ym(0k) —y(t))S
if (Ck; < Ck—l) then
O = 01 — aGk1
a=ax1.5b
K=K+1
else
O =01 +aGr_1
a=aoa/2
End
if H(%)H < epsCrit then
stop =1
else if |G| < epsGrad then
| stop=1
else if (K > K4,) then
| stop=1
End

After that the gradient algorithm is well defined, the results of this method are compared to algebraic
identification approach. This is the subject of the next section 3.3.

3.3 Algebraic Identification Approach

Unlike gradient algorithm, algebraic approach do not require a parametric form modelling neither initial
parameters guess. It allows the parameters identification of time invariant linear system represented as a
rational transfer function from input signal «(¢) to the output signal y(t) (Baronti et al., 2013, Fliess and
Sira-Ramirez, 2003, Neves, 2005).

The algebraic approach is mainly based on the robust computation of the time-derivatives of signal by using
a finite weighted combination of time-integration of this signal. We apply the basic principles of the method
on the linear motorcycle model described by equations (9.1) to obtained the transfer function H(s) between
the output ¢ and the input 6 :

H(S) _ Y(S) _ N383—|-N282—|—N18—|—N0 (3 10)
U(s) s*+ D3s3+ Das?+ Dis+ Dy '

where the coefficients Ny, .., N3, Dg, .., D3 are functions of the unknown parameters I, and I,. If we can
identify the coefficients of the transfer function, we can deduce the values of the system parameters by
resolving a set of equations. We can rewrite the transfer function from equation (3.10) into the following
form:

y @ + D3y®) + Dyij+ D1+ Doy = N3u® + Naii + Nyt + Nou (3.11)

where the exponent (i) indicates the time differentiation of order i. To compute the unknowns system
parameters D;, N;, we take the Laplace transform of the expression (3.11) and we multiply each side by s:
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[s%(s) — s"y(0) — s°y(0) — s”y(0) — sy(0)] + Ds[s"y(s) — s*y(0) — s°y(0) = sy(0)] +... + Dosy(s)(:%:m)

N3[stu(s) — s2u(0) — s2u(0) — su(0)] + ... + Nosu (3.13)

Since the initial conditions are unknown so we differentiate five times so that all constant terms leave, then :

Foud o oMl ok o
@[3 y]+D36 = [s* y]+D28 =[5 y]+Dla = [s? y]%—Doa [sy] =
85 4 5 3 5 9 85
N3z 5ls™ul + Nag[s°u] + Nig[su] + Noo5lsu] (3.14)
Z51s%y) as
85 5 =y ' 1 8y 5' 2 28 Yy 5' 83
5! 4Oty 5' Py
Z! XCéX W‘i‘* 05 X55ﬁ (316)
with Cy, = (:' oIk The remaining terms are also calculated using the same procedure.

Next, and to avoid numerical problem arising from differentiation, each side of the previous equation is
multiplied by s~° and so on for the other terms. Thus, in the time domain, the resulting equations can be
written as :

D3p1 1+ Dap1 2+ Dip1 3+ Dop1_4+ N3p1 5+ Nop1_ ¢+ Nip1 7+ Nop1_s = —q1 (3.17)

where ¢; represents the time form of 5_553—855 [s%y] which can be calculated by the inverse Laplace transform
of equation (3.15) as:

g1 = =510} [Pty +5102 [*12y — BC3 [P3y + BCd [Pihy - B0F [Py + BCE [Pi5y — 2D [Ty
(3.18)
The expressions of p1_1,p1 2,...,p1_g maybe written as a differential equation in the manner of ¢; (3.18).
With regard of estimating the coefficients of the transfer function, equation (3.17) must be invertible. To
this end, equation (3.17) can be completed by integration to have a full rank matrix. Then, we conclude the
following system:

D3
P11 P2 ... D18 : qn
P21 p2.2 ... P2_8 Dy q2
S | N e I (349)
P81 Ppio_2 --- D8 8 : as
Ny N——

Withps s = [pr i = [[pe_i = [[[p5_i = [Tp i forVi={1,2,...,8}
et = [aqgr=[a=[[[ags = ... = f7q1 for Vi = {1,2,...,8}. Now, let consider the following
definition:
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Definition 1 The parameters vector @ = (D3 .-+ Dg N3 --- Ny ) is linearly identifiable if, and
only if,
Px0l =0 (3.20)
det(P) # 0 (3.21)
where

o P and Q are respectively (8 x 8) and (8 x 1) matrices.
o © is the set of parameters.
The coefficients D; and N; are identified by solving equation (3.19). For implementation issue, each compo-

nent of the P and Q matrices can be written in a state space representation of a simple linear variant time
filter.

3.4 Experimental Result

As part of the VIROLO++ project, several PTWYV are available to make experimental tests (figure 3.5). All
the tests were carried-out at Gif-sur-Yvette within a collaboration framework between the IBISC laboratory,
IFSTTAR and the UPSud IEF.

FIGURE 3.5: The instrumented Kawasaki ER6N PTWYV.

3.4.1 Static Test

As previously seen, the center of mass of a motorcycle is defined by the values of the parameters a, b and h
for a one-body model. This CoG point can vary with the weight of the rider. Thus, we distinguished two
different cases with and without rider (figure 3.3). To know accurately the slope angle, we used a hydraulic
lifting equipment to lift the motorcycle to a desired inclination angle. These parameters are identified based
on a wheelbase of 1405 mm obtained from the PTWYV manufacturer datasheet, a slope angle of o = 12.75°,
a motorcycle weight of 208 kg and a rider weight of 97.5 kg. The value of the wheelbase can also be easily
calculated using a tape measure from the center of a front wheel, down the side of the motorcycle to the
center of the rear wheel.
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FIGURE 3.6: Measurement environment

Table 3.1 presents the recorded masses on the front and rear wheels as well as the identified values of the
geometric parameters. First, we record the values of the vertical forces (masses) at the front and the rear
wheels using two weighting machines. After that, the geometric parameters are concluded thanks to the
basic principles of statics described in section 3.1.

TABLE 3.1: Weight measurements F), fand F, for Kawasaki ERN6 and identification results.

Case.1: Without Rider | F,y [Kg] F.r [Kg] a [m] b [m] h [m]

Test.1: flat 102 1124 0.7366 | 0.6684

Test.2: flat 96 112 0.7565 | 0.6485

Test.3: slope

1% configuration F,p =118 | Fr, =88 0.7419 | 0.6631 | 0.2781
2" configuration F.,4, =108 | Fyp, = 101

Test.4: slope

1%t configuration F,p, =118 | Fzr, =89 0.7399 | 0.6651 | 0.2695
gnd configuration F.y, =108 | Fpp, = 101

Case.2: With Rider

Test.1: flat 130 179 0.8139 | 0.5911

Test.2: flat 130 177 0.8100 | 0.5950

Test.3: slope

15¢ configuration F,p, =192 | Fopy =113 | 0.7968 | 0.6082 | 0.3873
2"? configuration F,j, =155 | Fap, = 158

Test.4: slope

1%¢ configuration F.p =192 | Fypry =113 | 0.7877 | 0.6173 | 0.4276
gnd configuration F,t, =155 | Fzr, =150

To this end, we consider two static configurations, the first is a "flat configuration" to estimate the horizontal
parameters a, b and the total motorcycle mass. The second is the "inclined configurations", allow to determine
the front and rear masses my, m,., the horizontal positions (a, b) and vertical position h.

1% configuration: Rear wheel lifted case.
2nd

configuration: Front wheel lifted case.

The results of the repeated tests, presented in table 3.1, are averaged in table 3.2.
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TABLE 3.2: Identification Result: Geometric parameters a, b, h(m), m(kg) for Kawasaki.

Without Rider a [m] b [m] h[m] | m [Kg]
mean value 0.7437m | 0.6613m | 0.3738 | 209.3429
standard deviation 0.0088 0.0088 0.0061 2.9251
With Rider
mean value 0.8021 0.6029 | 0.4074 307.80
standard deviation 0.0121 0.0121 0.0285 3.3466

The rider effect is obviously important in particular for the CoG height parameter h. The values of a and
b share the wheelbase with a ratio of 53% and 47% for the case without rider and and 57% and 43% with
rider. The standard deviation of the identified parameters is small, which means that the parameter values
are well grouped around the average and tended to be close to the mean expected value of the set. Table 3.3
presents the same experimental tests carried out on the scooter of the laboratory presented in section 2.11.

TABLE 3.3: Geometric parameters a, b, h(m), m(kg) for Scooter

Geomtric parameters | a [m] | b[m] | h[m] | m [Kg]
without rider 0.7363 | 0.5637 | 0.3960 | 142
with rider 0.8015 | 0.4985 | 0.5194 | 221

The values of a and b share the wheelbase with a ratio of 56.64% and 43.36% without rider and, 61.65% and
38.35% with rider.

3.4.2 Dynamic Test

The test described in this section is carried-out on the BikeSim simulator. This later provides different
datasets allowing construction and configuration a specific PTWV. Also, BikeSim includes several virtual
sensors freely positioned which facilitate to measure several kinematics and dynamics variables at any loca-
tion. For this, a chirp signal is used to excite the motorcycle dynamics as in figure 3.7. Recall that, this test
aims to identify the roll and yaw inertia based on gradient descent optimization and algebraic methods.

The chirp signal is a flying sinus law whose instantaneous frequency is gradually increasing with time between
two specified frequencies, for more details please refer to (Burgess, 1992,Venture, 2003). This wobbled
signal is commonly used in sonar, radar, laser and spread-spectrum applications. It has a good excitation
characteristics to excite both the low and the higher frequencies. Despite the importance of this signals to
practical system identification, this signal appear less well known. This flying sinus required a quite short
measurement time compared to the other signal such as impulse or sequential random excitation signals
which may require repetitive measurements to reduce the effects of noise or to achieve statistical reliability.
However, a real chirp test is in some way dangerous to produce in real life, in particular if the test included
rider. In our case, we preferred to make use of motorcycle simulator rather than a real motorcycle/rider.
Hence, a preliminary study was conducted in the well-known BikeSim simulator to choose the exciting signal
and in the same time to be sure that PTWYV is still keeping its balance.

§ = 0.5sin(7t) + 0.5¢ 4+ 0.5

with ¢ is the measurement time.
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Steering angle

time (s)

FIGURE 3.7: Steering angle, chirp flying input.

The conducted test involves the two-wheeled vehicle mainly in yaw and roll motions to excite the main
inertia of the motorcycle body. Figure 3.8 shows the output data (roll angle, roll and yaw rate) recorded for
a chirp signal. This last serves to excite the dynamics with a sinus-flying at 20 K'm/h.

1 0.6 0.1
" — "o 0
< s <
S

S 05 < S -0
Ml < )
. 0.2 .
< = g0

0 0 0.3

0 5 10 0 5 10 o 5 10
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FIGURE 3.8: System outputs.

3.4.3 Algebraic Identification

The PTWYV dynamics have been excited with a steering chirp signal for a constant longitudinal velocity
vy = 20km/h. Then, measurement data are used in the parametric identification method to estimate the
following transfer function:

Huls) = Y 503.9s% + 1.511 x 10%s* — 9.22 x 105 — 1.317 x 10° (3.22)
A S T sT 1 158.583 + 574952 + 4.136 x 10%s + 4.755 x 10% ’
_ N353+N232+N15+N0

s+ D353 + Dos? 4+ Dys+ Dy

On the other hand, from the state-space representation of the one-body lateral dynamics in section (2.9.3),
we compute the theoretical transfer function between the 1) output to the ¢ input, this yaw rate dynamics
can be written in the form of equation (3.10). The coefficients [D;, V;] of the transfer function depend on
the unknown parameters I, I, their expressions are highly complex and non-linear, after simplification, we
get the following denominator coefficients:

35837 x10°  528.1462

= 13.1750 3.23
3 A + A + ( )
.02 104 14 103
p, = 30205 107 | 1ATI6 X 107 | 384 » 10 (3.24)
I, I,
2.3268 x 107 2.0230 x 10%
Dy = — 2
! I,.1, I, (3.25)
2.6024 x 107
Dy = 22X (3.26)

I,
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The parameters I, and I, can be identified from the D3 and Dy coefficients of the denominator, plotted in
figure 3.9.

Parameter D, & D, to identify Ix & Iz
200 T T T T T T T T T
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time(s)

FIGURE 3.9: Parameters convergence.

It can be seen, from the above simulation that the method converges after 0.8s this time laps is due to the
response time of the filters p; and g;. After estimation by the algebraic method, we computed the values of
parameters I, and I, from the expressions of D3 and Dy and the identified function H;4(s) (equation 3.22).
The result of the parameters I, and I, identification are compared with the gradient method in the next
subsection 3.4.4 .

3.4.4 Gradient Method

The test described in section 3.4.2 is used also to identify the roll and yaw moment of inertia. The geometric
parameters in equations (3.7) are captured from the static test allowing to apply the algorithm 1. The
gradient decent results are therefore obtained in simulation with a chirp trajectory. The excitation input
(figure 3.7) was selected in order to excite PTWV dynamics and also to ensure the motorcycle stability.
Figure 3.10 shows the convergence parameters and the errors between the estimated responses and the
actual ones.

I, convergence Error é;:Actual—Estimated 1. convergence Error ;=Actual-Estimated
20 0.05 40 0.01
19+ 0.04 0.008
35
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= & £
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=) 20 =)
= 001 ~ = -0.002
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FIGURE 3.10: Parameters convergence

The identification results of the algebraic and the gradients methods are summarized in the following Ta-
ble 3.4:
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Parameters Test # I [kg.m?] | I, [kg.m?]
BikeSim 17.623 31.058
Identification | Algebraic method 17.609 31.073
Gradient descent 17.6232 31.0279

TABLE 3.4: Inertial parameters identification result for one body PTWV model.

After the identification process, the result of geometric parameters (section 3.4.1) and the inertial parameters
(section 3.4.2) are used to simulate the PTWYV one-body model and to validate with respect to real data. As
discussed, the main inertial parameters were identified from BikeSim using a motorcycle with approximately
the same feature as the one used in static tests (section 3.4.1). For the sake of validation, a scenario
was performed where the motorcycle was turning on a roundabout (see figures 3.11) to excite the lateral
dynamics, the test is carried out at relatively high speeds of around 70K m/ h.

-——— -

FIGURE 3.11: Turning at the roundabout.

The recorded steering angle from experiment test is used to excite the identified PTWYV one-body model.

Steering angle
0.2 9ang
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FIGURE 3.12: Steering angle input.

Then, the estimated roll angle is compared with the roll acquired from experiment using IMU sensor placed
near to the center of gravity under the seat. Figure (3.13) shows that the roll angle from the model has a
very close profile with the measured one. These simulation results converge well to the data measured by
sensors embedded on the motorcycle which confirm the accuracy of the identified parameters.
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FI1GURE 3.13: Validation of the model: turning at the roundabout.

3.5 Conclusions

This chapter considered the identification of a single rigid body motorcycle model. First, the motorcycle
center of gravity was identified using static tests and basic principles of forces and moments, in which different
configurations are considered. This operating mode makes it possible to estimate the geometric variables.
Second, the inertial parameters are identified, using dynamic tests, based on two methods:

e The gradient descent (GD) algorithm designates a differentiable optimization to minimize the cost
function. Note that this method does not require to compute the second-derivative (Hessian matrix)
which make it simple for the implementation as well as it is computationally fast per iteration. However,
the GD is slower when the step rate is very small and consequently the gradient direction is not well-
scaled. Thus, the number of iterations largely depends on the scale of the problem.

e The algebraic method allows the identification of a transfer function from the output and the input
signals. The algebraic approach uses the model of the system, that is almost known. Furthermore, the
algorithm is computed on-line and in real time, the estimation does not require initial conditions. The
method, however, is sensitive to the persistent input to excite the dynamics of the motorcycle.
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Chapter

[dentification of Two-bodies model

——— Abstract

Recent assistive safety systems require good approximations of motorcycle inertial properties to obtain
dynamic model that tightly adjusts to the real lateral behaviour of the motorcycle, in the way that
it will lead to precise simulation and experimental results. This chapter deals with the identification
problem for two-bodies motorcycle model.

In the first part of this chapter, a technique for cascade identification based on parametric model,
input/output data and optimization algorithm is presented in section 4.1. This methodology makes
profit of the possibility given by this type of algorithm for solving consecutively multiple objectives
function. After the identification method is outlined, simulations results are presented in order to
confirm the accuracy of the parameters estimation under the persistent condition of the inputs. The
theoretical aspects and evaluation of this approach were published in Fouka et al., 2017a.

The second part of the chapter presents further research on parametric identification of two wheeler
vehicles using a recursive Levenberg-Marquardt parameter identification formulation (section 4.2). This
approach needs the use of sensitivity functions to identify acceleration responses in time domain by
updating coupled inertial parameters value. This work was published in Fouka et al., 2018b. Data
and prior value are taken from the professional motorcycle simulation software BikeSim based on
high fidelity virtual motorcycle models. The effect of measurement noise has been considered and
autocorrelation of error is studied. The identification approach is tested on software simulation BikeSim
in conjunction with Matlab. Subsections 4.2.1 and 4.2.2, provide simulation results of the identified
model and analyze the estimated model.

4.1 Multi-Objective Optimization

A multi-objective optimization problem is characterized by a set of objective functions to be maximized
or minimized (Piegay, 2015). Unlike the single-objective case for which a single well-defined function is to
be optimized, multi-objective optimization consists in finding the set of parameters for different objective
functions. The multi-optimization problems can be addressed with different approaches, either by reducing
the multi-objective functions to a single-objective problem, or by sequentially optimizes objective functions,
independently of the others, in a pre-established order or neither by treating all the goals simultaneously
(Pareto methods in Jakob and Blume, 2014). While these techniques have many advantages, the convergence
toward the global optimum is, on the other hand, strongly conditioned by the control parameters and by
the initial conditions.

Indeed, regarding the PTWYV two-bodies model and the physical characteristics of such a system, different
inertial and geometric parameters need to be estimated from identification approaches. Unfortunately, when
the number of the unknown parameters increases, or when the parameters excitation can not be achievable
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in the same time, the single-objective function algorithm maybe not well adapted to process all the desired
parameters of the PTWYV system. Due to this fact, addressing this problem from the standpoint of classical
optimization could be insufficient which require to extend the problem of optimization to the multi-objective
framework.

4.1.1 Identification Problem Formulation

Let reconsider the two-bodies PTWYV model:

e330y + €349 + €350 + €360 = azath + Fyy + Fyr

€34y + e4a) + €450 + €460 = aaa®) + as5v2¢ + a46Ved + asr Fy 5 + asg Fyr
(4.1)
€350y + eq5) + es5d + e560 = a54Vz + a56vz0 + as1 sin ¢ + aso sin d

e3ply + 64612} + 656(25 + 6668 = a64vw¢ + a65<;5 + a665 + ag1 sin ¢ + age sin esin 6 + a67Fyf + 7

From the above dynamics equations, we can underline a set of 15 unknown parameters 6;. In this section, we
aim to identify 6 = {es4, €36, €44, €45, €46, @45, 46, €55, €56, G54, A56, 452, €66, G464, 66 }. Lhe two-bodies PTWV
model is rewritten under a parametric form as following;:

miy + 010 + (mgj +mph) ¢+ 026 + mugh = Fyp + Fyr
0, (@y + WL) + 046 + 033 + 058 — 026 — 70,8 = 1, Fyp — 1,y

(mfj + mrh) vy+ Y0, + 04 + 99(5 - 910%1& — 91}UZ5 = (mfj + mrh) gsing + 612sind
0oy + 09 + 051 + 0130 + 011020 — 014029 — 0150 = O128in ¢ + O12sinesind —nFyr + 7
Moreover, we have the following geometric constraints equations:
k= (a+e)cose— fsine
j=(a+e)sine+ fcose
Ly
4= Gose — 1l 4.3
L= 1+, (43)
sz = _Tng
F.p = —(ms+mp)g+ F.p

Beside these geometric constraints, we know that m = my +m;.. Also, to simplify the identification process,
we assume that m, > my and h >~ j, then, a new dependence equations is formulated as mh = myj + m.h.
Under these constraints and hypothesis, it remains only nine unknown parameters vector 8 = [0y, - - - 0g, 915]T.
Further, geometric and inertial parameters can be easily deduced as following:

_ 6
b=

— bo
e = Milf
a=—1<—n

cos(€) .

—_ _a+
f= tSIl(i) ~ sin(e) (4.4)
j = (a+e)sin(e) + f cos(e) ’
Ie — 05—Myek

2= “cos(e)
. _ 97.Rf
Ly = esin(g)
iry _ 61;;/9 R,

Afterwards, the other parameters [fg, - - - ,914]T are directly deduced by:
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0o = Myej + I, sin(e)
010 = —ij + M.h + 6
_ —6
O = _tan(l) (4.5)
010 = Mfeg — T]sz913 = Ifz —|—Mf62
014 = 7Mf.6 + %.sin(e) = —6y — 07

The next step is to define the vector of the measured outputs. From the system dynamics of equation (4.2),
we can write the following expressions:

v = (Mhd+Muvgp+Mioy—May)
N L0
_ (Mh@+019+ Muvgp+ Mo, —May)
Y2 = — - [
. 791dy49lvxw+JfPLfAJerr
Ys = L 03
_ *91dv*93¢*911)z¢+lnyfflrFyr
Y4 = 01
—01dy—030—04¢+1 ¢ Fyp—1r F,
Y5 = v x shyr=tebyr (4.6)
. —91dv—03¢—94¢—055+lnyf—lrFyr
Yo . VU6, .
o —gldv—931/)—94¢—055+96U1¢+lnyf—lrFyr
yr . . vzb7 .
ys = —Mhiy+049+090—010v21)—011v.0+Mhgsin(¢p)+012 sin(4))
B . . 79 .
Yo = —(029y +09p+05v+0130+011 V2 p—014vap+012da—n Iy +7)
- 015

where d, = v, + vz1) and d, = sin ¢ + sin esin d.

Therefore, the system of equations have the following form:

y1 = f(y.00,061)
y2 = f(y,00,01,62)
ys = f(y,00,01,02,03) (4.7)

vi = f(y,00,01,02,...,0;)

Where y; is measurement outputs vector and fy is the initial value of the unknown parameters with i =
1,...,.9and j=1,...,15.

4.1.2 Optimization Problem Formulation

After defining the set of the unknown parameters to be identified, the next step is to setup the optimization
problem. Any multi-objective optimization problem can be stated as:

min C(6) = [C1(6), C2(6)....Co(6)] (4.8)

Generally, it is an arduous task to find a solution 6 for the above stated problem that satisfies all objectives.
To deal with this issue, we choose test scenarios that allows to decouple objectives resulting in a cascade
identification scheme. Let consider the following multi-objective cost with its associated sensitivity and
gradient:
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Criteria —C;(tg) = % S (Wi (t) — wi(tr))?

Sensitivity —S;(tx) = ggl (4.9)

J

Gradient —Gi(tr) = > (Yin, (tk) — yi(tk))-Si

Where y;,, are the measured outputs, y; are model simulated output and ¢ is the current simple time.

As an example, to identify the parameter 61, one select a short manoeuvrer for the lateral motion in which,
the second derivative of the steering angle is neglected, i.e. 0 ~ 0. From equations (4.2) and knowing that
may = Fyr + Fyr, we get y1 = 9 such that:

miy + 019 + mhé + mvgh = may, (4.10)
From the above equation, we can deduce the expression of y; and compute then its sensitivity S; = de;

and its gradient GG1. Next, the gradient algorithm is applied to estimate the value of the first parameter 6.
Further, the algorithm is repeated for each parameter after selecting the corresponding scenario as described
a follows:

1. From an initial starting point 8;(to), we calculate the criterion C;(¢p) and the gradient G; (o).

2. Compute the new value: 0;(tx) = 0;(tp_1) — aG;(tg—1)

3. Compute a new value of C;(tx) and G;(tx) taking 6;(t).

4. If the second criterion is smaller keep the new parameter value of the corresponding ;(t;). Increase «
for efficiency and increment the counter k + 1.

5. Else, keep the old value of 6;(¢;_1) and reduce « to seek a nearest local minimum.

6. Evaluate the stopping criteria for exit loop: accuracy on the criteria, the gradient, maximum number
of effective iteration, tolerance between the last two values of §. For more detail see Algorithm (1).

4.1.3 Simulation Results

The test described in this section is carried-out on the BikeSim simulator. The accessible parameters are
captured from the motorcycle’s datasheet. The algorithm is tested during a track test on handling road
course. Figures 4.1 show the rider steering torque and the trajectory of the conducted manoeuvrer. The
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FIGURE 4.1: Riders torque and motorcycle path.
identification results of the multi-objective optimisation are summarized in the following Table 4.1. Where,

0; = [esa, €36, €44, €45, €46, A45, 046, €55, age] is the identified vector of interest which depends on the physical
parameters of motorcycle. The other parameters are concluded from equation (4.5).



86 Chapter 4. Identification of Two-bodies model

TABLE 4.1: Multi-Objective-Optimisation method.

Initial | Prior values | Identification
Parameters | 6y 0, 0;
€34 5 14.64 14.3073
€36 0.1 0.1262 0.1519
€44 20 24.7385 23.7342
e45 2 5.0518 4.3416
€46 0.1 0.2968 0.3141
a46 0.1 0.8452 0.79503
a45 4 4.304 4.1104
es5 50 68.0442 68.1543
a6 10 —11.45 —11.7332
€56 * 0.1307 0.142
as4 * —96.69 —95.75
aes * 1.81264 1.77264
as2 * 40.5384 38.0886
€66 * 0.201 0.189
ae4 * —0.9714 —0.9469

The objective is to validate the result of the identification method on the two-bodies motorcycle model.
After the identification process, the estimated parameters are used to simulate the PTWYV lateral dynamics
and hence to validate the dynamics behaviour with respect to BikeSim data. To assess the performance of
the algorithm, we report the track test generated by the input in figure 4.1. With the kind of this trajectory,
the motorcycle lateral dynamics is largely excited. The following simulation results introduce the states of
the PTWYV lateral two-bodies dynamics in dashed red and the actual ones from BikeSim in blue.
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FI1GURE 4.2: Comparison between the roll, steer angles and lateral speed of the identified
model and the BikeSim motorcycle data.

Figures 4.2 illustrate the time variation of the roll angle, steering angle and the lateral speed that characterize
the lateral dynamics recorded from BikeSim. These variables are compared to their corresponding states
computed from the identified parameters. We can note that the errors between the identified states (dashed
red) and the actuals data are practically acceptable except the lateral speed. Even if the considered scenario
seems to be aggressive, the lateral velocity is a dynamic state that is not very excited in the PTWV dynamics.
Indeed, figures 4.3 depict the comparison of the actual roll, yaw and steer rates with the estimated ones.
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FIGURE 4.3: Comparison between the identified model and the BikeSim motorcycle data.
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In the same way, figures 4.4 show the cornering front and rear forces as well as the lateral acceleration, these
identified states are closely similar to the actual data. The results show that the model perfectly reconstructs
the most of the dynamic states, hence the cornering behaviour of the motorcycle is well identified.

Front lateral force Rear lateral force Lateral acceleration
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FIGURE 4.4: Comparison between the identified model and the BikeSim motorcycle data.

One can notice some differences between the identified model and the actual data. These identification
errors come from the PTWYV two-bodies modelling assumptions whereas BikeSim uses a non-linear eight-
body model. Also, the accuracy of the identified parameters of the model depends on the initial parameter
value and the step rate « in each iteration of the algorithm. Further, we can notice also a large amplitude
of the roll angle (about 35 deg). However, it will be recalled that the two-bodies model is theoretically valid
only for small variations around the equilibrium position in a straight line (¢ = 0). This extreme scenario
shows that, we are reaching the limits of the model.

This section ends with a study of the identification errors. The errors between the identified model and
the BikeSim states are quantified by mean of the Theil Inequality Coefficient (TIC), is the standardized
root mean-squared error, used in the sensitivity analysis to measure the model predictive accuracy and to
facilitate comparison between the actual and identified model (Woschnagg and Cipan, 2004). Note that,
the identification errors are quantified also in terms of errors variation percentage, this coefficient is denoted
"FIT", to compare the performance of the models that we have estimated.

_ \/% 22 Wi (t) — wi(tr))?
VES i (0))2 + /2 S i(t0)?

-l
B = 1000 (i, )]

TIC; (4.11)

where y;, . are the actual observations containing n samples and y; are the corresponding predictions, resulting
from estimated parameters.

Table 4.2 quantifies the identification errors between the BikeSim variables and the identified states of the
two-bodies model, confirms the efficiency with acceptable errors. The TIC is bounded by 0 and 1, the lower
boundary is the ideal case of perfect identification. The small values of TIC and the percentage of the fit
values, show a good forecast accuracy and prove the reliability of the model.

States

s 5 oy v
TIC 0.0974 0.1172 0.2924 0.0565
FITy | 79.9940 | 77.7522 | 66.2456 | 79.9202

* ¢ Y Ly Eyr

TIC 0.1199 | 0.1962 | 0.1372 | 0.1113
FITy | 77.3422 | 62.7593 | 74.4299 | 78.6061

TABLE 4.2: Analysis of the estimated states for the tests conducted.

The results, from the identification process, are very promising. The comparison with BikeSim data demon-
strates the potential of the identification procedure.
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4.2 Levenberg-Marquardt (LM) Algorithm

This section describes another identification algorithm based on Levenberg-Marquardt (LM) estimation (Yu
and Wilamowski, 2011, Hammar, 2015). The LM method combines the steepest descent and the Gauss-
Newton algorithms. In our context, it is used to identify the front and rear body moment of inertia.
Classically, in this estimation scheme, the objective function is usually defined as the difference between the
model and the experimental responses, expressed through some kind of metric.

Let us assume that f(y,5(0),i(0)) is a generic response function which depends on a set of unknown

parameters ¢, measurement output y and its times derivatives ¥, §

f1 Y (y,5(0),5(0))
f=9 Ff2 p =19 ou.9(6),i0)) (4.12)
f3 o(y, 9(0),9(0))

The sensitivities of the generic functions is described as as follow :

_d4f _9ofdy  ofdy ofdy of ~ Of. . Of.
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Where, the operator denotes total derivatives, and the operator a0 denotes partial derivatives. g, 9g

—~

d
and g are state sensiti

—

4.2.1 Problem Statement

Identification methods are generally based on minimizing the difference between the measured outputs and
the estimated outputs.

Let consider the following quadratic criterion J to be minimized:

min J(t) = %52@) (4.13)

where £(t) = f(t) — f(t) is the prediction error which represents the quadratic deviation between the generic
responses function defined in equation (4.12) and the their real measurement from sensor. The LM algorithm
requires the computation of the Jacobian matrix of the vector f with respect to the unknown parameter,
such that:

oJ
961
| s _esee _,_ or_
Jyp = a:] =90 9= 09 == Jyp = 680 =—cfy (4.14)
a6;

From equation (4.14), we define the following Hessian matrix:

d(efo,)

J pr—
00 20,

— Joo = [, Jo; (4.15)

In order to make sure that the Hessian matrix Jyg is invertible, Levenberg-Marquardt algorithm introduces
an approximation to the Hessian matrix such that H ~ Jyg + Al where, lambda > 0 is called combination
coefficient and I is the identity matrix.
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FI1GURE 4.5: Block diagram of the LM method.

Figure 4.5 shows a practical implementation of the LM method where the the update rule can be expressed
by the following;:

gty =90 — gy, (4.16)

Finally, by defining the matrix @; as bellow, the standard LM process can be summarized by the following
algorithm:

T T 0fi T Of;
€€ € agl € aefn
(2i\Te (24T s ()T 9f:
Qi — 001 001 001 001 00, (417)
Of\T. (Ofi T Of; Ofi \T Of;
()T (G o G

Algorithm 2: Levenberg-Marquardt (LM):(C)
Require: 6y(tg), A =1, stop =0, epsCrit= 10"
1- if stop# 1 then

fOI‘(tk_l =1y) =

Calculate Jo(6p), Go(fo) , Ho(fo), then : f;,= the sensitivies function
S; = [Ei fiej}’ 12(1,2,3), jZ(l,..,l())

Qi =S x Si,

Ji = Qi(l, 1), Gi = Qz(2 . end, 1), Hi = Ql 2: end,2 H end)
| J(60) = 327 Jis G(6o) = 27 Gy, H(0o) = 321 Hi

2- then 01 = 0o (t) + (H(6o) + X )G (o)

3- for(f;) = Calculate J(61), G(61) , H(61), then :

4- if J(91) < J(eo) then
L 91:90 and)\:)\/lo

5- else

A= A X 10 return to step 2
6- if (|J(61) — J(60)| < epsCrit) then
L return stop = 1;

4.2.2 Simulation Results

The LM estimation algorithm is evaluated using data from BikeSim simulator. We select a 8 bodies Sport
Touring PTWYV from the BikeSim datasets. The algorithm is evaluated on two different scenarios. The first
test is a double lane change manoeuvrer at a high speed of 100 km/h involving both accelerating and braking
in a turn on flat curved road with a curvature radius 152.4 m and a high friction ¢ = 0.85. This scenario
aims to simulate an extreme riding behaviour since it highly excites the motorcycle in lateral dynamics.
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Figures 4.6 and 4.11 introduce the steering torque 7, the forward speed v,, and the PTWYV trajectory during
the double lane change manoeuvrer.
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FIGURE 4.6: Test manoeuvrer : double line change,v;, = 100km/h in circle road, on high-
friction surface ¢ = 0.85 : Rider torque 7 - Longitudinal velocity - Path.

As mentioned in the previous sections, the generic response function f converges to true state when the
unknown parameters are updated with the estimated values of the inertial parameters. Moreover, figures 4.7
show the generic response function f = {1, 5} for the initial parameters. Then in Figures (4.8) after
updating the inertial parameters convergence. Note that, the algorithm initialisation were willingly chosen
different from the prior knowledge on the parameters to prove the ability to identify the true values and

converge toward the actual generic response.

4 . 2 . .
—@BikeSim —UBikeSim —OBikesim
— 2 i -~ QPrnitial — 1 == Vinitial -=-Ornitial
R ‘N%
=
S0
=
=
4 -2
0 5 10 0 5 10 10
timels] time|s] time|s]

FIGURE 4.7: Generic responses (acceleration angles) estimation in initial parameters value
0y compared to actual responses.
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FIGURE 4.8: Generic responses (acceleration angles) estimation after updating parameters
estimates value 0;, compared to actual responses

One can notice the significant mismatched between the actual response and the generic functions calculated
from the initialisation. The results show that at the beginning when applying the initial value of parameters
the model didn’t match the actual generic responses, however, by updating the values of the identified
parameters by LM method, the generic responses estimation closely match the simulated generic functions.
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Table 4.3 summarizes the values of the identifiable inertial parameters. The lateral two-bodies model is a
parameters varying system which depend on the forward speed v, hence, some parameters of this model
depend on v,. For this test, the forward speed is constant, one can easily deduce the value of the physical
parameters by omitting the speed. These varying parameters are plotted in figure 4.9.
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FIGURE 4.9: Combined inertial parameters estimates 6;, 0.

Furthermore, to test the effect of noises on the output vector, a Gaussian noise is added to outputs vector
to realistically recreate real application scenarios. The variances for Gaussian noise is 0.05rad/s?. For a
good identification, these residuals should be white, which statistically means that we have insignificant
correlations for non-zero lags. Figures 4.10 plot the autocorrelation of the residuals error compared to that
of a white noise. From the autocorrelation graphs and except at zero lag, the autocorrelation values of
the residual errors lie within the autocorrelation of a white noise signal. From this, we conclude that the
prediction errors are white Gaussian noise.
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FIGURE 4.10: Correlation graph for white noise and residual error.

The second test deals with an oncoming traffic with rapid variable speed between 12 and 35 m /s on handling
road course including straight lines, large and narrow turns. This test is a very common scenario on real life
riding situation. Figures 4.11 present the steering torque 7, the forward speed v,, and the PTWYV trajectory
of the track test.
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FIGURE 4.11: Test manoeuvrer 2: oncoming variable speed, in road course with p = 0.85 :
Rider torque 7 - Longitudinal velocity - Path.
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Whereas, figures (4.12) and (4.13) plot the generic response function f = {1, 4,0}, first as function of the
initial parameters, and then after the convergence of the algorithm by updating with the identified inertial

parameters.
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FIGURE 4.12: Generic responses (acceleration angles) estimation in initial parameters value
0y compared to actual responses.
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FIGURE 4.13: Generic responses (acceleration angles) estimation after updating parameters
estimates value 0;, compared to actual responses.

As for the first test, the parameters which depend on the forward speed are plotted in figures 4.14.
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FIGURE 4.14: Combined inertial parameters estimates.

The final step is to analyse the residuals generated by LM method. The result on the autocorrelation of the
residuals error compared to that of the white noise are given in figures 4.15. One can remark some small
difference on the autocorrelation of the residuals error in the zero lag, specially on the generic response of
the roll acceleration R ;. However, in general the autocorrelation sequence of the residuals looks like that of
the white noise process which means that the generic response are well fitted. Hence, we conclude that the
prediction errors have almost the same characteristics as a white Gaussian noise.
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FIGURE 4.15: Correlation graph for white noise and residual error.
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Table 4.3 presents parameters values estimates. For (x) parameters, the estimated convergence is shown
in figures (4.9) and (4.14). Where, 6 = [e44, €45, €46, €55, €56, 454, A56, 464, G465, A46] is the unknown vector
of interest which represent the combined inertial parameters of motorcycle of the front and rear wheels,
depending on : Iy, . ={Iy,, Iy, 1.}, Ir, , . ={Lr,: Iy, Ir. }, Craz and iy,  ={ir,, iy, }.

TABLE 4.3: LM identification results

Initial True values Scenariol | Scenario2
Parameters | g O 0; 0;
e44 1 34.7228 31.7914 28.2429
eqs 2 1.9632 0.968 —4.0424
e46 0.1 0.6584 0.5 0.5
ess 113 118.0202 119.78 119.9828
as4 —170 X vy | —175.0479 X vy | * *
€56 —1Xvg —1.4622 X vy * *
asg 0.1 0.3827 0.5 0.5
ag4 —1 X vg —0.8685 X vg * *
ags 1 X vy 1.4622 X vy * *
aq6 0.2 X v 0.6818 X vy * *

4.3 Final Remarks

This chapter deals with the identification of PTWV two bodies model. First, a methodology for iterative,
cascade identification has been proposed for the estimation of unknown parameters. Equations that describe
the lateral dynamic are used to form the resulting problem that is solved using a multiple-objective opti-
mization algorithm adapted to the complexity of our model. In order to find the lateral dynamics we had
to solve a linear gray-box problem by gradient method. The method has been successfully evaluated by
simulation.

Second, we have described the design process of Levenberg-Marquardt (LM) identifier to estimate motorcycle
combined inertial parameters, this approach uses sensitivity functions of generic responses developed using
the Sharp motorcycle model to optimal estimation. The LM estimation improved convergence character-
istics for state by updating inertial parameters, which are most apparent in the estimation of the generic
responses: yaw, roll and the steering acceleration. The designed LM method, identified combined expression
of inertial parameters and predicted the objective functions. The simulation results were very promising, the
LM formulation is a good method to predict the response with very high accuracy. The main difficulty lies
in the number of important parameters to estimate, which results in unrealized scenarios capable to excite
the target modes for the identification.

4.4 Comparison and analysis

From the analysis of the identification results presented in chapters 3 and 4, we draw up the most important
feature of each method. The simulation results were quite promising to prove that the identification ap-
proaches provide an interesting solution. However, as one may expects none of these identification strategies
may behave perfectly for all the considerations, conditions and requirements. These explains our choice
to consider different methods related to a specified motorcycle model. For the sake of comparison, we
summarize all the presented design procedures in Table 4.4. Overall, the analysis of this table reveals the
advantages and the drawbacks of each identification strategy from the required specifications. One of the
main common contributions is that these methods take into account the motorcycle behavior rather than
the black-box identification techniques. Besides, these identification procedures were validated by comparing
with BikeSim data or real measurements. Obviously, the difficulties encountered concern mostly the choice
of the persistent input to excite the dynamics of the motorcycle.
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Approach

Considerations

Parameters and Advantages

Disadvantages

Static Tests
Practical method

Datasheet

No sensors
Technical Tools
for data collection
Rigid body model

CoG position: a, b, h
Wheelbase e

Mass m

Wheel Radius: Ry, Rr
Caster ¢

No convergence
Need physical efforts

BikeSim data

Inertial parameters: I, 1,

Prior values

Gradient Rigid body model No second derivative Step rate «
Descent Iterative procedure Need observer
Input excitation
BikeSim data Inertial parameters: I, 1, No convergence proof
Algebraic Rigid body model Without initial conditions Requires Input excitation
Method On-line and real time Bad conditioning
Computation complex
BikeSim data Combination’s of geometric Prior values
Multi- Two-bodies model | and inertial parameters Time consuming
Optimization Recursive 0;, 1 ={1,..,15} Need observer
Algorithm Cascade No need to second derivative
BikeSim data Combined inertial parameters | Prior values
Levenberg- Two-bodies model | 6;, i = {1,..,10} Need differentiator
Marquardt Recursive depend on {Iy , Iy Iy }, for second derivatives

Algorithm (LM)

{IT‘aca IT;/ ) ITZ }, Crzz
{iry,ify}.

Need observer

TABLE 4.4: Comparison table: Advantages/disadvantages of the presented paramet-

ric identification for PTWYV.
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Conclusions

This section concludes all the presented identification design procedures. We have described five estimation
strategies to achieve the identification of the most important unknown parameters of the two motorcycle
models.

For the first single rigid model, three design methods were considered in chapter 3 to identify the center of
gravity (CoG) position and to estimate motorcycle inertial and geometric parameters using static test, an
algebraic identification approach compared to an iterative gradient decent algorithm. Concerning the Sharp
two-bodies model, two methods were proposed to identify parameters of the motorcycle model in chapter 4.
The first method was a cascade recursive optimization, in which, equations that describe the lateral dynamics
are used to form the resulting problem that is solved using a multiple-objective optimization algorithm
adapted to the complexity of our model. The second design process was a Levenberg-Marquardt (LM),
in which, the parametric identification is modeled based on minimizing the difference between measured
responses and calculated responses from a mathematical model. The LM estimation improved convergence
characteristics for state by updating inertial parameters, which are most apparent in the estimation of the
generic responses.

Despite the fact that the motorcycle identification state-of-the-art was very limited in literature, the proposed
approaches were inspired from other existing application and revisited in order to adapt the methods to our
requirements. Note that the identification methods does not offer the possibility to take into account the
uncertainties of modeling, because, they are designed from algebraic manipulations. In this case, it would
be interesting to search for a more robust methods to get a good performance in the presence of uncertain
parameters or noisy measurements. In this context, we have initiated several works on the parametric
identification with more robust methods. To go even further, we have proposed observers based identifiers
able to simultaneously estimate the dynamic states and identify the parameters of the model. These new
estimation methods will be presented in the next chapters.
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Introduction

HE growing need of safety for powered two wheeled vehicles (PTWV) has given rise to serious open
T questions related to estimation problem. Yet, the elaboration of advanced rider assistance systems
(ARAS) to enhance safety issue, depends basically on motorcycle motion states such as steering behavior,
roll angle and tire/road interaction. The evolution of these states depends strongly on the riders’ steering
torque and steer angle applied on the motorcycle handlebar, vehicle’s parameters such that tire cornering
stiffness, PTWYV mass and inertia moment and the infrastructure geometry like the road bank angle which
is very useful to detect the rollover and sideslip angles and thus detect a skidding motorcycle. While some
states are readily measured with inexpensive sensors as the yaw rate, others states must be estimated by more
sophisticated means for instance the tire cornering forces. Safety systems nowadays available collect some
states from integration of inertial sensors, but this estimation method is subject to errors accumulation and
uncertainties from road geometry, slope and bank angles. Therefore, building up an ARAS requires a precise
knowledge, at every instant, of the vehicle’s dynamics throughout physical or virtual sensors. This topic is
one of our research interest which intends to develop ARAS systems starting from a minimum set of vehicle
self-integrated sensors to acquire measured states. In this scope, model-based estimators are interesting to
overcome previous shortcomings in order to provide estimates of unmeasured states and relevant parameters.

Throughout the last half century, observation theory has continuously evolved from the Luenberger observer
for linear systems (Luenberger, 1966), to the more recent state and unknown input observers for nonlinear
systems (Koenig, 2006). Various versions of unknown input observers were studied (Darouach and Boutat-
Baddas, 2008), such as reduced-order, minimal-order and full-order observers. In which, the necessary
and sufficient conditions for the existence of the observer are established. Further, new reformulation of
this observer, by introducing high order sliding mode, is also exposed in (Fridman, Levant, and Davila,
2007). Under which, the sufficient and necessary conditions of strong observability and detectability are
formulated in the terms of the system relative degrees with respect to unknown inputs. On the other hand,
an extensive use of polytopic and Takagi-Sugeno representation is also undertaken, which giving rise to an
ease transposition of the over-mentioned observation techniques for nonlinear systems (Ichalal and Mammar,
2015). In (Lam, Li, and Liu, 2013), a new category of fuzzy-observer-based controllers is proposed to stabilise
non-linear plants. Moreover, the problem of the simultaneous state and parameters estimation, in the case of
nonlinear continuous-time systems, is also studied. In (Chong et al., 2015), an hybrid scheme is considered,
in which state observers are achieved for some nominal parameter values and, at every time instant, a
criterion is designed to select one of the predesignated observers providing state and parameter estimates
updates. Although providing good estimation accuracy, this approach yields to an over-dimension problem
even for the linear systems case. Withal these approaches, several open topics in estimation methods need
more thorough investigations as for structural constraints and rank condition (Bolandhemmat, Clark, and
Golnaraghi, 2012).

Concerning PTWYV estimation research, there is a growing body of literature for observer design, one can cite
(Gasbarro et al., 2004b; Corno, Savaresi, and Balas, 2009; Boniolo, Savaresi, and Tanelli, 2009a; Teerhuis
and Jansen, 2012b; Boniolo, Savaresi, and Tanelli, 2012; Teerhuis and Jansen, 2012b; De Filippi et al., 2012;
Boniolo, Savaresi, and Tanelli, 2012; Corno, Panzani, and Savaresi, 2013; Dabladji et al., 2016).

In almost references, the estimation of the PTWYV dynamics is done by considering restrictive assumptions
regarding riding motorcycle practices, decoupling motion or independent behavior, known tire friction or
under a constant speed assumption, road geometry and tire-road contact has often been neglected (Chabane
et al., 2012; Dabladji et al., 2015). These assumptions simplify the estimation problem but, it may lead
to an inaccurate reconstruction with respect to the real dynamics. In fact, motorcycle characteristics and
road conditions may change for different riding situations. Indeed, the road banking for instance, has a
direct influence on motorcycle lateral motions to achieve safety speeds and desired control on difficult road
conditions. The estimating of the road bank angle is a challenging task to evaluate the infrastructure impact
and to improve the estimation of the side slip angle on tilted road surfaces. In addition, hard acceleration
or braking is an unsafe riding which often caused motorcycles crashes. Thereby, the estimation of rectilinear
motion highlights certain dynamic aspects that also affect PTWYV safety, such as, overturning during braking
or wheeling in acceleration (Evangelou, 2004).

To the authors’ best knowledge, the simultaneous estimation of the lateral dynamics and the road geometry
was treated on vehicles and those methods developed for four-wheeled vehicles are not necessarily adequate
for motorcycle Dahmani et al., 2011. Also, the coupling motion of the lateral and longitudinal dynamics of
two wheeled vehicle have not received much attention in the literature. Besides, as discussed in the previous
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chapter a very few works deal with the PTWYV parameters identification. Thereby, the convergence of state
estimation approach jointly with parametric identification algorithm needs more deep exploration (Chong
et al., 2015). Alternative approaches suggest the use of observer-based identification. In this scope, adaptive
observers present a convenient approach to deal with both dynamics states and parameters estimation (Dixit
and Suryanarayanan, 2008; Garimella and Yao, 2003). Moreover, the matching constraint in unknown input
observer design is also a challenging issue for motorcycle state and parameters identification. Moreover,
designing unknown input observer for PTWYV, which meets some requirements, as the matching constraint
and the relative degree with respect to unknown part, constitutes a complementary challenge. As matter of
fact, many challenges are still open with respect to the estimation unknown states and the identification of
a set of optimal system’s parameters from the available input-output data and a prior knowledge about the
PTWV’s behavior.

Regarding these requirements, our work deals with the previous challenges in estimation PTWV dynam-
ics. To do this, we propose two observers for states estimation, first, an Unknown Input Observer (UIO)
is designed for road and steering dynamics reconstruction. Then, we were interested in both lateral and
longitudinal dynamics estimation, in this scope, an Interconnected Fuzzy Observer (IFO) for PTWV was
designed. Further, the convergence of state estimation approach jointly with parametric identification algo-
rithm is one of our keen of interest. To fit some needs, we suggest two observers-based identifier to estimate
simultaneously the model parameters and the unknown states. The first one is an LPV Luenberger-adaptive
observer (LAQO) synthesized for motorcycle state estimation and tire cornering stiffness identification, and
the second one is a Delayed Unknown Input Observer (DUIO) for nonlinear system concerned the states and
model parameters when the mismatched condition is not fulfilled.

The outlined observers are designed considering linear parameter-varying (LPV) motorcycle model and a
certain number of valid measurements, taking into account real constraints such as the variations in the
longitudinal speed during the synthesis of the observers. The result is formalized using Lyapunov theory
where the observer’s gains are computed by resolving an optimization problem in form of a set of a Linear
Matrix Inequality (LMI) aiming to minimize the estimation error. In addition, these observers require real-
istic instrumentation with sensors or a high-end simulator. It requires an encoder installed on the steering
mechanism, a gyroscope and an accelerometer (IMU), which are assumed to be placed near the Gravity
Center (CoG) of the motorcycle. In this part, it will be assumed that these measurements are directly
available in the reference frame used for the dynamic modeling of the PTWYV. It will be recalled that the
sensors provide the measurements in the sensor reference frame attached to the vehicle that is different from
the body reference frame. Indeed, it is affected in particular with the roll and pitch motions. Nevertheless,
under some hypothesis, there are simple algebraic relations that allow reconstructing the measurements in
the body reference frame. For additional information, the reader may refer to section 2.11 for calibration
algorithm which explains a practical procedure to align the measurement data. It will be recalled that these
estimators have been designed to answer real technical issues taking into account the physical behavior of
PTWYV riding. For this end, the validation for each observer is performed either with the BikeSim simulator
or with experimental data. In a first step, the observers are validated under ideal conditions, without noise
consideration or parametric uncertainties. The purpose of this latter is to confirm the observer’s design and
to prove convergence from a theoretical point of view. To go even further, we also studied the robustness of
the observers with respect to the measurement noises or parameters uncertainties based on the acquired data.
In a second step, a much more advanced validation is proposed based on real data acquired on the scooter
of the laboratory. Note that many observers for the PTWYV dynamic in the literature have significant gaps
in experimental validation. Indeed, many contributions focused at the validation on the synthesis dynamic
model of PTWV. But the latter is often based on a set of nominal parameters exactly known and in the
presence of ideal sensors (no-noise). Even if the results of such a validation are very promising, they are often
disappointing in practice. Finally, this part ends with a conclusion that takes up important notions about
the developed observers. Each of these chapters is constructed in a nearly identical frame. A first section
introduces the theoretical prerequisites and the motorcycle LPV model, a second addresses the formulation
of the problem and the necessary consideration to rewrite a state space representation for the synthesis of
the observer. A last section presents the validation results, discussed either on BikeSim or on a much more
realistic tests. Finally, a few general remarks conclude each chapter.
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Chapter

Road and Steering Dynamics Reconstruction

——— Abstract

validation of this idea was published in Fouka et al., 2018c.

independently of some inputs (rider torque) and/or other states (zeros dynamics: roll angle) taken
account the variation of the longitudinal velocity.

estimation. In section 5.3, the UIO will be tested "off-line" on experimental data obtained during a

the efficiency of the proposed design method. Finally, the last section 5.4 concludes the chapter.

This chapter deals with the estimation of both motorcycle lateral dynamics and road geometry recon-
struction. It discusses the synthesis of a linear parameter varying (LPV) unknown input observer for
the estimation of the whole motorcycle dynamic states including road banking angle and the rider’s
steering torque taking into account the variation of the forward velocity. As discussed in the introduc-
tion, some dynamic states are not directly measurable or the sensors to acquire data are too expensive.
Even without prior information on these states, the unknown input observer allows the estimatation
of the unmeasured dynamic states under certain conditions. In addition, using automatic tools such
as differentiation techniques, makes it is possible to reconstruct the Unknown Inputs (UI) from the
estimated states and the derivative of the output vector. The theoretical aspects and the practical

Knowing that road banking angle and the lateral front and rear slip angles are relevant parameters
for improving rider’s safety and handling, hence, it is interesting to estimate these road geometry
parameters. The major contribution of the proposed observer is the adaptation of the UIO concept to
the case of the PTWYV with road bank angle consideration, besides, the observer is studied to satisfy
the asymptotic convergence of the estimation error based on Lyapunov theory. The main idea consists
in getting a set of conditions expressed in linear matrix inequalities (LMIs) formalism to design an
observer transformed into a polytopic form, which estimates a part of the motorcycle dynamics states

into

This chapter is organized as follows. First, we will present very briefly a modified observable version of
the Linear Parameter-Varying (LPV) motorcycle out-of-plane model considering the road bank. In the
same section 5.1, we will illustrate the observer design and present the convergence analysis applied to
the estimation of the lateral dynamics of the PTWV. Then, section 5.2 presents the unknown input

test

setup on the scooter of the laboratory. Simulation results of experimental test are provided to confirm

5.1 LPYV Observer Design

The PTWYV dynamics model can be written in a LPV form as following:

{i(t) = A(Q)z(t) + G(Q)v(t)
y Cux(t)
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where z(t) € R™ denotes the state vector and z = [, vy, 1, ¢, 0, Fy ¢, Fyr]T. y € R™ is the measured output
vector. v(t) € IRP is the vector of the unknown inputs including roll angle ¢, road bank angle ¢, and the
rider steering torque 7. The matrices A(¢) and G(() are parameter varying with appropriate dimensions.
We assume that dim(y(t)) > dim(v(t)).

The PTWV nonlinear dynamics model of equation (5.1) is transformed to a set of LTT interconnected model
by using TS fuzzy structure. An effective choice is the use of sector nonlinearity approach as described
in Tanaka and Wang, 2004. We consider one varying parameter ((¢) as the forward speed of the PTWV
v, (t) assumed to be accessible in realtime with its first time derivative which can be obtained from high
differentiators or from the forward acceleration. With one nonlinearity, the PTWV dynamics model of
equation (5.1) is described with 2 LTT sub-models as:

b= 3 m(0) (Al + Ga(0) 52)

)

y = Cr

where 7;(¢) are the nonlinear weighting functions satisfying the following convex sum property:

r Vzmax —Vz
2 mi(c) with Ve Vemin (5.3)
0 S 771' (C) S 1 772 - ’Ulmaxivzmin

where 7 = 2"¢ represents the number of local sub-models defines and n = 2 in our case.

We aim to design an unknown input observer for the PTWV TS model (5.2) to estimate the state vector
x(t) and the unknown inputs vector v(t). For this, let consider the following UIO (Ichalal et al., 2015):

2t) = N(GO)z(t) + L(¢, Oylt) (5.4)
(1) 2(t) ~ H(Q)y(t) '

where #(t) and §(t) denote the estimated state and output vectors respectively.N(¢,¢), L(¢,¢) and H()
are the observer’s matrices to be determined to ensure asymptotic convergence of the estimation error even
in the presence of unknown inputs.

Assumption 2 To design a stable unknown input observer, the well-known conditions for the existence of
the UIO are given by the following assumption (Darouach, Zasadzinski, and Xu, 199/):

1. The pair (A(C),C) is detectable ¥((t) € A, where A defines the following set:

A= {C € ]R| Cmin < ¢ < Cmazs Cmm < C < émaz } (5.5)

2. Matching condition: rank(CG(C)) = rank(G(C)), V((t) € A, is satisfied.
According to equations (5.2) and (5.4), the state estimation error is given by:
e(t) = x(t) —2(t) = (I + H(Q)C)x(t) — 2(t) = P(C(t))x(t) — 2(t) (5.6)

By differentiating the previous equation (5.6), and knowing that z(¢) = P(¢)z(t) — e(t), the estimation error
dynamics is found to be:
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e(t) = P, )x+ POz — 2 (5.7)
= N(¢ Qe+ (P(¢,€) + P(OAC) — N(¢, O P(C) — L(¢,)C)x(t) + P(O)G(C)v(t)

If the following conditions hold:

The estimation error dynamics will be reduced to:

é(t) = N(¢, Oe(t) (5.10)

In which, N(¢,¢) must be Hurwitz.

The convergence of the estimation error in equation (5.7) is studied by introducing a quadratic Lyapunov
function V' (e(t)). This analysis allows to find the observer gains under optimization conditions. Let consider
the following quadratic Lyapunov function :

Vie(t)) =e(®)"Qe(t), Q=Q" >0 (5.11)

By using the error dynamics in equation (5.10), the time derivative of the Lyapunov function can be written
as:

V() = e(t)” (NG OTQ+QN((Q) ) elt) (5.12)

Next we replace P({) = I + H({)C in the first equality constraints equation (5.8), we get:

where I’

((:,C) = P(¢,¢) + P(¢)A(¢) and K(¢,€) = N(¢,{)H(¢) + L(¢, ). By using the previous equation
of N(¢,¢), th

e dynamics of the estimation error become:

9

é(t) = (T, ¢) = K(¢, Q) C)e(t) (5.13)
and the time derivative of the Lyapunov function in equation (6.23) is transformed to:

V=l (T(¢.O)TQ - CTR(G,O)F +Qr(¢,O) — R(,OC) e (5.14)

where R(¢,¢) = QK (¢, ()

Theorem 1 The state estimation error converges asymptotically toward zero if there exist a symmetric
positive definite matriz Q@ € R™"™ and a matriz R € R™"™ satisfying the Lyapunov inequality:

I'(¢.O)TQ+Qr(¢,{) —R((OC-CTR(,OT <0 (5.15)

It follows that V(e) = €T Qe > 0 defines a common quadratic Lyapunov function for the observer.
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Note that the Lyapunov inequality (5.15) depends on the varying parameters ¢ and its derivative ¢. In order
to derive LMI conditions that ensure the asymptotic convergence of the state estimation error, the polytopic
approach is used to transform this inequality.

To resolve this problem, a TS sector nonlinearity approach is considered once again :

$)=> m(Qr; (5.16)
i=1

) => m K
i=1

and the observer matrices N and L can be expressed by:

L, () = iz 1 (¢ Q) L
N(¢Q) = Xiqgm(¢ON; (5.17)
H(C) = z 1771(§)Hz

Moreover, the performances of the observer can be improved by pole assignment in an LMI region to ensure
an acceptable transient response. The poles of the estimator are considered in the complex plane region, this
region can be represented as an LMI region given by the stability margin a > 0 in a subset @ of the complex
plane such that the matrix T'; is said @;-Stable when its spectrum A(T;) belongs to region ®; (Patton, Chen,
and Lopez-Toribio, 1998).

©i = {z= (v +iy: €C| Re(2) S —a &z +2+2a <0} (5.18)

where C is the set of complex numbers, and Z denotes the complex conjugate of z.

Using the convex sum property of the weighting functions, sufficient LMI conditions ensuring asymptotic
stability in LMI region are obtained as follows :

I7Q+Qr, - CTRT —RC +22Q <0, i € (1,...,7) (5.19)

Where, R; = QK; and Q = QT > 0. This equation provides a way of ensuring the eigenvalues within a
specific region.

Based on the stability analysis of the lyapunov quadratic function, sufficient observer conditions are derived
in order to determine the observer gains which stabilize the state estimation error dynamics. Hence, if the
LMI constraints (5.19) are verified, the state estimation error in equation (5.13) converges asymptotically
towards zero. The gain of the observer are computed as follow:

1. The LMI problem includes the following condition to compute the matrices H(() as follows:

P(¢)G(¢) =0
{ P(C) = I+ H(Q)C (5.20)

H(¢) = =G(O(CG(Q)!
The solution of this equation depends on the rank of matrix CG(¢) and H(¢) exists if rank(CG(¢)) =

rank(G(¢)) V¢ € A. Since CG(C) is of full column rank, (CG(¢))T = {(CG(C))T(CG(C))} - (elelte)id
is the left pseudo-inverse of the matrix (CG(()). Whereas H; = H((;), ¢ = (Cmins Cmag)
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2. The gains of the observer are computed as follows:

K, =Q'R;
N; =T; — K;C (5.21)
Li = K; — N;H;

Note that the matrices N (vg,0z), L(vg, 0z) and H(vy) depend on the longitudinal velocity ¢ = v, and its
derivative C = 0;. It will be recalled that the measurement of v, is considered as available whereas that of
U, can be approximated either by using an accelerometer, or by using a differentiator. Moreover, since v,
and its derivative v, are naturally bounded. Then the gain matrices can be expressed in TS form using the
non-linear polytopic sectors. Finally, the goal is to find a gain matrix N (vy,vz) so that N(vg, ;) is stable
(Hurwitz) and ensures the asymptotic convergence of the estimation error to zero. To do this, Lyapunov’s
theory is used to address the error stability. To sum up, the design of the UIO comes down to find the
matrix H; satisfying the convergence conditions (5.19) and the two conditions of existence (5.8 and 5.9),
then computing a vector K; so that the matrix N; = I'; — K;C' is a Hurwitz matrix. In other words, H; exists
if rank(CG(¢)) = rank(G(¢)) V¢ € A and if the system (5.1) is detectable. Once the LMIs are resolved,
the gain matrices of the observer K;, N; and L; are reconstructed. Moreover, in the observer model (5.4)
there is no term related to the input vector since the latter is included in the vector of the unknown part.
In the next section 5.2, the estimation of the unknown inputs is discussed.

5.2 Unknown Input Estimation

After estimating the states of the system, the unknown inputs can be estimated by a simple dynamic system
inversion. From the output equation y = C'x, one can write:

= CA(Q=z(t) + CG(Q)v(1)
Since the condition rank(CG(¢)) = rank(G(()) is satisfied, it follows:

(1)
v(t) = <br((t)) = (CG(O)) (y(t) — CA(C)x) (5.22)
T(t

When the state estimation error e(t) converges to zero, we have £(t) — x(t), then the following UT estimation
U is obtained by the following equation :

p(t) = (CA)(y(t) = CA(Q)2(1))
In which, the convergence of ¥ toward v can be analyzed by defining the unknown input estimation error
eu(t) = v(t) = 7(t) = —(CG) CA(Q)e(t), WC(t) € A

knowing that e(¢) converges asymptotically to zero, then e, (¢) also converges asymptotically to zero. Accord-
ing to Lyapunov formulation, the state and unknown input errors converge asymptotically to zero in order
to achieve an accurate estimation of the states of the motorcycle and the torque applied on the handlebar.

5.3 Experimental Results

This section aims to present experimental results of the previously described UIO. The test scenario is carried
out by using the scooter on urban scenic road within normal riding conditions. Recall that, the UIO observer
estimates the lateral dynamics using the measured states ¢, v, ay and § with respect to the vehicle’s forward
speed v, varying from 7m/s on 18m/s as depicted in figure 5.1. Applicability conditions of the UIO are
expressed by a set of LMIs (5.19) which are solved by using a free optimization toolbox (Yalmip or Sedumi).
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FIGURE 5.1: Longitudinal velocity

The actual steering angle 6 and its derivative § are depicted in figure 5.2 with their corresponding estimates.
Also, this figure shows a comparison between the estimation of the yaw and the roll rates with respect to
their measurements.
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FIGURE 5.2: States estimation (gray) compared to actual measurement (orange).

According to the above simulation results, it can be seen that the observer has a fast transient phase and an
acceptable convergence rate to the estimated values, which gives a good representation of the actual states.
To assess the performances of the observer, the estimated states are compared with their corresponding
measurement by means of the root mean square percentage (RMSEg, ), and the average of the state estimation
error (RMS). Considering that the (RMSEg and RMS) are proportional to the square of the estimation
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error, the lower these indexes are, the better the estimation performances are. Let us remind that their
formulas are defined by:

R VES G O NIRRT .
Ve e (0)? n

where y;,,.., is the measurement of y; containing n data points and y;,,, is its estimate provided by the
observer.

State # | RMS | RMSEy,
§[rad] 0.0016 | 8.56
Ylrad/s] | 0.0309 | 10.73
plrad/s] | 0.0197 | 12.90
S[rad/s] | 0.0103 | 12.48
ay[m/s?] | 0.1603 | 12.42

TABLE 5.1: Analysis of the estimated state for the test conducted.

Table 5.1 reports the resulting (RMS) and (RMSE), to evaluate the performance of the LPV unknown input
observer for the track scenario conducted by the scooter. The (RMS) index presents small values of the
estimation errors between the estimated states and output measurements. Indeed, small values of the RMSE
index are observed for the yaw rate and especially for the steering angle estimation which has a low sensitivity
to the modeling errors. Nevertheless, the roll and steer rates as well as the lateral acceleration highlight the
greater RMSE values. But, these values are still acceptable and (RMSE) does not exceed 12.9% between
the proposed method and sensor measurement. The modeling assumptions are responsible for estimation
error, especially the linear approximation of the motorcycle and the tire models. Let us remind that the
observer is derived from a two-body model, whereas the real motorcycle is a highly nonlinear multi-body
system. Hence, the modeling approximations contribute to these errors. In addition, during the observer
design, the lateral tire forces were approximated by their linear expressions. Whereas, cornering forces have
a nonlinear behavior. Results, summarized in Table 5.1, show the potential of our observer and prove the
reliability of the estimated model for the track scenario.

Now, figures 5.3 shows the estimation of the unmeasurable states from the lateral dynamic model (vy, F,
Fy., Fy,), whereas figures 5.4 illustrate the estimation of the unknown inputs from the model inversion.
This UIO observer copes in particular with road bank angle estimation and the roll angle in the motorcycle
lateral dynamics model and addresses the estimation of the torque applied on the handlebar.

Lateral speed Road banking force
100
- —
~ Z
=) = 0
-100
0 20 40 60 80 0 20 40 60 80
time [s] time [s]
Front lateral force Rear lateral force

Fy;[N]

0 20 40 60 80 0 20 40 60 80
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FIGURE 5.3: Unmeasurable states estimation of scooter.
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FIGURE 5.4: States estimation of scooter from model inversion.

In the following, the lateral acceleration a, is reconstructed from the estimated state and unknown input
vectors. This reconstruction allows to validate the unmeasurable states Fy ¢, Fyr, I, and vy. We know that:

m&y = Fyf + Fyr — Fqgr (524)
by = Uy + vg1) (5.25)
brvu = ¢+ or (5.26)

Also, we recall that the roll angle ¢y measured by the IMU is the sum of the motorcycle roll ¢ and road
bank ¢,. Figure 5.5 depicts the actual lateral acceleration compared to that reconstructed from equation
(5.24) while Figure 5.6 shows the same comparison in which equation (5.25) is used. Finally, figure 5.7
presents the comparison between the measured roll angle and those estimated in the sense of equation
(5.26). The LMI region performance is verified through the observer transient phase showing the good
estimate ability of the proposed observer in spite of the presence of unknown inputs.

lateral acceleration
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FIGURE 5.5: State estimation validation: Fyr, Fyr, Fyy  from the estimated lateral acceler-
ation in equation (5.24) (dashed gray) compared to the IMU lateral acceleration (orange).
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lateral acceleration
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FIGURE 5.6: State estimation validation: 9, from the lateral acceleration in equation (5.25)
(dashed gray) compared to the IMU lateral acceleration (orange).
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FIGURE 5.7: State estimation validation: ¢, ¢, estimated in equation (5.26) (gray) from the
IMU roll angle measurement (orange).

One can note that all the state and variables are well estimated except the lateral velocity which has
significant error estimation (from validation figure 5.6), but it is still acceptable. The lateral velocity is
difficult to estimate accurately, however, because of its low value compared to longitudinal velocity this error
does not affect the performances of the roll angle estimation. The roll and steer angles (¢ + ¢, §) and also
the lateral forces are well estimated, there are some differences at the peak due to modeling uncertainties,
between the scooter and the estimated model. The model used for the observer design does not take into
account large roll angles but the observer still gives acceptable results. Finally, simulation results show the
performance and the ability of the designed observer to well recover simultaneously the motorcycle dynamics,
unknown inputs and the road banking angle on a real driving scenario realized with normal riding behavior.

From the states and unknown vectors estimation, we can also recover the side-slip angle «; of the front and
rear tires. This angles are very important to deal with stability region of the PTWV. Recall that, the lateral
forces are modelled by the following set of equations:

{ By = —Fyp — Criap + Cpa(¢ + ¢ + dsin(e)) (5.27)

%;?Fyr - _Fy'r - C’/’la’r + CT’2(¢ + ¢7’)

where Cy; and Cy; are the front and rear tire cornering stiffness supposed to be known. The front and rear
side-slip angles can be estimated from the following equations:
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>

;= (%Hgibn&) — b cos(e)
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Using the estimation states previously discussed, the front and rear sidelip angles are obtained from equations
(5.28). Figure 5.8 shows the reconstruction of the sideslip dynamics. This estimation is very important to
evaluate the behavior and the stability of the motorcycle. In fact, the the PTWYV stability region is directly
correlated to the sideslip dynamics defined from the phase-plane (a; - &;).

(5.28)
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FIGURE 5.8: Front and Rear Sidelip angles.

5.4 Conclusions

In this chapter, an estimation of out of plane motorcycle model states (lateral forces and steer angles), road
feature (banking angle) and unknown inputs (rider’s torque and roll angle) have been proposed using an
unknown input observer associated with model inversion. The design method takes into account the forward
speed as a linear parameter varying. Sufficient conditions for the existence of the estimator are given in
terms of linear matrix inequalities (LMIs). The performance of the resulting observer has been evaluated
by experimental validation using a real riding scenario in the laboratory scooter. Simulation results are
provided which illustrate the effectiveness of the proposed observer in estimating the states, unknown input
and road geometry, the observer results demonstrate that it gives reliable estimations. Furthermore, we
are also concerned with the case when the decoupling condition on the observer design is not fulfilled
(CG(¢) # G(¢)), in such a case the observer is not valide to estimate the unknown inputs. The next
chapter (6) is dedicated to study the mismatched constraint in the UIO design.
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Chapter

Delayed Unknown Input Observer

——— Abstract

This chapter proposes an observer based identifier to address the problem of state estimation and
parameters identification for system when the so-called matching condition is not fulfilled. Thereby,
we suggest a new approach to how a failed matching condition for a unknown input observer (UIO)
can be recovered by using time delayed measurements.

In the first part of this chapter, we present the general concept of the full order delayed unknown inputs
observer (DUIO) with unmatched unknown parts, in which, the time delay concept is investigated to
define a new augmented dynamic system, which satisfies the decoupling constraint. Based on these
last, the unknown parameters of the model and the unmeasured system states can be simultaneously
estimated. The resulting observer has been improved, from the restrictive decoupling condition point of
view to guarantee the estimation of state and parameters with asymptotic convergence. The theoretical
aspects and the validation of this idea was published in Fouka et al., 2018e and Fouka et al., 2019a. In
the second part, the concept is adapted to the LPV two-wheelers vehicle model in order to reconstruct
the unknown states and identify the parameters. In this context, the augmented observer clearly
enlarges the applicability of this design method for real systems.

This chapter is organized as follows. In the first section 6.1 , we will present the general problem
statement. In the second section 6.2, the augmented state space model is constructed based on the
delayed states and output dynamics. The third section 6.3, illustrates the observer design and presents
the convergence analysis. In the same section, we will discuss the parameter estimation from the
output dynamic equation and an algorithm is given to summarize the design procedure of the DUIO.
Section 6.4 considers the motorcycle estimation problem statement and presents the LPV structure
with unknown parameters. In section 6.4.3, the observer model is adapted to the motorcycle model.
Sufficient conditions for the existence of the new DUIO are given in terms of linear matrix inequalities
(LMIs). In section 6.5, we will discuss the simulation results and evaluate the observer based identifier
model to validate the theoretical synthesis of the DUIO on two-wheelers vehicle. In this section, several
simulation cases are provided to highlight the feasibility and the effectiveness of the suggested method
from scenarios performed with the well-known motorcycle simulator BikeSim.

6.1 Problem Statement

In almost real systems and process subjected to unknown inputs, parameters and/or disturbances, the
matching condition does not hold (Yanhua and Zhibin, 2015 and Yang et al., 2011). Overall, research on
the problems of mismatched rank condition can primarily be decomposed into two categories. The first one
deals with the compensation of the effects of unknown model uncertainties and external disturbances, based
on motion control systems (Yang et al., 2014). Alternative methods are proposed in the case of perturbation
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attenuation for system with unsatisfied matching condition (She, Xin, and Pan, 2011). Another set of
research is devoted to fulfill the observer matching condition considering auxiliary outputs and augmented
models, derived from high-order differentiators (Park and Kim, 2014 and Kalsi et al., 2010).

In this section, we are concerned with a class of systems which can be represented in a linear parametric
affine form as following:

(6.1)
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where Z(t) € R™ is the state vector, 4(t) € R™® is the input vector, §(t) € R™ is the measured output
vector, and # € IR™ represents the vector of unknown parameters supposed to be time invariant. The
matrices Dy, A, C and B are of appropriate dimensions and time invariant except Dyj. Without loss of
generality, we consider that:

rank(C) = ng (6.2)
rank(Dg) = ng

for all § € A, where A defines an hyper-rectangles:

A = {g7g e IRnQ| glmzn S gl S gimaz7 g'lmz»n S g’L S gimam } (63)
where (i, ;s Uimaw) a0d (Fi, . s Yimae) are the lower and upper bounds of the measured signal and its
derivative respectively.

The observer design approach is based on the existence of the left inverse matrix, called decoupling matrix,
to make possible the reconstruction of the unknown parameters vector (Bejarano, Poznyak, and Fridman,
2006). In other words, this condition imposes that the number of unknown parameters must be less than
the number of system’s outputs, so, the rank condition is given as following;:

rank(CDy) = rank(Dy) (6.4)

Also, we have (CDy) € R™*™ and Dy € R"*". By computing the rank of each part we have:

rank(Dyg) = ng (6.5)
rank(CDy) = nyg (6.6)

If ng > ny then the rank condition is not fulfilled which is the case of the original system: rank(CDjy) #
rank(Dg).

To overcome this restriction, the original system must be rearranged in an augmented form by introducing
auxiliary outputs. Almost methods use differentiators to get a successive time-derivatives of the original
system’s outputs. In our method, a more relaxed approach is proposed by taking the time- delayed outputs
of the original system’s to fulfill the previous rank condition.

Let us adopt the matrices notation x5 = #(5(t)), 55 = * (7(t), §(t)), and *5, = *(t = 1), *g,. = *(4(t — 7)),

where 7; is a constant time delay. Opxg4 is null matrix of p lines and g column and Ij,»4 stands for an identity
matrix of p lines and ¢ column.

6.2 Augmented State Space

In this section, a transformation to break out with the rank condition related to mismatched unknown part
is developed. Augmented models are constructed by adding exogenous dynamics to an already existing
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system’s model. In this scope, an augmented system is considered by including delayed states and outputs
dynamics.

Consider m delays 7;, where 1 < i < m and g, the delayed output vector, an augmented model is constructed
with a new state z(t), input u(¢) and output vectors y(t) as following:

e=[z" 2L il L r
=" 7 o ) (6.7)
w=[al al al al 1"

where m represents the number of set of auxiliary outputs such that:

M _j<mc (6.8)
ng ng
The augmented state-space system is given by:
(t) = Az(t)+ Bu(t)+ Dyb (6.9)
y = Cz() '

where,

0, A 0p Opxng B o Opxng
A= ) B = .
OTL On A Onxng Onxna B
_[)gj O Ong_xn T Ong Xn
Dy _ D:’?Tl C— Ong xXn c c Ong Xn
Dng Ong Xn Ong Xn C

where, A € R((m—i—l)xn)x((m—&-l)xn), Be ]R((m-l—l)><n)><((m—‘,—1)><nﬂ)7 Dy c ]R((m+1)><n)><n9 and
C e R((m+1)xng)x((m+1)xn)

The system’s dimension, with respect to equation (6.8), is as follow:

rank(C) = (m+ 1)ny
ng < (m+1)ng < (m+1)n (6.10)
rank(Dy) = min((m + 1)n,ng) = ny

Also:

rank(C'D,) < min(rank(C'),rank(Dy)) = min((m + 1)ng, ng)
= rank(CDy) < ng (6.11)
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One can notice that rank(D,) = rank(Dy) = ng keeps the same number of column because dim(0) = ny
is constant on the original and augmented models. Knowing that the decoupling matrix C'D, has non
collinear rows, such that (ng < (m+ 1)ng). The idea is to enhance the rank of the decoupling matrix in the
augmented model such that ng < (m + 1)ng, to fulfill the matching condition imposed by the observer, it
implies:

rank(CDy) = min((m + 1)ng, ng) = rank(Dy) = ng (6.12)

6.3 Observer Design
Let us consider the following full order Delayed Unknown Input Observer (DUIO) :
2t) = Nyyz(t) + Lyyy(t) + Gyu(t)
- (6.13)
() = z(t) — Hyy(t)
where, £ and § are respectively the estimated state and output vectors. Ny 4, Ly 4, Hy and G are parameter
varying with appropriate dimension. The problem of DUIO design can be stated as finding these matrices in
order to satisfy a stable asymptotic convergence of the estimation error dynamics. The proposed estimation
approach is taken under the matching condition fulfilled for the augmented model.
Definition 2 The DUIO observer is called to be asymptotically stable if :
e 7(t) =0 when t — oo, where &(t) = z(t) — Z(t) is the observer error.

o the matriz Ny 4 is Hurwitz.

Assume that there exists a square matrix P, € R(™+1)x7) defined as P, =1+ HyC. From the augmented
model (6.9) and DUIO equation (6.13), one can easily prove that the estimation error # can be expressed as:

T=Pax—=z (6.14)

By time differentiating we get the estimation error dynamics:

= Nyyi+ (Pyy+ PyA—NyyPy— Ly yC)x+ PyDy6 + (PyB — Gy)u (6.15)
Obviously, if the following matrix equalities are verified:
(i) Nyy =Tyy— KyyC, where, Iy y = Py 3+ PyA and Ky 3 = Ny gHy + Ly .
(i) PyDy =0, where Py = I+ H,C.
(iii) PyB—Gy = 0.

then, the error dynamics in equation (6.15) can be reduced to :
F(t) = Nyyi(t) (6.16)

Consequently, the error dynamics asymptotic convergence is ensured if Ny 5 is Hurwitz.

However, the three previous equalities are time variant since they depend on the output vector y(¢) and
its time derivative ¢(¢). To be able to solve this optimization problem with LMI, the TS transformation
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is applied as in the previous chapter. It will be assumed that, the premise variables y,y € A are real-time
accessible. The 2ng non-linearities related to v,y € A are captured via membership functions #;(-), which
have the convex-sum property in the compact set of the state space:

T
dnilwy)=1, 0<ni(y,y) <1 (6.17)
i=1

where r = 2270 is the number of the sub-models. Then, a polytopic exact forms is obtained as following:

T
Tyy =Y nily, )T (6.18)
i=1

.
Kyy=> ni(y,9)Ki
=1

where, I'; and K; are constant matrices. From this, the DUIO gain matrices L, 5 and Ny, can be defined
as:

{ Nyy =i ni(y,9)Ni, Ni=T; — K,C (619)
Lyy=>_1my,y)L;, Li =K; — N;H;

and, the estimation error dynamics is written under the following :
T
#(t) =Y miy,9) (Ti = K,C) &(t), i €= 1,2,...,22"7 (6.20)
i=1
The following theorem provides the LMI conditions of the existence of the observer.

Theorem 2 The full order DUIO (6.13) for the augmented model (6.9), guaranties the state estimation
convergence, if there exists a symmetric positive definite matriz () € R(mt+1)nx(m+1)n defining a Lyapunov
function V(%) > 0, such that V(&) < 0, VZ(t) # 0. Hence, the following linear matriz inequality holds:

-Q 0
( 0 T7Q+Qr—C"R” R ) <" (6:21)

Proof 1

The observer gains are selected so that N; is a Hurwitz matrix, based on the stability analysis of the Lyapunov
theory. Now, consider that there exists a positive definite matrix function ) such that a quadratic Lyapunov
function is defined to analyze the asymptotic convergence of the dynamical error, as follow:

V(z) =3"Qx (6.22)

Taking the time derivative of V(%) along the error dynamics yields:

V=3 (Y my9) (ITQ+ Qi - CTKTQ - QK.C) | 2 (6.23)
i=1
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Note that V' < 0 implies that the estimation error #(t) tends towards zero asymptotically for any initial
value Z(0) if the following BMI holds:

I7Q+Qri - CTK,"Q - QK:C <0, Q=Q" >0 (6.24)

One note that the inequality (6.24) is bilinear with respect to the unknown matrices @ and K;. To solve
this BMI problem, a variable change R; = QKj is introduced allowing to get LMI problem as following;:

I7Q+Qr,—C'RT —RC <0 (6.25)

Thus, from the Lypunov stability theory, if the LMI condition (6.21) is satisfied, the system (6.13) is
exponentially asymptotically stable. This completes the proof of Theorem 2.

Once, the state vector is estimated, finding the unknown parameters is straightforward by using an algebraic
inversion as following:

0 = (CDy)' (§ — CAz — CBu) (6.26)

—1
where (CD,) = [(CDy)T(CDy)} (CDy)T. However, the feasibility of this inversion is conditioned by a

convenient selection of the time delay to fulfill the rank condition. By substituting the output derivative in
the inversion model (6.26), the parameter estimation error is defined as:

ep=0-0=—(CD,)CAZ (6.27)

It is easy, from this equation, to show that the convergence of 0 towards 6 is ensured from the asymptotic
stability of the state estimation errors Z(¢) under suitable persistence excitation described in the following
definition.

Definition 3 The Persistent Ezcitation Condition is fullfiled if there exist c1,;, c2,; and c3,; positive for
i, = 1,...,q, such that for all t the following inequality holds Ioannou and Sun, 1996:

to-‘ngij _ _ T o
e 1 < /t DZ?nDﬂT]- dt <ecg I Vi,j=1,...q
0

Finally, the design procedure of the full order DUIO observer is summarized in the following Algorithm 3.
An example is proposed in the appendix to illustrate the estimation performance of DUIO observer.

6.4 Extension to the PTWYV case

6.4.1 Problem Statement

In the state space represenation described in equation (6.1), the matrices A, C' and B are supposed to be time
invariant. However, we have seen in section 5.1 that matrix A in the PTWYV dynamics model of equation
(5.1) is parameter varying with resepect to ¢. So, in this section we aim to extend the full order DUIO
design procedure to the case of the following LPV class :

{z(t) _ éC)tff(tHBu(t)+D(<)F(%yv-vy(")’9) (6.28)
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Algorithm 3: Observer design procedure DUIO

Require:
1: Check if system (A, Dy, C) is observable or detectable. If so, go to Step 2; Otherwise, stop.
2: Check the decoupling conditions :
3: if rank(CDy) = rank(Dy) Yy € A hold then
| m =0, go to step 10.
4: if rank(C Dy) # rank(D,) then
Find the minimum integer (m) <+ according to (6.8).
L Find the augmented matrices A, B, C, D in (6.9), go to the next step;
5: Compute matrices Hy, Py from condition (ii) and deduce the matrix Gy in (iii).
6: Compute the matrix P%y and deduce I' = PyAy + Py#’/ in polytopic form (6.18).
7: Solve the LMIs in (6.21) for the variables @, R; such that N; is Hurwitz.
8: Compute K; = Q_lRi which gives the matrix Ky .
9: Deduce Ny, =T — K, 4C and Ly 4 = Ky 4 — Ny 4Hy from equation (6.24).
10: Construct observer (6.13) and get the estimations of state 2(¢).
11: Estimate the parameters § by a simple dynamic system inversion in (6.26).
12: End

where z(t) € R™ is the state vector, u(t) € R™ is the input vector and y(¢) € R™ denotes the output
vector. The vector F' (y, Uy oey y(”), 9) € IRP incloses all non-linear terms which depend on the known time

varying parameter ¢ and the unknown constant parameter . The matrices A(¢) and D(() are parameter
varying matrices of appropriate dimensions while we suppose that the matrices C' and B are constant.

Without loss of generality, here we assume that rank(D(¢)) = p and rank(C) = n, where n, < p. Also, we
assume that the vector ¢ and ¢ are respectively defined on the hyperplanes A and A defined by:

A={CeR™| Giin <G < Cimaw }

B={¢eRY| Gy <6< i } (6.29)

where (G, .y Cimaw) and (G, . G ) are the lower and upper bounds of the forward speed variation and
its derivative respectively.

Assumption 3 In the following, assume that F can be written in an affine linear form with respect to
unknown parameters such that:

F <y7y, oy 9) =D (y,y, ..7y(")) 7(6) (6.30)

where the matriz Dy = D (y,y, ..,y(")) € RP*P gs full column rank, i.e. rank(Dy) = p.

From the aforementioned assumption, and for simple readability, the system in equation (6.28) is rewritten
as:

{ #(t) = Aca(t) + Bu(t) + DcDy f(6) (6.31)

y = Cz()

Theorem 3 The well-known rank conditions for the existence of the UIO are given by the following state-
ments (Darouach and Boutat-Baddas, 2008 and Trentelman, Stoorvogel, and Hautus, 2012):

1. The state x is bounded (stable or stabilized),
2. The system (A¢, D¢, C) is observable or detectable,

3. The relative degree v of the system with respect to the unknown part F = Dy f(8) exists.
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Usually, this theorem can be summarized into two well-known conditions for the existence of the UIO, the
observability condition of the pair (A, ') and the matching condition rank(CD;) = rank(D;) on the
system matrices (the output y(¢) must have a uniform relative degree with respect to the unknown part).
Based on system defined by (6.31), one considers the case when rank(C'D¢) # rank(D¢),V ( € Aand ¢ € A.
In this case, the matching condition is not satisfied since p > n, and an augmented model is reconstructed
from delayed outputs as described in section 6.1.

6.4.2 Augmented Model

Counsidering a constant time delay 7 and the output vector y(t), its delayed version is y(¢ — 7). The augmented
model can be reconstructed with a new state 4 (t) and output y,(t) vectors:

o =[ (@®))", (at-m)", (@t-n)T", . (et-m)" "
t=m))" (ylt—m)" . (yt—m)" ]

where 7,,, is the m™ time delay, and m represents the number of delayed outputs to recover the matching
condition. The parameter m can be easily computed from p = 9 x n + 3, where,

_J if g<o0
|8l <n andm = { d+1 Otherwise (6.32)
The augmented state-space representation of the system is as follow:
x(t) [ A((t) ~O7’L><’I”L Onxn T Onxn l‘(t)
i’(t 7 Tl) _ On.><n A((t.—*rl) On.xn On.><n l‘(t 7 T1> N (6.33)
Jf(t—Tm) i Onxn Onxn Opxn - AC(t—Tm) .T(t—Tm)
B 00 -~ 0 ult) _ Deiy Dy
0 B 0 0 u(t—m7p) Der—ryDye—
. + C( Tl): y( Tl) f(@)
i 0 0 O B U(t — Tm) EC(t—Tm)Dy(t—'rm)
_ c 0 o 0
y(t) 0 n%xn Onyxn
y(t_Tl) TLyXTL nyxn
= Za(t)
t—m ~
y( m) i Onyxn Onyxn - C
In a simple form, the augmented system takes the following structure :
ta(t) = Acaa(t) + Beua(t) + D¢y f(0) (6.34)
Ya = cha (t)

whereas, A¢ € R (((m+1)xn)x((m+1)xn)) B € R (((m+1)xn)x((m+1)xm)) D¢y € R(((m+1)xn)xp) o1 g C; €
R (((m+1)xny)x ((m+1)xn))

Remark 2 The matching condition for the augmented model holds i.e., rank(CgDQy) = rank(DC’y) and
rank(C¢D¢) = rank(D¢).
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6.4.3 Observer Design

For the augmented system (6.33) we propose the LPV unknown input observer of the form:

Neez 4 Lecya+ Geua

() =
{:%a(t) = )~ Howt) (6.35)

where, £, and g, are respectively the estimated state and the output vector. The matrices IV, .6 LC,C’ G¢ and
H are parameter varying. The gains design is addressed in the same manner as in section 6.3. Therefore, if
e = Tq — I is the estimation error and V¢ € A and V( € A, if the following conditions hold, the estimation
error tends asymptotically towards zero.

(1) e= N, ¢e, must be asymptotically stable i.e., N, ; is Hurwitz,
(2) PQC + PCAC . NC,¢PC — L(,CCC =0.

(3) PcDcy =0

(4) PeBe—G¢e=0

From these conditions, we can state the set of LMIs to be solved in order to design the DUIO gains as
follows:

6.36

6.37
6.38
6.39

Nee=Tee— K eCe
He = —D¢ y(CcDe )t
Pp = Iy, + H.Cy
G¢ = PeB;

AA,_\/_\
_— O — —

where FQC = PCyC + P<A< and KQC = N€-7<H< + LQ(

Since the matching condition rank(CD¢,) = rank(Dc,) is satisfied, the unknown parameters can be
recovered by a simple algebraic inversion as following :

J = (CcD¢y)" (9a(t) = CcActa — CcBeua(t)) (6.40)

In which, the convergence of f towards f can be analyzed by defining the unknown part estimation error

Knowing that e converges asymptotically towards zero, then e also converges asymptotically towards zero.
The stability analysis of the system is studied in the same way as in section (6.3) and yields to the following
BMI conditions ensuring asymptotic stability:

I7Q+Qr; — CFKFQ — QKiC; <0, i=1,..,r.

Finally, the performances of the DUIO can be improved by pole assignment in an LMI region to ensure an
acceptable transient response. The poles of the estimator are considered in the complex plane region, and
can be represented as an LMI region given by the stability margin ¢ > 0 in a subset ® of the complex plane.
In this case, the matrix I'; is said @;-stable when its spectrum A(T;) belongs to region ;.

O;={2=(z.+iy.) €C| Re(2) < <& 2+2+2<0 } (6.41)
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where C is the set of complex numbers, and Z denotes the complex conjugate of z.
Theorem 4 The delayed unknown input observer (6.35) for the model (6.33), satisfying the pole clustering
in @;(s) (0.41), allows an asymptotically convergence of the state estimation error towards zero in the LMI

region, if there exist a symmetric positive definite matriz Q € R2"*?" and a matriz R; € R®"*?™W such that
the following LMI holds:

I7Q+Qr; —CI'RT —RC; +2:Q <0, i e (1,...,7) (6.42)
where, R; = QK;.

In the following section, an application of the described DUIO design procedure in the PTWYV parameter
identification framework is proposed.

6.5 Application for PTWYV Estimation

In this section, we consider a four DoF model (Sharp, 1971), describing the lateral motion of the PTWYV as
following:

Ei = Az + Bu (6.43)

where E = [e;;] € R¥®, A = [a;;] € R®® and B € R¥*!. The state vector is * € R¥*! and includes
(6,8, vy,10, .0, Fy s, Fyr]T. Details of e;; and a;; are given in the appendix.

The model of equation (6.43) is written in a LPV structure with one varying parameter { = v, :

(6.44)

<
I

Q
8

P

{ i(t) = Aca(t) + Bu(t) + DcF(y,0)

whereas the matrix flc € R8*8 B e R®1, DC € R8*26 and ¢ € R®*8,

For the PTWV, we can measure different state variables from the embedded sensors. We consider the output
measured vector as y = [0, 1, ¢, 0, ay]T. By rearranging equation (6.43), the unknown parameter dependent
part can be expressed in a linear affine form:

a34Cy2
a44CY2 + a45y3 + as6Cya + asrd7 + asgds
~ as1®1 + asay1 + asaCy2 + as6Cys
DcF = ' A 6.45
¢ ag1®1 + ag2y1 + asaCy2 + aesCy3 + aseys + agrd7 (6.:45)
a71CE1 + a72Qy1 + ar3®s + aray2 + areys + arrCiy
ag1¢21 + ags®s + agaya + asgs( iy

where, a;; are the unknown parameters of the model. One can remark that the matching condition is not
satisfied for the LPV model defined above since n, = 5 and p = 26. Therefore, we need at least m = 4
delayed outputs to reconstruct an augmented model.

Remark 3 In practice, every system has physical limitations in the Persistent Excitation (PE) signals. Such
a limitation could be the response time, maximum capacity, an operating limits, saturation. The convergence
of parameters estimation are closely related to PE. Since this is not always verifiable. These PE conditions
are translated into sufficiently rich conditions on the inputs, which guarantee convergence rates of parameters
estimation errors. In this context, an excitation with oscillations of sufficiently high frequency gemerally is
used to excite the dynamics and to maximize the information content in the model parameters to ensure
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convergence.  The reference excitation signal during the identification phase is a pseudo-random binary
sequence (PRBS). However, this can only be achieved in simulation and unrealisable in case of real riding
scenario. Indeed, the main input of the PTWYV models is the steering torque at the front wheel, but the rider
is unable to carry out this type of control. In our case, the PRBS input can be replaced by a chirp signal.

6.6 Simulation Test

The DUIO is evaluated in co-simulation by using data from BikeSim simulator (Sharp, Evangelou, and
Limebeer, 2004). The PTWYV type Scooter Big Baseline with 8 bodies is selected with on a handling flat
road and a high road friction coefficient g = 0.9. The forward speed is around 40km/h. A chirp signal is
applied as a steering torque (figure 6.1)

Rider torque
10

7 [N.m]

10 : : : : :
0 20 40 60 80 100
time [s]

FIGURE 6.1: Steering torque input (chirp signal).

This maneuver is a well-known reference aiming to generate complicated lateral dynamics allowing the
excitation of the pertinent parameters. The figure 6.2 depicts the measured states and their estimation
along the track. One can remark a small error in the states estimation peaks, this can be explained by
modeling errors. The estimated roll angle is also validated with measured roll angle as shown in figure 6.3.
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FIGURE 6.2: Actual measures (blue) and their estimation (dashed red).

To verify the unmeasurable states estimation vy, F,

yf and Fy,., the lateral acceleration ay is reconstructed

from equations (5.24) and (5.25) and compared to the one measured by the IMU as shown in figure 6.3.

Lateral acceleration

Roll angle

20
2 lo L

N —
. >

E 0 = 0
e <

S}
-2 [[—actual o -10
Tray = W T —act'ual
a 5 J - - -estimated
R + v | | 20 ‘
0 20 40 60 80 100 0 20 40
time [s]

FIGURE 6.3: Observer validation.

60 80
time [s]

100

Figure 6.4 depicts the estimation of unknown parameters vector with respect to their nominal values. It
can be appreciated that the proposed observer shows a good estimation accuracy and proves the reliability
of the approach to estimate simultaneously the dynamic states and the unknown parameters of the model.
However, the singularities in figure 6.4 are mainly due to the observer transient state and the conditioning of
the inverse matrix. Also, when we use a relativity fairly poor excitation, the vector parameters is sensitive to
outputs variations. Further, given the number of parameters to be estimated, it is a complex task to excite

perfectly all the parameters simultaneously.

To validate the estimated parameters, one can extract the value of each parameter after the transient
phase. Afterwards, once the unknown parameters vector is identified, these parameters are inserted into the
motorcycle two-body model and used to simulate and validate the PTWV lateral dynamics. The resulting
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FIGURE 6.4: Actual parameters (dashed red) and estimated parameters (blue).

model is compared with respect to the corresponding BikeSim data in two others track tests. The first test
consists on a slalom maneuver on a flat road surface with high friction coefficient ¢ = 0.9 and a forward
speed of 40km/h as depicted in figure 6.5. The second test is an oncoming traffic with variable speed on

handling road course as in figure 6.7.

Rider torque

T [N.m]

time [s]

Longitudinal Speed

5 10 15 20
time [s]

FIGURE 6.5: Slalom maneuver at constant speed 40km/h.
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FIGURE 6.6: Test 1: updated state (dashed red) compared to actual measurement (blue).

First, the performance of the identified model is evaluated in simulation by comparing with the actual output
(see figures 6.6 and 6.8). These figures plot the most important states of the lateral dynamic model (roll and
steering angles, yaw rate, the lateral acceleration). Second, this evaluation is quantified with two metrics
by means of the root mean square error (RMS) and (MSE), summarized in table 6.1 to check the similarity
between the actual and simulated outputs. Results, summarized in Table 6.1, show that the estimation error
between the proposed method and actual states is generally small. The values of index, show a good forecast
accuracy and prove the reliability of the estimated parameters in reconstructing the motorcycle behavior.

State # Test RMS MSE
é Sey 0.0331 0.0011
Sca 0.0555 0.0031
5 Scy 0.0078 6.0184 10~ 3
Sca 0.0042 1.7881 1073
P Scy 0.0425 0.0018
Sca 0.0288 8.2925 103
@ Sey 0.0774 0.0060
Sca 0.02131 | 4.5511 10~ 2
a, Sey 0.1803 0.0785
Seco 0.3857 0.1359

TABLE 6.1: Analysis of the estimation method for the new tests conducted (validation with
the synthesis model).
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FIGURE 6.7: An oncoming traffic with variable speed.
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FIGURE 6.8: Test 2: updated state (dashed red) compared to actual measurement (blue).

The simulated response with the synthesis model shown in dashed red is overlaid on the actual BikeSim data.
The results of the slalom test with constant velocity are better than the track test with variable speed. This is
because of the sharp two body model is developed assuming constant forward velocity or slowly varying speed
to neglect the coupling between the longitudinal and lateral motions. But, even in the presence of forward
speed in the second test, good representation of the lateral dynamic still be ensured. In the two scenarios,
even if there are some errors at the peak of the reconstructed model states but it remains acceptable. These
difference between the simulated and measured data is due to modeling errors (the simulated model is a 2
bodies model while the data is collected using a high-fidelity 8 bodies model motorcycle). The validation
plots confirm that our estimation scheme was successfully evaluated. The results confirm the performance
of the observer in identifying the unknown parameters and show that the estimated parameters are robust
enough to handle a variety of riding tests.

6.7 Conclusions

The chapter shows some significant features, to discuss how a failed decoupling condition, can be recovered
using augmented model and time delay concept, with a specific characterization of the system matrices.
Based on these last, a step by step algorithm is developed to design the DUIO observer.

Our main contribution concerns the modeling transformation to break out with the rank condition related
to mismatched unknown part. An augmented system is considered by including delayed outputs. Different
from existing methods, the proposed observer gives a general framework for observer-based parameters
identification. It is shown that, by introducing delayed outputs, the rank condition is fulfilled, allowing to
parameters identification in two steps. In the first step, the state vector and unknown inputs are estimated
while, the parameter vector is identified in the next step. Afterwards, sufficient conditions for the existence
of estimator are given in terms of LMIs to ensure the asymptotic state and parameters estimation error
convergence. The effectiveness of the proposed approach is demonstrated throughout co-simulation with a
high-end motorcycle simulator. In the LPV-PTWYV model, we take into account the forward speed as a
linear varying parameter. Despite unknown inputs, the vehicle’s intrinsic parameters are almost accurately
identified and also, the rate convergence can be improved by convenient poles assignment in LMI region.
The simulation results are quite promising to prove that the estimation approach provides an interesting
solution for state reconstruction and parameters identification.
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Chapter

Luenberger Adaptive Observer for PTWV

——— Abstract

Safety systems for powered two-wheelers, claim a thorough investigation of motorcycle motion and
tires/road interaction, to help the rider to stay out of harm’s way. This chapter deals with the problem of
estimation of two wheelers lateral motion with consideration of cornering and camber stiffness unknown
coefficients. It consists of the design of linear parameter varying (LPV) observer associated with an
adaptive law to ensure convergence stability based on a general Lipschitz condition, Lyapunov theory
and subjected to persistency excitation conditions. The LPV observer is transformed into Takagi-
Sugeno (T-S) fuzzy observer and sufficient conditions, for the existence of the estimator, are given in
terms of linear matrix inequalities (LMIs). The forward speed is treated as an online measured time-
varying parameter and the cornering stiffness at the front and rear tires are assumed to be unknown
with a priori known nominal values, evaluated from the Pacejka’s formula tire model.

In this work, an evaluation framework is proposed to provide a critical overview and analyze the
stiffness parameters estimation performance and accuracy. The proposed adaptive law is compared to
a direct estimation method and a dynamic inversion estimation scheme adapted to our problem, each
having specific benefits and drawbacks. Finally, several simulation cases are provided to highlight the
feasibility and the effectiveness of the suggested methods, through test scenarios performed with the
well-known motorcycle simulator BikeSim and by field test acquired using an instrumented motorcycle.
The theoretical aspects and the validation of this idea was published in Fouka et al., 2018a.

This chapter is organized in six sections. Section 7.1 present the PTWYV dynamics model and the
problem statment. The LPV-adaptive observer design methodology is described in section 7.2 with
stability analysis. Co-simulation and experimental validation are discussed in sections 7.3, 7.4 and 7.5.
Finally, section 7.6 conclude the chapter.

7.1 PTWYV Dynamics

7.1.1 Model Description

In this work, the well-known Sharp model is used to describe the PTWYV lateral dynamics which can be
written by the following state space representation:

Ei = A(vg(t))z(t) + Br(t) (7.1)

where z(t) € R is the state vector such that = [, d, vy, ¥, &, d, Fy,, )T, The input vector is denoted
by 7(¢t) € R where 7(t) refers to the rider’s torque. The vehicle’s forward speed v, (t) is considered as a
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measured time-varying parameter. E = [e;;] is and invertible matrix, A(v,(t)) = [a;;] is the state matrix
and B is a vector with their associated dimensions. All parameters are defined in the appendix.

The lateral front and rear forces Fy ; and Fy, are considered to be linear with respect to the tire’s side-slip
angle o and camber angle v, then:

Fy 0 = Cajar + Cyp vk k=fr (7.2)

Also, we introduce tire relaxation to characterize the transient behavior by means of a first order system as
following:

o .
—Fy, =—Fy, +Fy0 (7.3)

(%%

The use of a linear tire representation is justified as is discussed in the introduction section. ADAS are
dedicated to perform safety tasks before the vehicle reaches the limits of its stability region. Beyond the
stability region, almost ADAS fails to recover the vehicle handling, particularly, in turn situations.

7.1.2 Parameter-Dependent Model

Let consider ((t) = v,(t) a varying measured parameter and ® € IR"® is the unknown parameters vector.
The PTWYV model of equation (7.1) can be reformulated in the following LPV form (we omit time variable

t) :

(7.4)

i = Acxr+ Bu+ A(z,¢,9)
y=Cx

where y € R™ is the output measured vector and A(z,(,®) € R"* represents the parameters dependent
terms of the PTWV dynamics. The matrices A; and B are defined from (7.1) as A; = E~TA(((t)) —
A(x,¢,0), B=E"'Band u=7(t).

An inertial measurement unit (IMU) is embedded on the PTWV and mounted under the vehicle’s seat at
approximately the vehicle’s center of mass. The available measurements are three accelerations and three
angular velocities expressed in the IMU body reference frame. These measurements are used to derive the
roll angle rate ¢, yaw angle rate ¢ and the lateral acceleration ay expressed in the PTWV modeling reference
frame. In addition to the IMU measurement, an optical encoder is fixed on the steering body providing the
steering angle ¢ and its time-derivative §. The minimum set of sensor measurements are the following:

y=[0 4 6 6 a ] (7.5)

By using equations (7.2) and (7.3), the vector of the unknown varying parameters A(x, ¢, ®) is written in a
linear form with respect to the unknown parameters vector @ as following :

A(z,¢,0) = Dx(z,()® (7.6)
in which:
_ VxOp Uz 0 0
x(x,¢) = o T _war wen (7.7)

or or



7.1. PTWYV Dynamics 127

and:

Caf - Caf,(]
o= | it (7.8)
C’Y'r - C%«,O

where, Cj, is the tires’ cornering stiffness, s = («,) designates lateral slip or camber angles, k = (f,r)
denotes the front and rear tires, Cs, o are the corresponding nominal values of the tires’ cornering stiffness
and oy, is the tire’s relaxation. The cornering stiffness at the front and rear tires are assumed to be unknown
and vary with respect to their nominal values.

7.1.3 Problem Statement

From PTWYV dynamics equation, it is straightforward to find an approximate estimation of the tires’ corner-
ing stiffness using a direct method or a dynamics inversion approach. With the direct method (Sierra et al.,
2006), the PTWYV can be reduced to an equivalent one-body dynamics expressed by the following equations:

may = Fyr+ Fyr 79
{Izw:lnyf_lrFyr (7.9)

where m and I, are the equivalent body mass and z-inertia. By combining equations (7.2), (7.3) and (7.9),
we get:

Ir Cay may

—lfaf lf’}/f lrar —lr'yr 07 o Iz'll)
—af f 0 0 Ca %Eyf + Fyy
0 O —CQr rYT‘ C’Y’r %Fyr + Fyr

—Qf Vf —Q

<

\
|

(7.10)

3

The dynamics inversion in equation (7.10) gives more insight in parameters estimation by avoiding state
differentiation. This last method is based on classical unknown input observers and output differentiation
as reported in (Zhang et al., 2017; Weiss et al., 2000). From equations (7.4), (7.5) and (7.6), we get:

§ = CA¢t+ CBu+ CDx(2,0)® (7.11)

By an algebraic inversion of the previous equation, the unknown parameters vector ® can be reconstructed
from the estimated state vector and output derivatives. However, the feasibility of this inversion is condi-
tioned by a convenient selection of the excitation signal to fulfill rank condition rank(C'D) =rank(D).

In this section, we address the problem of state estimation and unknown parameters identification of the
PTWYV dynamics expressed by equation (7.4). We focus our interest on the identification of the front and rear
tires’ cornering stiffness since they play a key role to guarantee the motorcycle stability in turns maneuvers.
Moreover, it is known among all vehicle dynamics literature that tires’ cornering stiffness are combined with
the available road friction u, then, solving the estimation problem for the unknown parameters vector @
is equivalent to finding the combined vector ® = u@®q, where Qg is the tires’ nominal stiffness. Without
loss of generality, we consider in this section that tires’ cornering stiffness with their associated road friction
are embedded in one variable. For some very spatial cases such a puddle and dead leaf causing an abrupt
variation of road friction, the problem of friction estimation can be more efficiently solved by using other
techniques such as vision-based classification (Roychowdhury et al., 2018; Liu et al., 2011).
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Adaptive LPV Observer
State estil i

Adaptation law
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| | |

Evaluation and Comparaison Benchmark

FIGURE 7.1: Schematic overview of estimation methodology.

7.2 Observer Design

In this section, the design of the LPV-adaptive observer is described based on the PTWYV model of equation
(7.4). Next, asymptotic convergence is proved by using Lyapunov theory associated with the Lipschitz
property, giving rise to an optimization problem expressed by a set of LMI to be solved.

7.2.1 Observability Analysis

The PTWYV model referenced by equation (7.4) with its associated output measurements vector does not
satisfy the observability /detectability condition. One solution is to use the flatness properties (Sanchez et
al., 2018) to define additional virtual measurements (Levant, 2003). From equations (7.1), we consider the
lateral and yaw dynamics given by:

{ gi ]m - [ ﬁi ]“’ (7.12)

where the notation F;. denotes the M line of matrix E. After some algebraic manipulations, the output
measurements vector y, equation (7.4), can be augmented with an auxiliary virtual sensor output, yq,
expressed by:

Ya = (mypk —mig)Fyr + (mek +ml.)Fyy (7.13)

7.2.2 LPV-Adaptive Observer
Assumption 4 assume that ( € A be a set of vectors defined on an hyper-rectangles A given by:

A={CeR™| Cipin < G < Ciman } (7.14)
Assumption 5

o The system’s input u(t) is known and sufficiently persistent, i.e, its exists constants c1, c2 and c3 such
that for all t the following inequality holds (Belov et al., 2018) :

to+c3
al < / Dx(2,v2)xT (2,v2) DT dt < ol
to
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e The state vector z(t) and the input vector u(t) are bounded. This assumption will fit the general
practical case, e.g. a stable motion of a PTWYV.

Theorem 5 given the PTWYV dynamics of equation (7.1) satisfying assumptions (4-5), the following LPV-

adaptive observer:

i =Act+Bu+A(2,¢,0)+ Le(y — 1) (7.15)
Ci '

with the adaptation law:
(7.16)

O =T\"(2,0)TCz and T =TT >0

ensures an asymptotic convergence error for the simultaneous state and parameters vector estimation, toward
zero if there exist a symmetric positive definite matriz P and matrices K¢ and R satisfying the following

inequalities :
PA 4+ AlP- K C-CTKl +PQ7'PT+R<0 7.17)
p'p=T1C (7.18)
where T is the state estimation error vector and L is the observer gain matriz .
Proof 1
lets consider the following class of LPV-adaptive observer :
(7.19)

& = Ack + Bu+ A(2,(,0) + Le(y —9)
§=Ci

where 2, § and © are respectively the estimated state, output and parameters vector. L is the observer
gain matrix such that ®; = A; — LC is Hurwitz. Lets # = z — % and O = @ — O be respectively the state
and the parameters estimation error vector. The error dynamics can be computed as following;:

(7.20)

i=®:2+ A+ Dx(2,()0

in which A = A(z,¢,0) — A(%,¢,0).
The stability analysis can be performed by considering the following quadratic Lyapunov function :

V(%) =3'Pi+ 0T 10 (7.21)

where P and I' are symmetric positive definite matrices.

By taking the time derivative of the Lyapunov function (7.21), and replacing the state estimation error

dynamics by its equation (7.20), we obtain:

V=3"%i+ATPTz+3TPA+O'T 10+ 07T 10
+0"x"(2,()D" Pz + & PDx(%,()© (7.22)
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where ¥, = @CTPT + PP,.
Let consider the following lemmas:

Lemma 1 the continuous function A(z,(,©) is said to be Lipschitz with respect to x, if for all x, the
function A(z,(,©) can be rewritten under the following generalized Lipschitz condition (Pertew, Marquez,
and Zhao, 2005):

ATQA < 2" Rz (7.23)

where @ and R are respectively symmetric positive and semi-positive definite matrices. Thus, any system in
the form of equation (7.4), can be reformulated in a generalized Lipschitz condition, as long as A(x,(,®) is
continuously differentiable with respect to x.

Lemma 2 for every matriz G, symmetric positive definite, the following property holds (Xie, 1996):

XTy +vTx < xTax +vTg-ly

By using the Lipschitz condition in lemma (1) and the property in lemma (2), we get the following inequality

ATPTi + 7T PA < 7T PQ'PT7 + ATQA (7.24)
Now, we can prove exponential stability convergence:
V(t) <&’ (‘I’C +PQPT + R) 7+ 07\ (2,¢0)DT Pi+
#TPDx(2,0)0 +0TT 16+ O'T~ 10 (7.25)

Following assumption (5), in the case of a stable PTWV dynamics with a bounded states, the estimated
term x (%, ¢) will be bounded by an upper singular values, e.g., |x(Z, ()|l2 < omax. Consequently:

Vt) <&l (‘If +pPQ'PT + R) 7+ 207T71O + 201max®7 DT P2 (7.26)
At this level, we can derive the observer’s adaptive law from equation (7.26) as folowing:

OTT 1O + 01ax® DT Pz < 0 (7.27)

According to the tire’s relaxation formula (7.3), the unknown parameters rate is practically slow, e.g. © = 0

and hence, ©® = —©. Furthermore, it is possible to find a matrix T, such that DTP = TC (Corless and Tu,
1998). By this transformation, the adaptive law can be stated as:

A

O =TxT(#¢1TCz and T=TT>0 (7.28)

With this law, the time derivative V (t) becomes :
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V(t) <& (A{P" + PA. - CTK! — K.C+PQ™'P" + R)& (7.29)

where Kg = PLC.

7.2.3 Polytopic Form

Theorem (5) in section (7.2.2) introduces a theoretical framework for the states and parameters estimation.
The resulting optimization problem, given by the inequality of equation (7.17), is parameter dependent,
thus, we must revisit our observer.

Theorem 6 the following LPV-adaptive observer :

g*c:AC:HBuJFA(@,g,@) + Le(y - Ch)

: 3 (7.30)
O = 0 @7 DT PE

ensures an asymptotic convergence of the state estimation error for system class of equation 7.1, if and only
if there exist a matriz P symmetric positive definite, a matriz K., and a matriz R satisfying the Liptchiz
condition. Thus, if the condition rank(CD) = rank(D) is fulfilled, a matriz T symmetric positive definite
can be found such that the following LMI holds:

min ¢ s.t.
i=1,,r

ol DIp-TC

(DTP - TC)T o =0 (7.31)

[ ATP+PA;—CTKI —~K,C+R P

P —Q <0

(7.32)
Proof 2

the PTWV model in equation (7.1) is dependent on the measured vehicle’s speed, e.g., { = vz. According
to assumption (4), and knowing that ¢ satisfies the following convex property:

dom(Q)=1, 0<m(Q) <1 (7.33)
=1

where 7; are weighting functions. By using the so-called Takagi-Sugeno (TS) structure (Tanaka and Wang,
2004), the PTWYV model in equation (7.1) can be reformulated as a set of interconnected linear time invariant
models. Since we have one non-linearity ( € A, supposed to be accessible at real-time, the resulting LPV
model (7.4) in TS structure is described by 2 sub-models as following:

T

&= El i (€) iz + Bu+ A (z,¢,0) (734)
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where 7 = 2"¢ is the number of the sub-models corresponding to n¢ non-linearities (ns = 1 in our case).

T
Then, A¢ in equation (7.1) becomes >~ 7;(¢)A; and A; are constant matrices.
i=1

From theorem (5) and using the convex sum property of the weighting functions, sufficient conditions ensuring
V (t) < 0 are established by the following LMIs:

ATP4+ PA;—CTKI —K;,C+ PQ'PT +R<0 (7.35)

By applying Schur lemma, inequalitiy (7.17) can be transformed to the second LMI of equation (7.31). The
observer gain matrix L in theorem (6) is also defined by using the polytopic exact form:

K¢ = élm(C)Ki’

-

Lc= Zlm(C)Lz‘,
1=

L;, = PilKi

(7.36)

Finally, the equality constraint DT P = T'C' can be formulated by the an optimization problem described by
the first LMI of equation (7.31).
7.3 Simulation Results

In this section, the effectiveness of the proposed estimation framework is investigated by co-simulation with
BikeSim software. The PTWYV model Scooter Big Baseline is chosen from the software dataset, in which,
the nominal values Cj, o of the side-slip and camber stiffness are available.

Rider torque Longitudinal speed

o [N.m]

0 10 20 30 40 50 60 70 80

time [s] time [s]
() (B)
Trajectory
200
E o
L
-200 ‘ ‘ ‘ ‘
-200 -100 0 100 200 300
x[m)]

FIGURE 7.2: BikeSim scenario: the rider’s steering torque input 7, the forward speed v,
and the vehicle’s trajectory.

The test scenario is carried out by considering a handling maneuver depicted in figure 7.2c¢ and involving a
medium hard rider torque represented in figure 7.2a. The forward speed is a measured varying parameter
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ranging from 40 km/h to 120 km/h as shown in figure 7.2b. For this first setup, the road friction coefficient
is fixed to a constant value p = 0.9. The observer gains L; are computed using theorem 6. The test scenario
is in accordance with a real regular riding condition. It also allows to highlight the observer performance by
covering a broad spectrum of the PTWYV dynamics within and beyond its linearization domain. Further, we
test the adaptive law with a constant gain matrix I' and with zero initial condition.

Steering angle Yaw rate Roll rate
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FIGURE 7.3: BikeSim sensor (red) and observer estimation (dashed blue).

Figures 7.3 show the state estimation performance with respect to their measured values from BikeSim and
also demonstrate a finite-time asymptotic estimation. Furthermore, since the lateral velocity v, the roll
angle ¢ and tire forces Fy s, Fyy; are unmeasurable (figures 7.4), their estimations are used to reconstruct the
lateral acceleration a, at the center of mass of the rear body G, by using the two equations in (7.37).

Lateral speed Front lateral force Rear lateral force

. 1000 1000
=1 z 0 z.
) S 5 0
S 5 -1000 iz, -1000

-1 -2000 -2000

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
time [s] time [s] time [s]

FIGURE 7.4: Unmeasurable states estimation.

Figures 7.5 represent the estimated lateral acceleration and the corresponding one given by BikeSim. It is
obvious that these figures show finite-time asymptotic estimation where exact estimation can’t be achieved
since the PTWYV dynamics linearization is carried out considering small roll perturbations from straight line

running.
(Fyp+ Eyr)
yf yr
Gy = ————= 7.37
Y M ( )
Gy = Uy + V0 — ho
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FIGURE 7.5: BikeSim sensor (red) and observer estimation (dashed blue).

Figure 7.6 shows the estimated tires stiffness deviations from their nominal values. Once again, finite-
time asymptotic estimation is achieved with high accuracy and the observer effectiveness is guaranteed for
simultaneous states and tires’ stiffness estimation. For example, for the first parameter @1, the estimated
deviation is used to recover the real front slip stiffness as following C,, s =Cas0+ 0.
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In order to make the analysis compacted, for each estimated parameters and for each method, the Mean is
averaged among the track test. Results, summarized in Table 7.1, show that the computed generally close.
It is important to remark that the parameters computed using the adaptive law are very close to nominal
values, thanks to the the adaptive law used in the observer estimation. Comparing the three methods, the
adaptive law has the best estimation.

1500 — Real — — —Model Inversion — — — Direct method — — — Estimated | ———
— oy | [— . 1 !
T 1000 [Pocrehich nd S shit s Ml W‘
~ ~ 50 e v
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time [s] time [s]
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FIGURE 7.6: Estimation performance of tire cornering stiffness.

Parameters | Nominal Estimated Inversion Direct
(S 1028 1022.6 1055.2 1015.7
©2 58.7 60.4638 45.7477 64.2932
O3 2371 2387.1 2485.3 2595.4
(G 121 119.918 117.9743 124.4637

TABLE 7.1: Parameters Mean values comparison

7.4 Observer Sensitivity and Robustness

This section aims to test the robustness and sensitivity of the observer with respect to the measurements’
noise and regarding parameters uncertainties. To do that, the same test scenario previously described
is considered. Remind that the observer was designed considering the nominal tires’ cornering stiffness.
Consequently, there are two objectives in this section, the first is to test the observer measurement noise
sensibility. The second aims to demonstrate the observer robustness to parameters variation.

7.4.1 Observer Sensitivity against Sensors’ Noise

In practice, the IMU measurements are highly affected by noises. In order to test the observer robustness in
the presence of measurements noise, we consider a 5 — 10% random perturbation on the IMU measurements.
An overview of the resulting observer performances is depicted in figure 7.7.

It can be noted that the effect of the noise on the states estimation is limited, however, it remains slightly
visible. Also, we note that the steering angle and the front tire force are most affected by noise measurements.
It reveals also that the rear tire force and the roll angle are less sensitive to measurement noises.

The different noise sensitivities between the front and rear tire forces is explained by the fact that the
steering dynamics mostly affects the front tire dynamics. For better performances, the estimated signals can
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FIGURE 7.7: Robustness to noise: observer states estimation in presence of IMU measur-
ments noise.

be denoised to remove the noise effect. To that end, a simple second-order Butterworth filter can be used.
Simulation result, shows that the adaptive observer is robust enough to handle the noisy case.

7.4.2 Observer Robustness against Modeling Uncertainties

In this section, the robustness of the state observer with its associated adaptive law against modeling
uncertainties is studied. This observer is designed by considering the nominal values of the tires’ stiffness,
hence, it is hopeful to quantify the effect of parameters variation on the observer performance. To this end,
we consider a variation of £50% on the real values of the front and rear tire stiffness. Next, the robustness
of the observer to the parameters uncertainties is also evaluated by considering +16.5% on the design value
of the front and rear mass which is equivalent to an over or an underweight of 50 Kg.

The estimated states are compared with their counterparts by means of the root mean square percentage
(RMSEg,). The metric quantifies the amount of error to show how close the estimated values are to the true

data, RMSEg; is defined as:
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1 Naataset 9
RMSEy, = | ——— Yunes — 7.38
% N, dataset ; ( es eSt) ( )

where Ymes 1S the measurement of y including Nyataset data points and yesy is its estimate provided by the
observer. The resulting (RMSEy,) for the the present scenario are shown in tables 7.2.

From table 7.2, one can states that the RMSE for (¢,1),6, ¢, ay) raise with parameters variation. Otherwise,
it can be seen that the RM SFE for tires’ stiffness parameters remain approximately constant, so, the observer
is more robust for tire parameters uncertainty. Therefore, the estimated values are generally small and does
not exceed 10.87% between the proposed observer and actual data. One can see that the observer gives better
estimation for the nominal case, where the RMSFE values are the lowest. However, even with variations
of the tires’ parameters or the vehicle’s mass, these errors are always lowers than 13% which confirms that
the performances of the observer are preserved even in the presence of parametric uncertainties. Despite
modeling errors between synthesis model and data from simulator, the estimation error dynamics still have
good performances and the observer ensures a good estimation.

RMSE
State Nominal mT m- Cgr, X 1.5 Cyr, X 0.5
¢ 6.195 6.369 7.9026 6.6251 7.0678
& 1.8521 1.8965 1.7682 1.8708 1.941
1) 4.8623 6.903 7.6141 6.1901 5.589
b 8.5218 10.467 9.1085 9.0992 9.114
ay 9.69 11.8859 13.7928 10.8682 10.66
TABLE 7.2: Robustness to motorcycle mass ( m™ = m+50, m™ = m-— 50), and tire

parameters variation (Cpp,).

7.5 Motorcycle Experimental Test

In this section, an assessment of the LPV-adaptive observer performance is presented using experimental
log-data, using a fully electric propulsion scooter described in section (2.11). The test is carried out on
an urban scenic road and performed with normal riding behavior and good environmental conditions. As
depicted in figure 7.9c, the road is composed of straight line followed by a narrow turn and just after a
big turn. This configuration allows to solicit the PTWYV roll dynamics and to maximize as possible as the
persistence condition.

emdedded computer and DAC card

Encoder

FIGURE 7.8: Scooter.

In figures 7.10, estimated steering angle, yaw rate and roll rate are compared to their respective measure-
ments provided by the various sensors previously described. Once again, since these states variables are
measured, we obtain a finite-time exact convergence. On the other hand, figures 7.12 report the estimation
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of unmeasured state variables namely the lateral velocity v, and the front/rear tire forces Fyy, Fy,. For
validation, the estimation of unmeasured states are used to reconstruct the lateral acceleration a, at the
center of mass of the rear body G, as shown in figures 7.11. Figure 7.13 shows the estimated tires stiffness
deviations from their nominal values.

Rider torque Longitudinal speed

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

time [s]
(B)

48.616

48.615

titude

1

€

= 48.614

]

48613 ==

2.426 2.43

2.428
longitude

(©)

FIGURE 7.9: Experimental test: Vehicle trajectory, rider steering torque and longitudinal
velocity.

According to these figures, it can be seen that the observer has a good dynamic transition and a finite-time
convergence even for a riding scenario in the roll region away from the straight line dynamics linearization.
In the experimental maneuver, it can be appreciated that the proposed observer shows a good estimation,
however we note that the transient performance suffers slightly. It should be noted that in this maneuver,
the true effective cornering stiffness should fluctuate somewhat.

In the experimental maneuver, it should be noted that, the true effective cornering stiffness are unknown. For
more faithful estimations, the mean values of the estimated parameters are given in Table 7.3 to quantify the
performances of the observer adaptive law through the mean values comparison. Comparing the adaptive law
with the two others methods, one can see the small difference on the mean values results between estimated
parameters, direct and inversion methods. This confirm the performance of the estimation scheme.

Parameters | Estimated Inversion Direct
0, 178.6438 181.7665 184.5632
Q2 2134 2065.7 2173.9
(O 2513 2496 2589.3
Q4 643.2011 658.8327 618.1787

TABLE 7.3: Scooter Parameters Mean values comparison

7.6 Conclusion

This chapter deals with observer-based identification framework to estimate both motorcycle lateral dynamics
states and tires’ cornering stiffness. Our main contribution concerns the design of an LPV-adaptive observer
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Lateral speed Front lateral force Rear lateral force
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FIGURE 7.10: Test 2: Scooter Experimental test:Unmeasurable states estimation.

Steering angle Yaw rate Roll rate
0
_ 01 @
E 3
~,-0.2 £ / =S
S -0. ; .
-0.3 g 1 \S -
-0.8 [—actual
- - -estimated
-0.4 -1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
time [s] time [s] time [s]

FIGURE 7.11: Test 2: Scooter Experimental test :Actual measures (red) and their estimation
(dashed blue).
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FIGURE 7.12: Real measurements (red) and observer estimation (dashed blue). Test 2:
Scooter Experimental test: State estimates validation (vy, Fyf, Fyr) from the lateral accel-
eration and the additional measurement; and ¢ from IMU roll angle.
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FIGURE 7.13: Test 2: Scooter Experimental test: Tire cornering stiffness Convergence
i = Cf )i — C(f,r)i, (f,r=front, rear and i = (1,2,3,4)).
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adapted to class of system problem in the context of ADAS design. For that purpose, an adaptive law is
proposed, associated with an LPV formulation the observer to deals with the variable measured longitudinal
velocity. An optimization problem in forms of LMI is resolved to compute the states observer gains.

An evaluation methodology based on a co-simulation with a high-end motorcycle simulator and with real
experimental data-log are presented and discussed. The fundamental evaluation is made by estimating the
tires’ cornering stiffness using the adaptive law, a direct method and an inversion dynamic system. The direct
method is simple and straightforward but it is very sensitive to states differentiation and singularities. The
inversion based algebraic method requires the computation of the outputs derivatives which can be obtained
for example by a high-gain second-order sliding mode observer. This method might be unrealistic in practical
applications where measurements suffer noise and disturbances, leading also to singularities in the solution
of the inverse problem. For the LPV-adaptive observer achieves a good estimation of unmeasured states and
unknown parameters vector starting from self-integrated PTWYV sensors.
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Chapter

Interconnected Observer for PTWV

——— Abstract

It is well known in vehicle community that the riding behavior is highly dependent on both tire-
ground lateral and longitudinal forces, since these forces affect the comfort and safety of riders. The
physical intuition suggests that the longitudinal and lateral friction phenomena are related since the
two phenomena are produced in the tire contact area. Thereafter, the longitudinal and lateral models
dependency and the tedious coupling features will be overcome here thanks to the interconnected
estimation approach. The theoretical aspects and the validation of this idea was published in Fouka
et al., 2019b.

The chapter focuses on the estimation of the powered two wheelers vehicle states, including both the
longitudinal and lateral dynamics. First, the linear parameter varying (LPV) of the two-sub models
of the interconnected PTWV motion are transformed into a Takagi-Sugeno (TS) form. Secondly, the
observer convergence study is based on Lyapunov theory associated with the Input to State Practical
Stability (ISpS) to guaranty boundedness of the state estimation errors. Further, sufficient conditions
are given in terms of linear matrix inequalities (LMIs). Finally, observer performances are tested and
compared to the motorcycle model states and several simulation cases are provided to highlight the
effectiveness of the suggested method using motorcycle Simulator Software BikeSim®©.

The chapter is organized as follow. Section 8.1, presents the LPV state space models of: lateral and
longitudinal motions, then the TS transformation of the whole system. In section 8.2, the synthesis of
the interconnected TS observer is described, stability analysis is performed by using Lyapunov functions
and ISpS stability. Co-simulation is detailed in section 8.3.

8.1 Interconnected PTWYV Model

Usually, the PTWYV exhibits a coupled dynamics generating simultaneously the longitudinal and lateral
tires forces. However, in the described observer based identification methods, the longitudinal dynamics are
generally represented by a measurable time varying parameter v, which is the forward speed. In this context,
the main contribution of this work is to extend the estimation problematic of the PTWYV lateral dynamics
by including the longitudinal one. Hence, the forward speed is considered as unmeasurable parameter to be
estimated jointly with other dynamic states. We will explore the ability of the concept of interconnected
models to estimate the coupling dynamics while reducing the observability problem.

8.1.1 State Space Representation

In most situation, the motorcycle develop a combined scenarios and applied simultaneously longitudinal
forces (braking or acceleration) and lateral forces (cornering). Since this dependency in motorcycle motions,
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obtaining a “good” estimation require that the coupled behavior must be taken into account. Thereafter, this
section is devoted to the modeling of the state space sub-models of the longitudinal and lateral dynamics.

In this work, the first sub-system of the rectilinear motion under the influence of lateral dynamic is considered,
this analytic model is derived from the single-corner model (defined in section 2.9.4) to describe the rotations
of the tires with respect to the front and rear braking systems. Thereby, the dynamics and measurement
equations of the longitudinal rigid body will be modelled by the following LPV sub-state space model:

G(t) = A(¢1)¢i(t) + Bup(t) + D(¢2)¢2(t) (8.1)

Whereas the state vector (1 (t) refers to [vg,wp,wy, Fyf, Fyr]T and the input vector is ug = [By, B, +T|T.
The estimation of this model required to know the longitudinal acceleration and the rotational speed of
wheels, and to suppose that during acceleration phase, the engine torque is applied only to rear wheel. We
consider this sub-model to estimate the longitudinal speed and forces based on some of the lateral estimates
under an acceptable convergence time. This LPV sub-model (8.1) depends on longitudinal velocity vy,
the longitudinal front and rear stiffness oy ,, which are considered as external varying parameters, with:

Qi = mu i=(fr).

The lateral dynamic study quantifies the vehicle’s ability to support lateral accelerations and to develop
lateral forces to follow a steering rider input. The good compromise between simplicity and accuracy for the
modeling of lateral dynamics is the Sharp two-body model, defined in section 2.9.1, which involves 4 degrees
of freedom (the lateral, the yaw, the lateral and the steering motions). Thereby, the LPV sub-model of the
lateral motion is described by:

$o(t) = A(C1)¢a(t) + Bur(t) + D(G2) 1 (1) (82)
With (o(t) = [¢,6,vy,%, 0,0, Fyp, Fyr]T and ur = 7(t).
The interconnected model of the combined PTWV motions is based on system decomposition in some

nonlinear subsystems (Longitudinal 8.1 and lateral 8.2 models). Combining the previous sub-models, the
motorcycle interconnected dynamics will be reported by the following state space representation:

Cu(t) = A(G)G(t
Ca(t) = A(G1)Ca(t

~—

+ BUB(t) + DCQ(t)

~—

Bt + Do)
B =Ca® (83)
u(t) = Céalt)

where : £(t) = [G1(t) ()] and C = [C C]T. where ¢1(t) € R5 and (2(t) € R® are the state vector,
and Y, (t) = [wy,wr,az] € R and yy(t) = [0,%, $,a,] € R® the output vector. In general, we consider as
measurements: the steering angle, the yaw rate, the roll rate, the forward and lateral acceleration as well as
the rotation speed. The most relevant states to be estimated are the lateral and longitudinal forces, the roll
angle, the lateral velocity and the longitudinal velocity which is seen as a time-varying parameter.

This interconnected PTWV model handles the case of LPV system when the matrices depend on one of
the unmeasured states v,. The design of the observer can be handled in the domain of polytopic models:
Takagi-Sugeno (TS) form. One way to obtain a TS model, that exactly represents the original nonlinear
system with a sector, is from the well-known sector nonlinearity approach (Tanaka and Wang, 2004). Indeed,
the scheduling variables, also called premise variables necessary to represent the TS subsystems, are defined
as:

1. The longitudinal model has 8 sub-models comes from the fact that there is 3 nonlinearities on the
model:

21 = Vg, Z2=0f, 23= 0r (8.4)
Zinin < 21 < Z{nax Zénin < 29 < Zénax er))nin < 23 < Z?r)nax

The membership functions of the fuzzy sets are defined as:

hi1 = Almaz —*1 hiy = L7 in
Zlmaz " *lmin ’ Zlmaz " *lpmin
— “2max —*2 — 227 *20in
S i = |, - 55
2maz " *2min 2maz ~ *2min
G — Z3max —*3 — #3 " Z3imin
ha1 = » ha =

Z3maz " *3min Z3maz " ?3min
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where the variables p;(p) are computed as follows:

p1 = hithorhsy , pe = hig.hoiha

ps = hithea.hgr . pa = hiz.hee.hs (8.6)
ps = hithorhze , pe = hi2.hoy.h3o '
pr = hithoohzs , ps = hi2.hoo.h3o

2. The lateral model has 2 sub-models comes from the froward speed nonlinearity. With regard to the
motorcycle stability, this forward speed is considered bouneded in the interval where the motorcycle is
stable. Consequently, the membership functions are given by:

191 — Vzmaz —Vz

S\ g o 0
Co 2

Vemaz ~VYTmin

The variables p; and 9J; are called the weighing functions and they must satisfy the following convex sum
property:
0 < pi(z1, 22, 23)
0 < 9;(vs)
>y (21, 22, 23)
Z? 1 95(vz)

For the LPV interconnected model (8.1), applying TS representation would lead to an exact form well-suited
to design the appropriate observer.

Cu(t) = 328 pa(Gu (1) (As

(8.8)

I IAIA
== =

G1(t) + DiCa(t) + Biup(t)))

1
va(t) = CQ (1), p1 =8
Ea(t) = S22, 95 (0) (Ao (t) + Dy (1) + Byur (1)) (89)
yy():C () p2 =2

With this model, we propose a Interconnected Fuzzy Observer (IFO) design for nonlinear systems whose TS
form has unmeasured premise variables. In the next section, we derive the synthesis steps of the observer for
joint states and time-varying parameter estimation. The observer for this type of system should take into
account the fact that the weighting functions would be depending on estimated premise variables, rather
than exact ones.

8.2 Observer Design

Motivated by the need of observers to acquire certain states used in safety and control systems to prevent
possible dangerous situation, this section investigates the design of an interconnected observers. The design is
done in two stages, first an observer is associated with the longitudinal subsystem, and then a second observer
based on the results of the first observer is proposed for the estimation of lateral dynamics. Thereby, the
sub-observer of the lateral dynamic gives the unmeasured variable (roll, lateral velocity and lateral forces),
then, the lateral velocity is connected to the longitudinal sub-observer to estimate the forward speed and
the longitudinal forces. The interconnected observer require output data acquired with a suitable sensors.
An overall scheme of the system/observer structure is given in figure 8.1.
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1
Interconnected 1
PTWV Measurement Observer  Estimation!

FIGURE 8.1: General diagram of the interconnected estimation of longitudinal and lateral
dynamics

8.2.1 Preliminary

The following nonrestrictive assumptions are considered:
Assumption 6 Assume that, for the design of each observer, the states of other subsystems are available.

Assumption 7 Suppose that the signals (up) and (u;) are known, bounded and sufficiently persistent inputs
for each observer respectively.

Assumption 8 The state vector (1) and (C2) of the two models are considered bounded.

Assumption 9 The pair (A(¢1),C) and (A((2),C) are observable or detectable.

The following lemmas are used in the proof of the observer convergence study.

Lemma 1 Consider Y and E matrices with appropriate dimensions. For every positive definite matriz

A > 0. the following property holds (Boyd et al., 199/).

YIE +ETY < YIAY +ETAIE (8.10)

—_

Lemma 2 Given the following matrices Y, E and X, with appropriate dimensions, where Y = YT and
R =nT (Boyd et al., 1994), the Schur’s lemma apply:

Y = X <0
AN ] <0‘:’{ Y - ER-IET <0 (8.11)

Definition 4 The state estimation error verifies the Input To State Practical Stability (ISpS) if there exists
a KL function §: R" x R — R,and a K function o : R — R such that for each input A(t) satisfying
|A®#)||,, < oo and each initial conditions e(0), the trajectory of the system associated to e(0) and A(t)
satisfies (Lazar et al., 2008):

el < 8 (lle@)].) +a (a0 ) (8.12)



144 Chapter 8. Interconnected Observer for PTWV

8.2.2 State Estimation

Based on the connection between the two lateral and longitudinal subsystems in equation (8.9), the following
observer is proposed:

Cl i 1M(C () (AiC1(t) + DiCa(t) + Biup(t) — Li(ys — 9z))

(o= 95 (¢1(8))(A;8a(t) + DyiCa(t) + Bjur (t) — Lj(yy — y)) (8.13)
yCl (t) = cél(t)
¢, (t) = Cla(t)

Using equations (8.9) and (8.13), the state estimation error obeys the following differential equation:

(
{ ¢ = ;{;wi(ﬁ(t))(q’ ie¢, + Diecy) + D¢, (¢) (8.14)

€l = = ﬁj(<1(t))((b €¢o +D 641) +AC2( )
where: &; = (A4; — LiC), &; = (A; — L;¢%), Ag, (1) = T;(M(gl) 13 (E0) Ao (t) and Bg, () = ; (W9;(C1) —

0(C2)) AjCa(t).

Notice that if the state estimation errors converge to zero, the terms A, (t) and A, (t) converge also towards
zero. In addition, since the weighting functions are bounded and the state vector (1 (t) and (2(t) are also
bounded (see assumption 6), the term A, (¢) are thus bounded.

By considering the vector of the state estimation errors ec = (e¢,,e¢,) = (C1 — (1, ¢a — (2) the errors dynamics

. b:
are gtven by Ty ()P (OD@ 2
o= | FROD oA e, [ xer (420 o

(t)

Theorem 7 The state estimation error between the system and the interconnected observers converges
asymptotically to zero if there exists two symmetric and definite matrices P and Q, two diagonal posi-
tive matrices O and Qa, given a positive scalars o and o and a € [0,1] and gains K;, i = 1,...,p1 and
f(j, j=1,...,p2 such that the LMI conditions:

min ani + (1 —a)n2

P,Q.m1.m2
s.t. T _ _ ~T T =
AP+ PA-RO-C K +0paP PDitF | (8.16)
D; P+ Ry -
ATp 4 PA; — K¢ —CTRT D
TP+ PA; VJTC CTJ+01+aQ QDj + Rz | _ (8.17)
DIQ+ R3 -

The gains of the interconnected observer are obtained from the equations Ly = P7'K;, i =1,...p1 and

ng‘ = Q_lf?j, t=1,..,p1.
Proof 3

The convergence analysis of the the interconnected observer (8.13) can be performed by considering the
following quadratic Lyapunov function:

V(e(t)) = €G (t)TPeCl (t> +eg (t)TQeCQ (t) (8~18)

The time-derivative of the Lyapunov function (8.18) is:

Vie) = 30 mi(G)(Dieg, + Dieg,)" Peg, + el P(®ieq, + Dieg,)) + 07, 9;5(C1) ((Djec, + Djee,)" Qeg,
—|—6?2Q(q>jeg2 +Dj661)) —I—egpACQ +AZ~1P6<1 —&—egQACQ +AZ~;Q€C2 ( )
8.19
Considering I'; = &I P+ P®; and I'; = CiDTQ + Q®;, equation (8.19) lead to:

Ve(t)) =Y 1 m(gl)(eclr e, + 6C1 PD; e<2 + eC2D PeC1 + 2641PAC1)+

8.20
nglﬂ (gl)(%r ec +e<2QD ec +e< D Peg, +2e< QA¢,) (8.20)
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Applying Lemma (1), inequality (8.20) yields:

V( ) < Zp 1 M Cl)(egl (T; + PDig1DiTP+P]:1P)eC1 +e£gfle<2+
Aclf A<1)+T ) o . . (8.21)
2521 95(C) (e, (T + QDG Dj Q + QF2Q)ec, + e, Gy ey + B85 Fy Aey)

where, G; and Gy are positive definite matrices. Then, if inequality V (e(¢)) < 0 holds, one have

S wi(G) (el (Ti + PDiGID] P+ PFLP + Gy Vee, + AL Fyt A )+ (8.22)
P2 95(¢1) (el (T + QDG DTQ + QF2Q + G Ve, + AL Fy ' Ae,) <0 ‘
Let us define: . . )
E, = T;+PDGiDIP+PFP+G;!
g = [;+QD;G:DIQ+QFRQ+6;"
Then, the time-derivative of the Lyapunov function is bounded as
. <Z i (¢1)( el Hzec + AT f_lAC )+
Vie(t)) <0« =1 Gt e’ Ta ! 8.23
(e 205 (C) (e Ejec, + BLFy ') <0 (5:29)
The inequality (8.23) is equivalent to:
Vie(t)) < Zz 1uz (C1)(ed, Biee, +A<1}' "A¢,) + aleg, Pec, +ec,Qec,) — aleg, Pec, +ec,Qec, )+
1
J 1 (Cl)(€(2‘—‘jeC2 + AC Fy Aﬁz) <0 (8.24)
< ZZ 1 /Ll Cl)(e< (8 + aP)ec, + A<1F1 ACI )+ Zj 19 (Cl)(ec2 (8 +aQ)ec,+
]: ACQ) (eCl Pe¢, + 642Q6C2) <0
Considering e (t) = [eg1 (t) eg; (t)]T. The inequality (8.24) leads to:
b1 D2
V(t) D ui(G)ed, (Bi+aPle, + Y 05(C1)(e6, (25 + aQ)eg,
i=1 j=1
(ec; Pe¢, +ec,Qec,) + AL FT Ay + AL F5 A, (8.25)
Then, the time derivative of the Lyapunov function (8.25) is then bounded as follows
V(e(t)) < el Yec — ael (t)Qec(t) + AL Fy MA¢, + AL Fy ' Ae, <0 (8.26)
where
PLi(C1)E; 4 aP 0
— diag(P I e - <0 8.27
Q Zag( 7Q) an 0 ?2:1 19]((1)':'] + OZQ ( )
Now, if ecT‘I’eg < 0, the inequality (8.26) can be bounded as follows
V(1) < —ael (t)Qec(t) + AL FT ' By + BLFy A,
T T 1 1
< —a(eg, Pe¢y +eg,Qec,) + AC1]:1 Agy + AQ]:2 A, (8.28)
which is equivalent to
(8.29)

V(t) < —aV(t) + AL Fr ' + AL Ty A,

Regarding inequality (8.29), the asymptotic convergence is no longer ensured. Integrating (8.29) over the

interval [0, ¢] implies that
" g, ()] ds+

V(t) <V(0)e at+F1fe
Fa f@ o= || 8¢y (5)|[5 ds
< VO + 2 8 0%+ 2 o),
The Lyapunov function can be bounded as:

2 (8.30)

Auin (@) [lec (D)2 < V(£) < Amax(Q) |Jec ()|
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Now, thanks to inequality (8.30), one obtains:

Amax (Q _ F
Jectol; < 2208 (Vo =+ 2 g 2 + 22 o ()2 ) 831
By using the square root on (8.31), one obtains
Amax —_&
Jecto, < /5200 (vm)e By [ 8 o) + fu%(s)um) (8.52)

Hence, when ¢ — oo the exponential error (8.32) converges to zero and knowing that Ay and Ag, are
bounded, one have

i 0l <528 (2 I 0l % Lol ) 839

t—o0

According to Lyapunov formulation of Input To State Practical Stability (ISpS), the states converge to a
region which will be minimized in order to achieve a more accurate estimation of the states of the motorcycle
longitudinal and lateral motions. This ball is smaller as the attenuation level of the transfer from A¢ (t),
A¢, (t) to the state estimation errors is smaller. To enhance the performances of the observer, a minimal
values of these quantities are studied.

Let us consider the quantity:

max( )

< with Q@ = diag(P, 8.34
A (Q)a = V1 9(P,Q) (8.34)
where n = diag(n1,m2), 1; is a positive scalar. It is then sufficient to minimize the term 7. Assume
Amin(Q) > 1 (Q > I), leads to:
Amax (P Amax
Al P) A @ (3.35)
which is transformed easily into:
(an)?I=PTP>0, (amp)?*I1-QTQ>0 (8.36)
Using Shur’s complement lemmas:
am I P anal Q
( b am[>>0, ( o an21>>0 P>1 Q>1 (8.37)

Now, using the convex sum propriety and the condition V(e(t)) < 0 (¥ < 0 holds). The condition ¥ < 0 in
equation (8.27) leads to the following optimization problem:

B+ aP 0
{ 0 2, + a0 ] <0 (8.38)

with

E1 = T[;+PD;GiDI'P+PFP+G;!
By = I;+QD;6DIQ+QRQ+¢!
L = Ol P+ P,
r, = <1>TQ + QP
», = (4; — L,C)
$, = (A; — L;¢)
which lead to:
| Ti+ PDiGIDT P+ PFP 4Gy +aP | <0 (8.39)

and

[ [+ QD;jGaDTQ + QFQ +G; ' +aQ } <0 (8.40)
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The two matrix inequalities are connected by G; and Go. Using Schur Lemma (2), inequalities (8.39 and
8.40) yield to:

Ti+G,'+aP PD;+PF :
2 =1,.. 41
prP+rFTp  —gt | <0 = lheem (8.41)
T[j+6; +aQ QDj+QF ,

, R <0, j=1,.., 8.42

By using the definitions of the matrices T; and I'; and change of variables K; = PL;, K; = QL; and
0O = g;l and Oy = ggl, where ()1 and Qo are diagonal and positive definite matrices Ry = PJF; and
Ry = QF3. Finally, the gains of the interconnected observer are computed from the LMI conditions given
in theorem (7).

8.3 Observer Evaluation and Simulation

In this section, the proposed interconnected observer for the combined longitudinal and lateral dynamics of
PTWYV is evaluated by co-simulation with BikeSim© software. A PTWV model is chosen from the dataset
Big Sport Baseline 8 bodies and default parameters. The simulations are carried out in two maneuver

Test 1: Urban scenic road includes acceleration and braking scenarios with a high friction coefficient = 0.9.

Test 2: Handling road course with variable speed.

The motorcycle behavior, including longitudinal and lateral dynamics requires three inputs: the rider’s
steering torque applied on the handlebars and the two braking torques applied on both front and rear wheels
to reduce the longitudinal velocity.

In the following, if the actual state vy, v, and Fyy, Fyr and Fy, Fy are unknown, the state estimation can
be validated from lateral and longitudinal accelerations as follow:

A E i+ Eyr N ~ b
Eq :a, = Ty +Fyr) AL ), Eqs : 4y = Uy +vg0 (8.43)
A Fg; JFFz'r S 2 7 ~ :
Eqs: b, = %, Eq4:am:vm—vyw+0d/m.vm2

The first simulation is carried out from FHWA (Federal Highway Administration), this maneuver demon-
strates an acceleration and braking test includes three phases.

Braking torque Engine torque Steering torque
300
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% By 5 2 0
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-100
0 10 20 30 0 10 20 30 0 10 20 30
time (3] time [s] time [s]

FIGURE 8.2: Test 1: Inputs ( By, By, T, 7).

The first phase (0 < ¢ < 10(s)) is an acceleration phase, where only the drive torque T is applied on the
rear wheel. In the second phase (10 < ¢t < 20(s)), no braking or engine torque is applied and the main body
is subject to lateral motion in response to the generated tire forces whereas the front body is subject to
steering motion as imposed by the applied rider’s steering torque 7 on the motorcycle handlebar. The third
phase (20 < ¢t < 30(s)), is the braking phase where a braking torque By and B, are applied to both front
and rear wheels to reduce the forward speed of the PTWYV from 35m/s to 10m/s.
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FIGURE 8.3: Test 1: BikeSim measured states (¢, ¢, d, W, wr).

The inputs of the lateral and longitudinal models are the braking torques at the front and rear wheels, the
drive engine torque and the steering torque depicted in figure 8.2. The measured state used in the observer
design are given in figures 8.3. The lateral and forward accelerations (a, and ay) are also used in the observer
design as well as to validate the estimation of the unmeasured states from equation (8.43).

Lateral speed Longitudinal speed
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Front lateral forces Rear lateral forces

Fyy [N]
Fy[N]

time (s] time [s]
FIGURE 8.4: Test 1: Actual states (in blue) compared to estimated states (dashed red).

Estimation results of this scenario are depicted on figure 8.4, which are the lateral and longitudinal speeds, the
front and rear longitudinal forces, the front and rear cornering forces. From equation (8.43), the unmeasured
state (vg, vy, Fy,;, Fy,) are validated and depicted in figure 8.5.
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FIGURE 8.5: Test 1: Validation of the estimated states.

We can see on figure (8.4) the non-measured states (the lateral and longitudinal speeds, the front and
rear longitudinal forces, the front and rear cornering forces) compared to the actual data acquired from
BikeSim sensors. These results show the ability of the designed observer to well recover simultaneously
the interconnected longitudinal and lateral states of the motorcycle motion. Also we can remark a rapid
transient phase of the observer. Indeed, these plots show some differences, in particular in the lateral speed
and the lateral forces. This means that the lateral model is the most affected by the modeling errors between
the BikeSim model and the sharp model used in the observer design. In fact, the two body sharp model is a
pure lateral dynamic model valid for a various constant forward speeds. Indeed, the lateral model is slightly
affected by the longitudinal motion because it does not take into account speed variation when accelerating
or braking. Despite modeling errors and the speed variation, the state estimation error still have ISpS
performance and the interconnected observer still provide good estimation.

In the second test, the motorcycle undergoes an oncoming traffic in road course with variable speed. The
figures 8.6 show the input signals in the longitudinal and lateral models whereas figures 8.7 depict the
measured states along the track. The unmeasured state are estimated, depicted in figures 8.8, and validated
in figure 8.9.
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FIGURE 8.6: Test 2 Road course: Inputs ( By, Br, T', 7).
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FIGURE 8.7: Test 2: Measured states.
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FIGURE 8.8: Test 2:
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FIGURE 8.9: Test 2: Validation of the estimated states.

This track test includes a speed variations, in which the rider alternate between acceleration and braking
in turns, this maneuver is very common in riding situations. It clearly demonstrates all the capabilities of
the interconnected observer of estimating the unknown states of both longitudinal and lateral motorcycle
dynamics. Moreover, the forward speed is varying between 15 and 40m /s simultaneously with the braking
and engine torques and with lateral rider action in order to test the estimation performances independently
of the longitudinal velocity variations. As for the first test, this scenario illustrate that the observer rapidly
and accurately estimates the state of the interconnected model with minimal error even for extreme riding
situations. Despite some small estimation errors owing to modeling uncertainties, one can conclude that the
interconnected observer provides satisfactory results.
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8.4 Final Remarks

The main contribution of this work is to extend the existing works on the estimation of two-wheeled vehicle’s
lateral dynamics by the estimation of the longitudinal motion. The dependencies between these two motions
interfere on the observability of the estimators. In this scope, this chapter dealt with the estimation of the
LPV out-of-plane and in-plane motorcycle motion. The interconnected observer formulation of the estimation
problem is presented and evaluated throughout co-simulation with a high-end motorcycle simulation. This
method is based on the decomposition of motorcycle model into two LPV subsystems, then each LPV
subsystems model of the vehicle is transformed into Takagi-Sugeno (TS), the result is formalized using
Lyapunov theory and the Input to State Practical Stability (ISpS) formulated as an optimization problem
under Linear Matrix Inequalities (LMI) aiming to minimize the error estimation bound. The observer allows
the reconstruction of relevant non-measurable states of the PTWYV: the forward speed and the longitudinal
tire forces from the first sub-observer and lateral speed, roll angle and the cornering forces from the second
sub-observer.

8.5 Comparison and Analysis

From the previous chapters 5, 6, 7 and 8, the difference between the observers is not so trivial due to
the fact that all the techniques achieve acceptable results. Nevertheless, these fourth observers have their
advantages and disadvantages. For getting a close view, we recall the most important features of each of
them in Table 8.1. To sum up, these observers successfully respond to a common problem, allowing to
estimate the non-measurable PTWYV states of the lateral dynamics such as the steering torque 7, the lateral
pneumatic forces Fy; and Fy,, the longitudinal forces F,; and Fy, lateral velocity v, or roll angle noted
¢. In practice, it is hard to have exact knowledge of certain parameters of the model, either because they
are not measurable (inertia, tire stiffness, model parameters a;; etc.) or because they are not constant in
time, such as the mass of the motorcycle and/or rider or even the mass of fuel. According to the motivations
and objectives of this thesis, we also provide some solutions based on observer based identifier (LAO and
DUIO), these methods deal with the estimation of both motorcycle states and parameters with the same
design procedure. In addition, many scenarios have been considered in order to test the the convergence
of these techniques. Besides, these estimators require light instrumentation with very simple sensors that
are widely used in vehicles (GPS, IMU and steering encoder). They are therefore perfectly integrated into
the development of Advanced Rider Assistance Systems (ARAS) for PTWVs. However, the use of low-cost
sensors generally degrades the quality of the measurements, which are then significantly affected by noise.
Also, sensor alignment is never perfect causing bias in measurements. In this case, it would be interesting
to quantify the estimation performance in the presence of noisy measurement or parameters uncertainties
by mean of well-known index (RMSE, MSE, RMS).
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Observer

Sensors

Advantages

Disadvantages

Unknown Input
Observer (UIO)

IMU
Steering encoder
GPS

Road and Steering
dynamics reconstruction
Ta¢7 ¢T7Uy7Fyf7FyT
Asymptotic convergence
No knowledge about Ul
Lyapunov+ LMI region
Real data validation

Structural constraint
Using a differentiator vy
Nominal parameters

Accelerometer

Lateral and longitudinal

Boundness of estimation errors

Interconnected Gyroscope dynamics estimation Ideal sensors
fuzzy Observer Steering encoder | vy, vy, &, Fy ¢, Fyr, Fyp, For Nominal parameters
(IFO) Lyapunov+ ISpS stability
Reduce observability problem
Add DoFs in the reconstruction
BS validation
Does not require vy
Observer based ldentifier
IMU State estimation vy, ¢, Fy ¢, Fyr Bounded Convergence
LPV Luenberger Steering encoder | Tire parameters identification Requires a pneumatic model
adaptive Observer | Virtual output Cr1,Cr1,Cp2,Cr2 Lipschitz condition
(LAO) GPS Does not require ¥z PE condition

Evaluation scheme
BS validation+ real data

Delayed Unknown
Input Observer
(DUI0)

IMU
Steering encoder
Delayed outputs
GPS

Mismatched condition

Vy, o, Fyf7 , Fyr state estimation

a;; parametric identification
Step-by-step algorithm DUIO
BS validation

Using a differentiator
Singularities due to inversion
Complexity in TS form

Ideal sensors

TABLE 8.1: Comparison table: Advantages / disadvantages of the presented ob-
servers for estimating of PTWYV states and parameters.
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Conclusion

This section concludes the observer synthesis part based on the mathematical model of PTWV dynamics.
Thereby, model-based state estimators are used to achieve a reliable estimation of both the motorcycle’s
unmeasured dynamics and the most important unknown parameters. The purpose of these observers is a
concrete application. In this context, they take into account the real riding behavior of a PTWV, unknown
parameters, the lack of accuracy of sensors or certain uncertainties either in the synthesis model or in the
observer evaluation. Four observers of different purpose were presented:

e Unknown Input Observer (UIO), chapter 5.

e Delayed Unknown Input Observer (DUIO) with mismatched condition, chapter 6.
e LPV Luenberger-adaptive observer (LAQ), chapter 7.

e Interconnected Fuzzy Observer (IFO), chapter 8.

The outlined observers were tested on the famous BikeSim simulator for different scenarios such as a Double
Line Change (DLC), handling road course, slalom maneuver and chirp test. These co-simulation tests aim to
validate the observers by proving the convergence of the estimation error in cases of both normal (handling
road course) and extreme (chirp, slalom and DLC) behavior. Finally, a much more realistic validations were
made on experimental data from a test setup on the scooter of the laboratory. These validations showed
the potential of these observers in more real riding behavior to illustrate the effectiveness of the proposed
observer in estimating the states, unknown input, unknown parameters and road geometry. One of the main
contributions common to these four observers (UIO, IFO, LAO and DUIO) is the taking into account of
the variations of the longitudinal velocity v, during the design of the observer. In other words, there is no
restriction on v, as is the case in many works of literature. These observers has been designed subject to
Lyapunov theory. Sufficient conditions for the existence of the estimator are given in terms of linear matrix
inequalities (LMIs) to ensure the state and/or parameters estimation convergence. The simulation results
showed satisfactory results that support the claims.
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Part IV

Powered Two-Wheeler Vehicles Risk
Functions
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Introduction

HE study of the road accidents shows that human factors (57%) appear far before the meteorological or
technical issues (Penumaka et al., 2014b). The two most frequent human causes: alcohol and speed
are responsible respectively of 31% and 25% of fatal accidents. Distraction or tiredness are also important
human factors in a road accident that can be highlighted by, for example, lane crossing or abnormal steering
behavior. Lane departures account for a significant percentage of roadway fatalities. According to Federal
Highway Administration’s Roadway (FHWA’s), from 2015 to 2017 an average of 19,23% traffic fatalities
resulted from roadway departures crashes. This is why the last few years have seen the emergence of on-
board roadway departure assistance systems in cars as a mean for improving security and helping to avoid
damage or even fatal crashes in dangerous steering situations. Departure Lane Assist (DLA) systems make
the vehicles more autonomous, allowing to inspect the surrounding vehicle’s position and to detect the driver
hypo-vigilance. These systems can be done through different technologies: Lane Departure Warning (LDW)
system (Gonzalez Bautista, 2017) and Lane Keeping Assistance (LKA) system (Visvikis et al., 2008). All
those systems have been discussed, as well as their interoperability issue in (Mammar et al., 2004; Mammar,
Glaser, and Netto, 2006; Wang et al., 2018; Benine-Neto et al., 2014; Lefevre et al., 2013). In spite of the fact
that road-departure systems are present in every modern car, they are not yet developed for motorcycle and
those implemented for four-wheeled vehicles are not entirely transferable to motorcycles due to the fact that
motorcycle dynamics is more complex and unstable. Therefore, departure avoidance systems for motorcycle
are the next step, aimed to detect as early as possible, when the motorcycle is involuntary getting out of the
lane. Then, the rider corrects his trajectory, maintain stability and keep acceptable performances by means
of this early detection systems.

Currently, relevant works are planned to study the design of these systems for PTWYV from the control point
of view (Marumo and Katagiri, 2011b). In (Katagiri, Marumo, and Tsunashima, 2008b), the lane-keeping
controller for motorcycles was evaluated through computer simulation with a rider-control model, in which
the lane-following performance was improved by using a virtual-point regulator. In (Chung et al., 2006),
the authors developed a Lane Change Decision aid system (LCDAS), which detects backward vehicles and
motorcycles taking into account weather and environmental conditions. Eventually, they used a change using
single camera, in order to inform the driver of dangerous situations during lane change maneuvers. Further-
more, an optimal control theory to the lane keeping controller for motorcycles was presented in (Katagiri,
Marumo, and Tsunashima, 2009). In (Damon et al., 2018b; Damon et al., 2018), authors study the motor-
cycle’s steering behavior, achieved by a vision-based approach to define the motorcycle dynamic position on
the road and detect under or oversteer situations. Lane Departure Warning System for a motorcycle is still
under development and needs a more thorough investigation to be implemented in new bikes.

In some ways, the PTWYV size can be seen as a weakness. In fact, they tend to frequently change travel
direction and speed, regardless number of lanes or their width. Consequently, the lane crossing may create
hazardous situations. To reduce safety risks, riders should try as much as possible to avoid the middle and
the overtaking lanes since that would expose them to left side and right-side hazards posed by adjacent
vehicles (A Hamzah, 2018). Furthermore, a key problem in building up departure warning systems for mo-
torcycle or even vehicles is how to develop a driving risk function, which can be used to warn the rider in
the case of passive assistance or engage the control action in the case of active assistance. A car roadway
departure system usually defines a lane crossing Time (TLC) and distance to lane crossing (DLC) as a risk
index, to assess the time for involuntary trespassing the boundaries, see (Mammar, Glaser, and Netto, 2006;
Wang et al., 2018).

Among other, steady-state analysis and handling capabilities issues are very related to vehicle safe tra-
jectory and steering behavior. Many researches were devoted to study the steady-state handling for cars,
see (Pacejka, 1973; Velenis, Frazzoli, and Tsiotras, 2009; Grigorievich, Igorevich, and Nikolayevich, 2018;
Wasiwitono, Sutantra, and Triwinarno, 2015), either to define the analytical handling criteria or the critical
dynamic variables by which the divergent loss of handling occurs. The analysis of the properties of handling
highlights certain dynamic aspects that are important to define dangerous/safe stability threshold conditions
(Evangelou, 2004), as the neutral, overturning or underturning behavior (Glaser, Mammar, and Sentouh,
2010; Velenis, Frazzoli, and Tsiotras, 2010; Evangelou, 2004; Grigorievich, Igorevich, and Nikolayevich, 2018;
Wasiwitono, Sutantra, and Triwinarno, 2015). Unfortunately, this keen interest is not as evident to some
other road users. In this context, there is a lack of literature review related to the problem of Lane Crossing
Point (LCP) detection and steady-state steering analysis for motorcycles.

To sum up, the accidentology analysis and literature gaps have revealed two major categories: roadway
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departure and unsuitable steering behavior, which need more thorough investigations. The purpose of this
part is to provide solutions to both of these problems. We aim at identifying objective indicators for the
quantification of risk as well as carrying out and discussing the design of possible warning system for riders
of PTW vehicles. Risks considered here are related to unsuitable steering behavior, speeds profile and/or
inadequate rider roll posture leading to a possible loss of control, lane departure or collision with a third
party. The risk functions to be synthesized will be mainly based on purely dynamic considerations (lateral
behavior mainly caused by the curved trajectory).

This design requires a precise knowledge of the various dynamic states and parameters of the motorcycle as
well as the external efforts to which it is subjected. The calculation of the risk function can be achieved using
existing instrumented PTW, with the addition of systems that allow precise localization based on vision.
Concerning the unmeasured data, the estimation stage was designed in the previous chapters based on
observation and identification techniques. In what follows, we will describe two approaches proposed in order
to detect risky riding situation and warn the rider to correct his trajectory. To do this, we divided this part
in two chapters. First, a Neutral-path departure (NPD) is proposed. In this chapter, a detection approach
towards getting circular stationary states and analytical handling conditions is developed for PTWYV. Based
on the established motorcycle model combined with magic formula tire cornering forces, a Self Steering
Gradient for motorcycles is proposed as a risk function. Hence, the NPD algorithm monitors signals from
sensors and compares intended neutral (theoretical) and actual paths to characterize the steering behavior:
over or under-steering situations. The second chapter focuses on Lane crossing prediction (LCP) for PTWV.
The aim is to predict, with a simple perception system, the spatial and temporal lane change information
(DLC and TLC) which are key components to be estimated in order to predict critical situations. The
idea is based on data from Inverse Persepctive Mapping (IPM) techniques for motorcycles developed in a
previous thesis work (Damon et al., 2018a). These data are then used to discuss the distance to lane crossing
estimation.
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Chapter

On Steady-State Cornering Analysis for
Motorcycles

——— Abstract

Inspired by steady-state and the handling analysis for cars, the following work tackles the question
of the motorcycle’s steering behavior based on the stationary cornering condition to describe steering
neutral, under or over behavior. In this chapter, a neutral-path departure (NPD) algorithm is proposed
to define safe handling conditions and dangerous steering situation for PTWYV. Based on this study, a
self steering gradient for motorcycles is proposed as a risk function for neutral-path departure detection.
Furthermore, the motorcycle overturning or under-steering are analyzed based on the handling index.
This index depends on the intrinsic motorcycle parameters, as well as, the state outputs. The proposed
neutral-path departure algorithm aims to assess the risk when the motorcycle begins to drift out of the
neutral path. Finally, the effectiveness of the detection scheme is tested using a high-fidelity software
BikeSim©. The theoretical aspects of this idea was published in Fouka et al., 2019c.

The chapter is organized as follow Section 9.1 presents the lateral motorcycle dynamics. Section 9.2
presents the steady steering behavior and handling analysis for motorcycle. In section 9.3, the side slip
equations are examined to define a risk function for the steering behavior. From which the proposed
NPD algorithm is analyzed in section 9.4 and evaluated using BikeSim in section 9.5. Last, section 9.6
concludes the paper.

9.1 Lateral Motorcycle Dynamics

Riding assistive systems seek to improve the PTWYV controllability and achieve the best dynamic behavior
in all situations, from the most common to the most unexpected. Thereby, vehicles that are equipped with
roadway assistive systems remain perfectly controllable whatever the physical limits of the rider. In this
part, we are interested in the steady state cornering and neutral path departure, related to a problem of
PTWYV dynamics due to an excessive speed, overtaking in a bend or a failure in guidance system. In fact,
the yaw rate combined with the longitudinal speed and the steering angle can represent the motorcycle
steering tendency to oversteer or understeer. To solve this problem, we proposed risk indicators, related to
the motorcycle lateral dynamic, in order assess the gravity of the situation and alert the rider if necessary.

In this section, the lateral motion of the motorcycle is modeled as a single track vehicle, as shown in Fig. 9.1.
This model has three degrees of freedom, namely the lateral displacement, roll, and yaw motion, including
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the tire cornering properties, described by the following differential equations:

m(vy + wvz) = Fyp+Fy
. .IZ¢ = lnyf =l Fyr (9.1)
Ip¢ +mh(vy +¢vz) = mhgo '
may = Fyp+ Fyr

Where F, ¢ and Fy, are the lateral forces on the front and rear wheels, v, is the forward speed, 1 is the
yaw rate, ay is the lateral acceleration, m is the motorcycle mass, Iy and I are horizontal distances, h is
the height of the gravity center, and I, and I, are the moment of inertia with respect to the z — axis and
T — axis respectively.
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FI1GURE 9.1: Motorcycle kinematics.
The lateral cornering forces are given by:
Fyp = —Cpoay+Cpayy 9.2)
Fyr = —Croy + Croyy

where Cfry, Cra, Cp1 and Cro are the cornering stiffness and camber coefficients, ay and «, are sideslip
angles, vy and 7, are the camber angles of the front and rear tyres, respectively. With :

af = % —dcos(e)
vy = ¢+dsine
 —lod (9.3)
(679 = T
Yvo= ¢
After slight calculation, one can obtains:
m(vy + Yvz) = al,% + ag% +a3d + as¢p
L= as% "!‘0«6% +a7é +agp (9-4)

Lu§ +mh(vy +pvg) = mhg
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whereas, a; are function of I, I, e, C¢; and C; with ¢ = (1,2), given by:

a] = 7(Cf1 +CT1)

as = —(lfol — er,'l)

a3z = (Cfy cos(e) + Crosin(e))

ag = (Cya 4 Cr2)

as = ag

ag = —(I3Cp1 +17Cr1)

ar = (I4Cf1 cos(e) + 1y Cyosin(e))
ag = (lfoQ — errz)

9.2 Steady Steering behavior and Handling Analysis

The aim of this section is to extract form the above model (9.4), the operating steady steering conditions.
These characteristics are important and concur to define the sensitivity of the motorcycle’s handling Cossalter
et al., 2006b. Which is commonly judged by how a vehicle reacts to the rider inputs during cornering. Under
a steady cornering scenario, the yaw rate 1) as well as the steering angle, the lateral velocity and the side
slip are constants, it follows:

mivg = al,% +agL + asb + aso

Vo
asz—z +CL6%+&75+CL8¢ZO (9.6)

1[1% =g¢

After simple manipulation, one can write :

<a5m — a5a49alag> vg — (asa2 —ajag) Uﬂ = (asaz —ayay)d (9.7)
—_— | V2 ———
K2 K3
K

where

K1 = (=(lyCp1 = 1:Cr1)m — UfHT)(Cf?(;H_CflC”))

Ko = (I = 1:)*Cp1Cpa (9.8)

K3 = (ly+1)Cp (C,-l cos(e) — Ca sin(e))

The steering sensitivity % is given by :

; K

Y _ @ (9.9)

5 [Kvi+1] ‘
Where K = K—; is the handling factor. The aim of this part is to extract from the above model (9.4),
the operating steady steering conditions. The motorcycle steering tendency depends on the yaw rate, the
forward velocity v, and the stability factor K, it follows:
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FIGURE 9.2: Motorcycle sensitivity gain.
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1. K = 0 for Neutral steering, % = %vz has a linear relation with motorcycle speed with % is the

slope.
2. K > 0 Under-steering, the steering sensitivity is below the neutral steering characteristic. ﬁ(%) =
0 — vy, = LK It is interpreted as the motorcycle characteristic speed at which the vehicle reacts
most sensitively to steering inputs.

3. K < 0 Over-steering: when v, = the steering sensitivity strives toward infinity, where v, is

1
V=K’
the critical speed, for which a motorcycle becomes unstable because its steering is canceled, as even
very small steering input would lead to infinite yaw rate.

9.3 Side Slip Dynamics

The following study defines a new handling factors proper to motorcycle. In steady cornering, the state
variables are given by: . .
Yy Y 1 j
_ 7 = =, = 9.10
¢ g p Vg R a’y 'l)[}vx ( )
The side slip relation can be expressed as a function of motorcycle intrinsic and dynamic variables from
equations (9.1 and 9.2): ay — o = f1(,0,ay,e,m,lf, 1, Cy;, Cpi), as well as from the kinematics equation
(9.3): af —ar = fa(0, R,€,l5,1;). Now, replacing cornering forces (9.2) into (9.1), it follows:

ayp | _ Ci Cr1 -t may | Cp2 Cra s (9.11)
ar 1;Cs1 —1,Cn 0 1;Cr2 —1,Cr2 Vr '

From the above equation:
— (lrm) _ Cf2lr+Cf2lf
af o (Cfllf+cf1lr)ay (Cfllf+Cf1lT)’yf

(9.12)
— (Lym) _ Cralp+Craly
O = Ol 40l ) MW~ (@l +Craly) 17

Replacing the camber angles (v = ¢ + dsin(e), v = ¢) in equation (9.12), one gets side slip relation:
CraCr1 — CpaCry

ap—or = ( Ccn )qﬁ—c—flsm(s) 5+
——
EG» EG3
(Crily = Cp1ly)  m “ (9.13)
Cr1Cr1 (Ip+1r) Y
EGl
= EGlay + EGo¢p — EG36
From the following kinematics equations:
1 N,
ap = _w iy +dcos(e), ap = _y =¥ (9.14)
Vg Vg
The side slip relation is also described as:
= —(ly+ lr)% + cos(g)d (9.15)
= —W + cos(g)d

The self-steering behavior depends on the sideslip difference:

af —Qqp = EGlay + EGop — EG30
af —ap = ——IT5 4 cos(e)d
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by identifying the above equations, one gets:

(g +lr) EG EGo

o = R(cos(e)+EG3 G+ ay (cos(e)—}-lEGEgé +¢ (cos(e)+EG3) 017
= datay (Cos(s)+1EG3) +o (cos(€)+2EG3) (9-17)
04+ AS
With l l
P U ) (9.18)

R(cos(e) + EG3)

The steering angle 64 resulting from equation (9.17), is called the neutral steering angle. The additional A§
angle is caused by the motorcycle’s dynamics.
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FIGURE 9.3: Over and Under steering situation.

Now, in order to propose a detection algorithm for the over and under steer situations, we propose a risk
function defined from the self steer behavior in equation (9.17). Therefore, the steering behavior can also be
described as follows:

6—0 €)+EG,
Sg = T loosl9) 4 BGs) (9.19)
Yy

where Sg represents the Self-Steer Motorcycle Gradient. In the straight-line road, the lateral acceleration
is small, and Sg values become very large. Thus we use the algebraic function sign(a,) instead of a, to
avoid the detection of false alarms due to Sg — co. Now, the expression of the steering behavior (9.19) is
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completely defined, a simple analysis of Sg allows to characterize the steering behavior of the PTWV.

Algorithm 4: Neutral Path Departure (NPD) Algorithm :

Input
A~
04, 0, ¢, ay=Sg, Sg
C1, C2(decision variable)
1 Over steer alarm
(= 0 Neutral steer
—1 Under steer alarm
1 Counter steering
(o = 0 No correction
-1 Under steer correction

A=~
if (Ss=086 Sg =0 )then
L Neutral steer: (1 =0, (2 =0
if (54 >0 — Left turn ) then
if (Sg >0 )then
A=
if ( Sg >0 )then
L Over steer: (1 =1, =0
else
L Counter steer: (1 =1, (o =1
if (Sg <0 )then
A
if ( Sg <0 )then
L Under steer: (1 = —1, (2 =0

else
L Under steer correction: (1 = —1, (o = —1

else
(64 <0 — Right turn )
if (Sg >0 )then

~ =
if ( Sg >0 )then
L Under steer: (1 = —1, (2 =0

else
L Under steer steer: (1 = —1, (s =1

if (Sg <0 )then

~ =~
if ( Sg <0 )then
L Over steer: (1 =1, =0

else
L Counter steering: (1 =1, (2 =1

9.4 Neutral Path Detection Algorithm

Neutral Path Departure algorithm aims at helping a rider in maintaining safe travel, where the goal is to
detect an over or an understeer behavior compared with the neutral dynamics and to warn the rider of a loss
of friction between the front and rear wheels. The NPD algorithm depends on a risk function Sg proper for
a motorcycle, this index is required to detect the drift out from the neutral steady dynamics, the sign of the
Sg signifies the understeer and oversteer behavior of the motorcycle in left and right turn. Then, the rider
adjusts the steering angle, rider’s posture and/or forward speed to recover the neutral trajectory without a

~ =~
controller. Moreover to improve the confidence of the results, the analysis of the derivative Sg is of interest
to detect the changing in the steering action if any correction is taken by the rider. This consideration is
made to avoid false alarms when the driver is already correcting his maneuver. Therefore, the sign of Sg and

~ =~
derivative Sg is used to define two decision variables ({1, (2). The process of providing a neutral departure
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warning is summarized in the following algorithm (4).
The following cases are considered:

A~
1. Sg = 0 (Sg = 0): The motorcycle is neutral-steering (ay = o). In this case, the cornering powers
are equal at the front and rear wheels. When cornering, no change in steering angle is required to
maintain the correct radius when the speed varies.

2. Right turn, 64 < 0 (clockwise):

-Sg < 0 (TS:S\ < 0), when motorcycle steers towards the right: this reflects over-steering behavior.
The actual cornering radius is smaller than the neutral one. Indeed, a decrease in lateral acceleration
causes a greater increase in the radius of the trajectory. This phenomenon generates instability which
can only be countered by a decrease in the steering angle to stay on the neutral radius.

A~
-Sg < 0 (Sg > 0) reflects counter-steering behavior (correction of the over steer).

A~
-Sg > 0 (Sg > 0) reflects under-steering behavior. It is necessary to steer the steering angle in the
clockwise sense to stay on the right radius.

/J\ .
-Sg > 0 (Sg < 0) correction of the under-steer.

3. Left turn, 4 > 0 (anticlockwise):

A~
-Sg > 0 (Sg > 0) reflects over-steering behavior, the actual cornering radius is smaller than the
neutral one, the rider has to turn the front wheel in the right side, reduce roll angle or accelerate to
increase the radius and catch the neutral path.

A~
-Sg > 0 (Ss < 0) counter-steering behavior.

A~
-Sg < 0 (Sg < 0) reflects under-steering behavior, the actual cornering radius is greater than the
neutral path, the rider has to steer towards the left side or tilt to increase roll angle to reach the correct
radius.

/\ .
-Sg < 0 (Sg > 0) under-steer correction.

Remark 4 Moreover, a hysteresis function Hys(Sg) or a memory block can be used to avoid multiple

A=
switching. This block holds the value of (Sg) when the algorithm switches to test the rider correction by S .
The use of this block can minimize unwanted behaviors when switching between the algorithm loops.

Hys(Sg)

FIGURE 9.4: Memory block

9.5 Simulation Results

The proposed approach is evaluated by co-simulation with BikeSim© software under different riding ma-
neuver. A PTWYV model is chosen from the dataset Big Sport Baseline 8 bodies and default parameters. It
will be assumed that:
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e The road is flat with a high friction coefficient of ;= 0.9

e The road curvature of the neutral trajectory is considered to be constant.

e In these simulations, the motorcycle is riding at a constant speed of 50km/h.
The simulations are carried out considering two scenarios

Scenario 1: Three tests are conducted to evaluate the risk index: an oversteer scenario, a neutral
turning scenario and an understeer maneuver.

Scenario 2: A mixed scenario including neutral, under, oversteer and rider correction with noise con-
sideration to highlight the detection scheme and alarm generation.

Note that BikeSim offers several driver models with different control strategies. In our case, it is an open-loop
control on the steering torque, more suitable to simulate steering behavior.

9.5.1 Scenario 1

In this scenario, it is proposed to validate the risk function selected for the detection of under and oversteer
on the handlebar of a PTWYV. To do this, we have simulated a circular trajectory with a constant radius of
61.4 meters for three different riding scenarios, conducted for different steering torques.

Rider Torque and Steer angle Path
PR ‘ Neutral = = = -Under — — = -Over Road Edges
T
-
- 0
= ° =
%.\ Neutral S - 20 ¢
- - -~
= af Under ~F_ . 40
< *fl= = -Over g
= | a= == T~ A=~ - - 60}
=7 AR
E \ -80 1
& St 100
16 x 3 :
-120 ¢
2 . . . . . i . . . I . . i
0 5 10 15 20 25 30 -60 -40 -20 0 20 40 60 80
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FIGURE 9.5: (right) Rider torque and steering angle (left) Neutral Path Departure.

Figure 9.5 (left) shows the steering torques applied to the PTWV. On the same figure, we can also see the
steering angle corresponding to a scale factor of 3. The input steering angle used in this tests is defined
such that the wheel lift-off occurs at 13 sec, whereas in neutral test no wheel lift-off occurs. For the neutral
scenario, the torque applied to the handlebar is 7 = 6 N/m. When a PTWYV is oversteers, the torque
applied by the rider on the handlebars is too large compared to the geometry of the turn. PTWYV tends to
turn inward of the curve. Conversely, when understeers the applied torque is lower than the neutral one, the
PTWYV tends to increase the trajectory to the road exit. The vertical dashed line refers to the time from
which the steering behavior is significantly affected by the over or understeer phenomenon.

Figure 9.5 (right) shows the different trajectories of the PTWYV during the constant turn. In blue, the
motorcycle trajectory for a neutral turning. In which the motorcycle path is parallel to that of the road
edges. While in red, we show the trajectories of over turning, respectively in black under turning.

Figures 9.6 plot the consequences of the over and under-steering phenomena on the steady state variables
for the three cases. It can be seen that the slightest action on the handlebars when cornering has significant
consequences on the complete dynamics of the PTWV (3}, ay, ¢, etc). In Figure 9.7, we present the steering
index calculated from equation (9.19) for the three scenarios. It can be noted that the alarm and correction
signals remain at zero when no wheel lift-off occurs. Then, these signals detect the motorcycle is drifting
out: (1 = —1 understeer or (1 = 1 oversteer. In these scenarios, no correction is taken by the ride (o = 0.



166 Chapter 9. On Steady-State Cornering Analysis for Motorcycles
Roll rate Yaw rate
. . . -0.1 .
» 0.02 o \ e
~ ~— -
3 . . < 02 -
3 ’ ~ IS -
£ o - — < ~ .
S SE == -~ -0.3 S
0.02 : . . . - : - - - -
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time [s] time [s]
Lateral acceleration oll angle
- . . ! ! 0.5 Neutral T T
c'\l—>2 ] . = = = -Under -
Icr; PP 3 0.4f= == -Over -7
S -3 e S Phd
g S £ —
=, ~eeo___ <. 03 ~\~~___
3
5 : : : : : 0.2 . : : . :
0 5 10 15 20 25 30 5 10 15 20 25 30
time [s] time [s]
Steering error Roll error Lateral acceleration error
7 v 1 p—
0.2 V 5 / 7
’ / . ’
— 0.1 ’ — / S 05 7
SR ’ > 4 ! ’
[\ Vi () / « P
=S, 0 =0 g o <
— N - \ =
o \ S N = h
© 01 \ © \ $-05 AN
\\ \ L \
0.2 N 5 N 1 N —
0 10 20 30 0 10 20 30 0 10 20 30
time [s] time [s] time [s]

FIGURE 9.6: Steady Steering behavior: outputs and steering errors.

The Sg shows good efficiency to early detect the steering errors from the neutral path. This advantage is

very interesting since the neutral path departure has to be quickly avoided.

9.5.2 Scenario 2

This part is devoted to evaluating the neutral path departure warning algorithm in noisy case.

Rider Torque and Steer angle
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FIGURE 9.8: Steering behavior: Rider torque and steering angle.
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FIGURE 9.7: Alarm and corrections.

Path

Longitudinal error
Lateral error

20 30 40 50
time [s]

10

FIGURE 9.9: Trajectory departure errors.

During this scenario, the motorcycle is riding to perfectly follow the neutral path road until 9 sec. Then,
the wheel drift will occur first as understeer until 30 sec including a rider correction, then as oversteer until
50 s with some adjustment from the rider, seeking to catch the neutral line. Figure 9.8 shows the steering

torques applied by the rider and t

he corresponding steering angle.

Fig 9.9 shows the lateral and longitudinal errors. While, figures 9.10 show the consequences of the neutral

path departure on the motorcycle

Figure 9.11 illustrates the relevant

states.

indicators proposed for the characterization of steering behavior. The risk

indicator Sg is computed here from the noisy measurement of the actual steering, lateral acceleration, and

roll angle of the PTWV. Moreover

~ =~
, the analysis of Sg is very interesting to characterize the changing in the
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FIGURE 9.10: Noisy outputs.

rider steering action. Note that the raw data (unfiltered) is difficult to exploit because of the noise amplified
by the derivation. This is why the Sg has been filtered with a simple first-order filter. Therefore, we prefer

~ =
to use the Sg and derivative Sg to define two levels of risk: the first level detects the over/understeering
and the second level detects if any correction is taking by rider.
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FIGURE 9.11: Risk functions, alarm and corrections.

One can see in figure (9.11) that the used steering risk indicators and the alarm signal given by the detection
algorithm are very interesting to detect the rider errors and the neutral path drift out even with noisy
outputs. It can be noted that the alarm signal remains at zero when no neutral path departure is detected
Sg = 0. Then the alarm signals take the correct values depending on which direction the motorcycle is
drifting out ¢(; = —1 understeer or (; = 1 oversteer. Also, one can see the alarm corresponding to rider
correction (o2 which means that the rider is trying to bring back the PTWYV to the neutral path.

9.5.3 Result Discussion

Finally, simulation results from the BikeSim software have shown that the synthesis of the detection
algorithm-based risk function has undeniable potential to characterize the steering behavior. Indeed, it
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is much informative since it is based on the analysis of two parameters Sg and ’gs\ These results attest the
effectiveness of the risk indicators developed for neutral path departure detection algorithm. These results
highlight the effectiveness of the detection algorithm to detect in an early stage the steering deviation. This
advantage is very interesting since the road departure has to be avoided earlier. Although the results are
really encouraging, the idea presented in this paper deserves to be deepened. Indeed, for the validation
of the approach, we are limited to the co-simulation case and improvements should be made to avoid bad
detection in case of using estimated data instead of measurement outputs in some situations.

9.6 Conclusion

In this chapter, we proposed a synthesis of a new risk function for the characterization of rider steering
behavior. While conventional approaches use kinematics or geometric functions, to detect the intersection
point on the road edges. The motorcycle tendency to under or oversteer in steady turning is also analyzed,
based on handling conditions. We propose here a new neutral-path departure algorithm to overcome rider
steering errors when the rider drifts out of the neutral lane. The algorithm monitors signals from sensors
and compares intended neutral (theoretical) and actual paths. If the trajectories differ from each other, this
means that motorcycle is going out neutral path, in this case, the algorithm generates an alarm to warn
the rider. Based on the established motorcycle model, combined with magic formula tire cornering forces, a
Self Steering Gradient for motorcycles “Sg* is proposed as a risk function. Besides, the NPD algorithm is

designed based on the Sg and /gg\ Then, the detection method was tested in co-simulation using BikeSim®©
under different steering maneuvers to highlight the effectiveness of the proposed algorithm to detect in an
early stage the over/under steering deviation from the neutral path, to improve motorcycle handling and
correct the unsafe maneuver. Indeed, the proposed solution is very economical, limiting the amount of energy
needed since it only requires a conventional IMU and a steering encoder.
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e 10

Lane Crossing Point Tracking for Motorcycles

——— Abstract

Departure Lane Assist (DLA) systems for the PTWYV are the next step in inspecting the motorcycle’s
position. Obviously, these departure avoidance systems were intended to warn the rider of an uninten-
tional drift off the track. In this chapter, we investigate a vision-based approach for online lane change
prediction and detection dedicated to motorcycles. The approach is composed of two steps. First,
the road geometry (clothoid model) and the motorcycle position with respect to the road markers are
deduced based an inverse perspective mapping algorithm. The relative position is represented by the
vehicle lateral displacement and heading estimated by means of an Inertial Measurement Unit and a
monocular camera. The second step consists of predicting the Lane Crossing Point which allows to
predict the distance and time before the motorcycle crosses the lane. The algorithm is achieved without
the use of any steering sensor. The theoretical aspects and the validation of this idea was published in
Damon et al., 2019.

To assess the effectiveness of the proposed approach, the estimation and the prediction schemes are
validated on the BikeSim framework. To this end, two scenarios are discussed : 1- straight road with
non-zero relative heading, and 2- curved road and circular vehicle trajectory.

The remaining of this chapter is organized as follows. Section 10.1 motivates the paper’s topics. Section
10.2 reviews our previous work on Inverse Persepctive Mapping (IPM) techniques for motorcycles.
Section 10.3 discusses the distance to lane crossing estimation. Whereas, sections 10.4 and 10.5 present
the results, conclude the paper and outline the future works.

10.1 Problem Statement

The detection and tracking of the Lane Crossing Point (LCP) for motorcycles involve several technical
problems that must be overcome. Whereas prediction is realized in most cases through monocular cameras
by reconstructing the road profile as well as the current position of the vehicle. This is also done under some
assumptions such as flat roads and perfectly parallel markings.

In the case of motorcycle riding, both previous assumptions are violated because of a bike dynamics. Indeed,
the PTWYV can reach significant roll angles (the world record is about 68°) and undergo load transfers
during braking or acceleration phases (pitch angle significant). Following this, the images recorded by the
front camera undergo noteworthy deformations and do not allow a direct use without a projection in a more
advantageous plan (bird-eye-view for example). The next section recalls previous work on a vision based
approach for accurate vehicle position reconstruction, presented on (Damon et al., 2018a; Damon et al.,
2018c).
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This allows to recover crucial information such that the DLC or the TLC which are both proportional
regarding the vehicle speed. The second step presents the algorithm able of tracking the LCP.

FIGURE 10.1: Captured camera image with reprojected road lanes, predicted trajectories
and LCP

This work focuses on lane crossing prediction for powerred two-wheeled vehicles (PTWYV). The aim is to
predict, with a simple perception system, the spacial and temporal lane change information. Such information
can be predicted uising the Time to Lane Crossing (TLC) and the Distance to Lane Crossing (DLC) which
are key components to be estimated in order to predict critical situations.

10.2 Vision-based Information

The contribution of this chapter is based on the results initially introduced in Damon et al., 2018a. The
reader could refer to the following videos ! for visual illustrations. In Damon et al., 2018a, the authors used
the IPM technique combined with a road lanes filter allowing to generate a bird-eye-view of the road markers
(as presented in figure 10.3). Then, a clothoid model of the road is used to extract pertinent information such
that the PTWYV relative lateral displacement and heading angle to the road markers. They are respectively
denoted AY; and Ay, where ¢ € {l, ¢, r} indicates left, center and right markers. It allows to recover crucial
information regarding the PTWYV location on the road.

Furthermore, the clothoid model allows to predict the road curvature and its rate respectively named Cjy
and C7. Both parameters allow to accurately reconstruct the road trajectory in the selected Region Of
Interest (ROI). Note that, even if the ROI limit ahead of the PTWV is chosen about 30 meters (see Damon
et al., 2018a), each road marker trajectory can be extended since we know its third degree polynomial
approximation.

Let us remind that each road lane is approximated in the cartesian coordinate system with the following
expression for ¢ € {l,¢,r}:

1 1
yi(x) = AY; + tan(Ay;)x + §Coix2 + 66’11,:173 (10.1)

Whereas, in the simulations discussed in Damon et al., 2018a, the right road marker is defined as a static
reference, we proposed to introduce a dynamic reference. Indeed, the accuracy of the lane i trajectory
reconstruction mainly depends on two factors: the proximity with this lane and its attribute (dashed or
solid). Our strategy is to choose the reference among the right or left solid lanes regarding the estimated
PTWYV position on the road (given by AY and A). Note that, choose the center marker is depreciated
because it is often discontinuous leading to less accurate approximation. Then, if the PTWYV is traveling
in the right (respectively left) lane, the right (respectively left) road marker is set as the reference. Finally,
since the road markers are assumed parallel and separated from each other by a distance L, the two others

Ihttps://www.youtube.com/playlist?1list=PLRTI62SuvNymK2Dx-YKha-1a4Sp54IVs8
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lanes trajectories are reconstructed from the reference road marker equation (10.1). At this point, we know
an estimation of the three lanes trajectories in the vehicle frame F,, whose the origin is the projection of the
camera center on the ground.

10.3 Lane Crossing Point Tracking

Now, considering that the road lane trajectories are available, the LCP tracking problem consists of finding
the intersection point coordinates between the predicted road lane and vehicle trajectories. For the latter, we
addressed two cases. For both the vehicle speed is assumed constant and positive. The first case considers
a straight predicted vehicle trajectory which corresponds to a zero steering angle (6 = 0). Whereas for the
second, ¢ is assumed constant and non zero. Under these last assumptions, the predicted vehicle trajectory
is a circular path with a constant radius. For what follows, we denoted DLCy and DLCy the predicted
distances to the LCP respectively for straight and circular vehicle trajectories. Note that, the DLC is
computed with respect to the vertical projection of the camera center on the ground which is the origin of
the frame F,.

Note that, for the case where § # 0 (the rider is steering), we systematically compute two DLC which are
DLCy and DLCs. The first considering a straight predicted trajectory and the second based on a circular
path prediction (see figure 10.3). This allows to get a surface containing all the LCP between the actual
circular path and the straight one. In other words, it provides indications about the LCP location in case of
the rider reduces the steering (increase of the trajectory radius).

Moreover, for both scenarios (6 = 0 and ¢ # 0), we solved the DLC algorithm for each detected road lane.
Hence, the final LCP is the nearest point among the solutions as illustrated in figure 10.1 and 10.3.

10.3.1 Straight predicted vehicle trajectory (6 = 0)

For straight predicted path, the computation of the DLC can be easily achieved by solving the equations for
1e{l,c,r}:

1 1
AY; + tan(Av; )z + 56’0iac2 + éClix?’ =0 (10.2)

Let us remind equation (10.2) is expressed in the vehicle frame F, where X, corresponds to the vehicle
longitudinal axis (refer to 10.3). Hence, if TDLCy, IS a solution of equation (10.2) then, the DLC with
regards to the lane ¢ is trivial. It can be directly deduced such that: DLCy, = = DLCy, - Let us remind,
the final DLC is computed such that DLCy = min(DLCy, ) with k corresponding to the set of all the lane
intersection points. In figure 10.3, the magenta line clearly illustrates the situation with k = {center, right}.

10.3.2 Circular predicted vehicle trajectory (J # 0)

In this case, we need to reconstruct the forward predicted vehicle trajectory based on its current dynamic
states. To do so, it requires to compute the vehicle slip angle denoted 5. It can be expressed as a function
of the the measured yaw angle (¢)) and the angle of the trajectory tangential vector (i) as illustrated in
figure 10.2.
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FIGURE 10.2: Scheme of the vehicle circular path prediction

Now, let us consider that the yaw angle, measured by the IMU, is included in the interval [, 7. To avoid
any singularity, we introduced the following relation:

% = Tt(wth)_lf(w)

=t +msign (¥(¢)) © (e, 9) —F(¥) (10.3)
with @ and ¥ defined by the following functions:
_ [ b —sign(e)m/2 if [Y[=7/2
Y(w) = { W if |y < /2 (10.4)

and
0 if

O (Y1, v) z{ 1 if (10.5)

1/}t —T(Q/)) S 7T/2
Y =¥ ()| >m/2

At this step, the aim is to express ¥ as a function of the IMU measurements such that the body-fixed
accelerations (awa, Ay s abe) and the orientation angles (¢, 6, ¥).

Let us define Aj = [ag;, ay,, az,]7 and Vj = [, vy,, vz;]7 as the acceleration and the speed vectors with
j = g for the global frame and j = bf for the body-fixed one. Let us remind the following relations between
the two frames:

Vo = RV
{Ag — RAy (10.6)

where R = RyRoRo is the rotation matrix. The terms Ry, Rg and Re denote the rotation matrices
associated respectively to the yaw, pitch and roll Euler angles. Note that & is the rotation angle about the
axis which has been previously pitched of 6. The real vehicle roll angle, denoted ¢, can be computed using
the algebraic expression:

¢ = asin (cos(f) sin(P)) (10.7)
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Furthermore, the acceleration vector in the global frame can be obtain with the relation: A4 = V. Combining
the latter and (10.6) leads to:
Ay = R‘/},f + R%f (10.8)

Since we assumed the vehicle motion is uniform and circular (® = est, § = cst, V},f = 0), equation (10.8)
can be reduced to:
Ag = RVyy (10.9)

where R = R,pR@Rq) is the time derivative of the rotation matrix.

Using equations (10.6) and (10.9), we obtain the following expression:

'RAbf = 'R%f
RR™Y, (10.10)

Afterwards, we get one expression of the speed vector in the global frame:
Vg = MAy; (10.11)
where M = RR™IR = [m;;] with i,j € {1,2,3}

Let us remind that, by definition, the speed vector, expressed in the global frame, is tangent to the vehicle
trajectory. Since 1 is the angle of the tangential direction to the PTWYV trajectory, it comes:

Yy = atan <Zyg>
= atan (mzlaxbf T m22dy,; + m23azbf> (10.12)
mllazbf + m12aybf + m13azbf
with:

mi1 = sin(¢)cos(6)

miz = cos(¢) cos(P) + sin(¢)) sin(6) sin(P)

mig = —cos(1))sin(P) + sin(e)) sin(6) cos(P)

mo1 = —cos(1))cos(6)

mog = sin(v) cos(P) — cos() sin(h) sin(P)

mog = —sin(¢)sin(P) — cos(v)) sin(0) cos(P)

At this point, the vehicle slip angle denoted s can be computed using equations (10.3), (10.4), (10.5), (10.7)
and (10.12).

Now, let us consider the IMU measurements, Ay and 1, are given at a fixed sample rate denoted At. Then,
under the previous assumptions, at an instant ¢, the vehicle trajectory, defined by X, and Yy, can be
predicted with the algorithm 5.

Note that, algorithm 5 predicts the discrete vehicle trajectory from its current position to the one with an
angular horizon of w/2. The term Dp; denotes the constant traveled distance along the circular path during
At. Since the vehicle motion is assumed circular, uniform and forward, it comes:

Vi = (10.13)
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FI1GURE 10.3: Road bird-eye-view with predicted vehicle trajectories and tracked LCP

Finally, in this case of non zero steering, the DLC is the numerical solution when solving the intersection
between the road lane equations (10.1) and the discrete predicted trajectory given by algorithm 5 (see the
red dot in figure 10.3). As for straight path, when several LCP are detected then DLC; = min(DLCy, )
with k a set of all LCP.

Notice that, since the longitudinal vehicle speed is available, the DLC can be trivially turned into a TLC

using the expression:
DLC

Vzy s

TLC = (10.14)
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Algorithm 5: Motorcycle circular trajectory prediction
1: Inputs s, 1), Ay, Ot
2: Outputs X5, Yon

[ Avsll

[4]
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At — —s,
Xl o,

+1do

50 APt AP — 4 (t) At
6: )A(f}h < Djy cos (Al/)i) + Xt

vh
7 Yulh <— Dy sin (sz) + Y:;l
8: End for

10.4 Simulation Results

This section discusses a validation of the proposed algorithm using the advanced motorcycle simulator
BikeSim. Two scenarios are presented, the first one considers straight road and motorcycle trajectories with
a constant relative heading deviation (A # 0). Whereas, the second scenario deals with circular road and
vehicle trajectories (0 # 0).

The hardware (camera and IMU) specifications and mountings are identical to the ones given in Damon
et al., 2018a except the camera resolution which is 1080 x 720. Let us remind the ROI of the bird-eye-view
is limited about 30 meters ahead of the vehicle. According to the fact that the road trajectory is slowly
varying, we extended the road lane reconstruction to 40 meters that we defined as the maximum horizon for
LCP tracking.

In the following simulations, we considered a two-way road separated with a dashed road marker whereas
the extreme lanes are continued.

10.4.1 Case 1: Straight road with zero steering

In this scenario, we considered straight road markers and we simulated a constant heading deviation angle
between the road lanes and the vehicle such that Ay = 3deg. In addition, the PTWYV is traveling at 100
km/h without any steering action.

Figure 10.4-a and 10.4-b illustrate the simulated trajectory of the motorcycle as well as the lateral deviation
with adjacent lanes (central and left one). From 0 to 75 first meters, on X axis, the PTWV reaches the first
Lane Crossing Point with the central line within 3 seconds. The vehicle travels under the same conditions
(DLC & TLC) the second portion, but this time between the center lane and the left one.

Figure 10.4-c gives the estimated DLC for the case of a pure longitudinal movement respectively with the
central and left lanes. A comparison with the theoretical DLC, expressed by the equations 10.2, is given.
It shows well the approximation of the DLC by our approach, although the resolution is not very high
with a rather important speed, figure 10.4-d. Here, the average error is about 50 centimeters and decreases
drastically when the LCP is approaching.
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In the next scenario, we assume bend case with curve radius 400 meters and we simulated a constant steering

angle, figure 10.5-a. The longitudinal speed is fixed at 80 km/h.

In the present scenario, three LCP are detected, figure 10.5-b. The last one occurs with the right lane and
the remains LCP with the center lane.

Figure 10.5-c gives the reconstructed DLC for the case of a pure lateral motion respectively with the central
and right lanes. Whereas, the estimated DLC is compared to the theoretical one under a zero steering.
Figure 10.5-d highlights a very good estimation of the DLC. The estimation under constant steering is
depicted in figures 10.5-e and 10.5-d to show, at the same time, the performance of the proposed algorithm.
Also, the average error is similar to the previous scenario and remains around 50 centimeters and decreases
when the LCP is approaching, figure 10.5-g. These results are illustrated by the video at the following link
: https://youtu.be/K095a2SckWU.


https://youtu.be/K095a2SckWU
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10.5 Conclusions

This work provided powerful video-based estimation algorithm for Lane Crossing Point tracking for powered
two-wheeled vehicles. First we have recalled the Inverse Perspective Mapping technique, adapted to motor-
cycles, which allows the generation a bird-eye-view of the road markers. The advantage here is to extract
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pertinent information such that the PTWYV lateral displacement and heading angle to the road marker.
Second, the Lane Crossing Point tracking problem is detailed. It consists of finding the intersection point
coordinates between the predicted road lane and vehicle trajectories whether straight or circular. Then,
the proposed algorithm is simulated towards several scenarios to show its great capabilities of tracking road
lanes and compute the distance before crossing the marker. Finally, the proposed algorithm is an original
contribution which allows to accurately compute, in real time, the DLC when lane change is occurring for
motorcycles. This information is crucial for safety purposes like trajectory analysis.

In our future works, we plan to deal with the robustness (unfavorable camera light, undetected road markers,
etc.) and to extend the algorithm to clothoid trajectories with various road curvature. We would like to take
the proposed solution to the next step by integrating a risk function to create an alert system prototype.
Finally, we would put all our effort into the experimental validation on our two-wheeled vehicle platform.
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General Conclusion & Perspectives

Conclusion

In this thesis, we are interested in the powered two-wheeled vehicle as it is the most vulnerable road user.
In fact, road traffic accident is now among the leading causes of violent death. The statistics analysis
underline the importance of improving motorcycle safety as well as highlight key safety concerns that new
safety technologies should target. Towards this end, many research broadly seek to further investigate ITS
technologies with the potential to enhance motorcycle safety. Therefore, involving riding assistive systems on
this type of vehicle will bring notable benefits in terms of handling, stability and maneuverability. The main
purpose of the work presented in this thesis is to contribute to the development of ARAS. The design of these
systems, is a real challenge for researchers and automotive manufactures. Unlike four-wheeler vehicles, the
roll motion of the PTWYV plays a fundamental role in the lateral dynamics, it balances the lateral forces in
turns (centrifugal force, cornering forces generated by the tires/road contact). As a matter of fact, PTWVs
are highly dynamic vehicles with a complex mechanism which gathers a set of actions, mechanical and
physical phenomena during the riding task. These specifications does not allow the direct transposition of
the developed cars safety systems to motorcycles. Thereby, it is very important to know how this motorcycle
reacts, to design a more adequate safety systems able to transmit the good orders.

This manuscript outlines the various scientific contributions during this thesis, with the objective of develop-
ing a risk function through the synthesis of dynamic models and observation algorithms for the reconstruction
of unmeasured variables. In this report we have presented the context and the objective of the thesis as well
as the different ways to approach the formation problem to provide estimation of the most pertinent states
and parameters. In particular, a high fidelity simulator and an instrumented motorcycle are used to acquire
data based on these latter, estimation schemes are achieved by designing observer. To sum up, the thesis
project consist in designing and validating the proposed algorithms allowing the estimation of motorcycle.
It consists also on the study of appropriate methods to allow the estimation and identification. Throughout
this research, we have targeted a particular type of scenario: cornering situations. In fact, accident studies
have shown that bends are very risky for motorcycles, they noticed that motorcycles often losses control in
this scenario. It is therefore one of the "typical" scenarios, for which adequate rider assistance systems could
prevent the accident by alerting the rider and/or by acting on the dynamics of the PTWV via actuators.

On the basis of the existing literature, we have drawn up a generic modeling of motorcycle before adapting
it to our concerns. The main objective is, in part, to develop the mathematical models of the motorcycles
used in this thesis, in other parts, to validate these models. Three important steps have been identified: 1-
define the fineness of the relevant models to develop the risk functions, 2- identify geometric and inertial
parameters of the motorcycles 3- propose experiments exciting tests to identify modes of the dynamic models.
Knowing that tire/ground contact play a fundamental role in the modeling and, in particular, in the study
of the stability of the vehicle. The Part I of this thesis discussed the tire modeling (Chapter 2). In this
part, we were also interested in deriving a complete dynamic model representing the PTWV and its rider
as a set of eight bodies. The obtained model is very complex and strongly nonlinear, which is not adequate
for the synthesis of the observation and control algorithms. The latter was introduced for simulations via
the BikeSim (BS) simulation software. Throughout this thesis, we have used BS as a high-fidelity validation
tool. After that, we have simplified the eight-body model, to derive a two-body Linear Parameter Varying
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Model (LPV) of the lateral dynamics and a one-body model of the longitudinal and lateral dynamics. In
this modeling phase, the main difficulty lies in the choice of the "finesse" of the model. In other words,
how much the mathematical model can be simplified while keeping a real dynamic representation?. In our
case, the model is simplified by reducing the number of bodies or by setting some simplifying assumptions
(linearization around a position of equilibrium, neglecting certain dynamics, etc.). With regard to this
"modeling" part, we have mostly used two types of state space models according to the expected fineness:
firstly, the single-body model, also called a inverted pendulum, which we have augmented with a linear
model of the forces to validate identification and estimation algorithms. Then we studied an extended
model, which is the two-body (sharp) model according to our requirements. Note that these models are
much more suitable to the synthesis of advanced algorithms. The validation of these models was handled in
several phases, the first being to identify the pertinent parameters of each model. Afterwards, we selected
the exciting maneuvers. In practice, even though we use a simplified two-body model of PTWYV | it has more
than 30 parameters, some of them are non-measurable and others are non-constant over time. This step
proved to be complex because of the large number of parameters, especially for the two-body model.

The proposed methods within Part II of this thesis were:

e First, we considered the identification of the rigid body motorcycle model (chapter 3). Three design
methods are studied in this chapter to identify the center of gravity (CoG) position and estimate
motorcycle inertial and geometric parameters: using static test, an algebraic identification approach
compared to an iterative gradient descent algorithm.

e Second, we focused on the identification of a mathematical two-bodies (Sharp) model of a two-wheeled
vehicle (chapter 4). Concerning the Sharp model, two methods were proposed to identify a combined
parameters of the motorcycle model. The first method was a cascade, multiple-objective optimization
algorithm adapted to the complexity of our model. The second design process was a Levenberg-
Marquardt (LM) identifier. The LM method identified combined expression of inertial parameters,
predicted the objective functions and improved convergence characteristics for state by updating cou-
pled inertial parameters.

Identified models have been validated, through some scenarios made with the Kawasaki ER6N motorcycle,
the scooter lab or even BikeSim simulator. Although these techniques have shown real potential for achieving
some goals of this thesis, it has some disadvantages to consider. The parameter identification problem requires
persistency of excitation to reach an optimal solution. However, in practice, excitation signals can not be
freely applied due to the motorcycle instability characteristics. Usually, identification is performed offline
where online identification lays with some challenges. Furthermore, the identification problem is formulated
assuming that all the system states are measured, which is really unrealistic. In this case, a reformulation of
the identification problem is ineluctable. Alternative approaches suggest the use of observers based identifier
to deal with both dynamics states and parameters estimation. These included the introduction of LPV
adaptive observers or a novel method for unknown input observer with time delay concept. The proposed
methods allow simultaneous on-line parametric identification and dynamic system estimation. They therefore
prove to be perfectly suited to applications for PTWV, especially when we know that some of the parameters
of the model are non-constant over time (pneumatic coefficient, mass, etc.). All these arguments motivated
the reorientation of the identification tools to model based observer methods to answer the problematic of
this thesis.

On the dynamic state reconstruction part 111, we have implemented several new estimation and observation
approaches to reconstruct dynamic states of the motorcycle that can not be measured with physical sensors
(tire-road contact forces). With regards to the observer, the main concern is to develop techniques with
good compromise permanence/robustness and simplicity for the sake of implementation. To ensure a good
performance, we analyzed many reference model based observer design. We developed many estimation
methods with different principles, in particular, we proposed two categories one of them deals only with
observers for states dynamic estimation and the second one is more intuitive for observer based identifier
to simultaneously estimate the model states and the parameters identification from measured data. the
designed observers presented in the present manuscript are:

e Unknown Input Observer (UIO) which is proposed to estimate the pertinent dynamic with road ge-
ometry consideration and steering dynamics reconstruction.
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e Interconnected Fuzy Observer (IFO) which is a two sub-observer for estimate both lateral and longi-
tudinal dynamics of the two wheelers.

e LPV Luenberger Adaptive Observer (LAO), for which we have suggested a different formulation based
on a general Lipschitz condition and Lyapunov theory to estimate the PTWV dynamics states and
then the tires’ cornering stiffness identification from the adaptive law, which is compared to a direct
estimation method and a dynamic inversion estimation scheme.

e Delayed Unknown Input Observer (DUIO) which is likely an extension of the well-known UIO for
nonlinear system with mismatched condition, that we have proposed based on delay concept to define
auxiliary outputs and augment the model to fulfil the matching constraint.

We have brought some new points of view concerning their formulations and therefore their application to
ensure the desired performance by taking into account the forward speed as a varying parameter in the design
procedure. We have considered several tests to validate the synthesized methods. Compared with some other
works in the literature, the discussed algorithms have been developed with very clear objectives: to take into
account realistic hypotheses during the synthesis of the observers and to propose a "realistic" validation on
experimental data or on the BS simulator. In addition, we have drawn up a table of comparison, between
the proposed estimations methods to show the advantages and the drawbacks of each one. This table allows
the selection of the adequate method for a given requirement and conditions. The estimation results are very
promising even if they do not yet take into account the parametric uncertainties or the measurement noises
in the synthesis design. Indeed, we studied robustness propriety related to noisy measurement and parameter
variation. Nevertheless, it is obvious that a consideration of parameters uncertainties during the observer
synthesis is necessary in order to envisage industrial applications. Furthermore, these designs require a set
of sensors necessary to ensure observability conditions. These sensors include: an accelerometer, a gyroscope
and an encoder on the steering mechanism. Moreover, these sensors pose significant integration problems
with respect to alignment, lack of space, etc. In fact, inertial sensors are strongly affected by mounting
angles, and the correct rotation to be applied in order to recover an alignment to the vehicle motion. In
the context of this work, we have proposed an algorithm for self calibration to align data, the approach is
tested and validated on another instrumented vehicle. The algorithm estimates the three mounting angles
(roll, pitch, and yaw) of accelerometers and gyroscopes within Inertial Measurement Units (IMUs). Such
a self-calibration method is focused for telematic boxes (e-Boxes) installed on two-wheeled vehicles, whose
IMUSs’ axes often result not to be aligned with the vehicle reference system. In this work we proposed an
energy-efficient alignment procedure which limits the use of geolocation data. The aspects of data selection
and real-time implementation of our method are taken particularly into account. The proposed approach
is validated and performance are analyzed on experimental data collected with tests performed with a
motorcycle equipped with three e-Boxes mounted in different positions and orientations. The analysis of the
real measured driving data proves the effectiveness of the approach in aligning the sensors’ axes in all three
directions.

The main element of the riding aid safety systems is the risk indicator and the warning algorithm that allows
the two-wheelers vehicle to travel safely. Part IV aims to identify objective indicators for the quantification of
risk as well as carry out and discuss the design of possible warning system for riders of PTW vehicles. Hence,
the proposed indicator are studied in two chapters and mainly deal with the preventive safety considerations
in order to assist the rider through warning system by detecting and/or generating alerts. In this scope, we
described two approaches proposed in order to detect risky riding situations and warn the rider to correct
his trajectory. This solution is divided on two chapters:

e Neutral-path departure (NPD) algorithm, for which we have presented a detection approach towards
getting circular stationary states and analytical handling conditions. Based on Self Steering Gradient
proposed as a risk function, this NPD algorithm aims to characterize the motorcycle steering behavior:
over or under-steering situations.

e Lane crossing prediction (LCP) which aimed to predict, with a simple perception system, the time
and distance to lane crossing (TLC, DLC) in order to predict critical situations. Then, the proposed
algorithm shows its great capabilities of tracking road lanes and compute the distance before crossing
the road marker.
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In this part, we proposed a synthesis of a new risk functions for the characterization of rider steering behavior.
This design requires a precise knowledge of the various dynamic states and parameters of the motorcycle as
well as the external effort acquired either from measurement, estimation or identification techniques. The
main problem in building up warning systems for motorcycle is the design a driving risk function to warn
the rider in assistive systems. The distance to line crossing DLC and time to line crossing TLC seems to play
an important role as an indicator of steering performance, indicates that drivers can compensate for some
errors of steering by decreasing their speed in order to maintain the TLC constant. These detection methods
ware tested in co-simulation using BikeSim®© under different steering maneuvers. The results highlight the
effectiveness of the proposed algorithm to detect in an early stage the over/under steering deviation from
the neutral path, or to predict the distance to edge crossing in order to improve motorcycle handling and
correct the unsafe maneuver. During this thesis, we tried to put as much emphasis as possible on validation,
hoping one day to see industrial applications using these techniques. We are aware that this is only a first
step of a long way. Nevertheless, the first validation results are very promising and the techniques presented
clearly deserve to be further developed.

Perspectives

To end up this manuscript, we would like to recall some of the perspectives and improvements we would like
to bring in the future.

Estimations and Identification:

e The analysis of stability, performance and robustness can be extended by considering other uncertain-
ties such as the neglected dynamics. The observer will have to take into account, simultaneously, the
parametric uncertainties of the model, the sensor biases and the measurement noises.

e The synthesis of robust observer regarding measurement noises and/or uncertainties: one can consider
a linear term containing perturbations in the observation equation. This leads to an adaptation of the
model-based observers to the case of uncertain matrices of the state space model. This is a complex
problem that also deserves to be addressed.

e It would be very interesting to discuss the performance quantification and define a tolerance margins
of parameters for which the estimation results remain acceptable.

e Moreover, IFO and DUIO have only been validated on BS. It is therefore necessary to continue with
validation on the laboratory platforms as for the UIO and LAO. It would also be interesting to diversify
the scenarios and driving behaviors. In addition, the presented risk function have been only tested on
BS. Once again, it is essential to extend the validation in case of non-constant turns and to continue
with experimental tests.

e An alternative for calibration steps is the modeling transformation to the sensor reference frame.
Indeed, when one is interested in the rewriting of the modeling expressions in the new sensor reference
frame and not in the vehicle reference, this transformation add many non-linearities in the motorcycle
model, and in particular, non-linearities appear in the the measurement equation, this leads to a new
observer design taking the measurement matrix in the LPV observer design.

Vision based approach

Vision-based estimators have shown great potential in previous work (Damon, 2018) to estimate the position
of the PTWYV on the road. In future work, we would also like to combine the contributions presented in
model-based estimation part with the vision-based approaches in order to obtain a unique algorithm capable
of estimating the pertinent states and parameters as well as predicting the position of the PTWV, and the
geometry of the road in order to characterize the steering behavior, alerting the rider and/or calculate the
control orders in the case of active safety system.

Trajectory generation:

We plan to design “safe” trajectory, the adoption of such a practice by PTW riders would improve their
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safety. Training that focuses on a safer riding style would also allow riders to be more aware of their own
real handling ability and the breaking limits of their PTWs. The objective is then the reconstruction of
reference trajectory which is the optimal path that a rider must follow to travel round corners safely and
quickly. For that, the geometric model (imaginary racing line) can be a good solution to define a safety
zone for cornering. The so-called “safe” trajectory is divided into four successive zones: 1)- Entry: where
turning begins. 2)- Apex (discovery): where the motorcycle reaches the furthest point on the inside of the
turn. 3)- Exit: where the motorcycle is in the end of the corner, and 4)- stability: where the motorcycle is
driving straight again. For every bend (both left and right), it is possible to progressively read that bend
and anticipate dangers and potential hazards. The core idea is to ride towards the bend tangent point only
when one has “seen” the whole of the bend, up to its exit. Based on these recommendations, the rider must
makes use of the entire width of the track, entering at the outside edge, touching the "apex"'-a point on the
inside edge, then exiting the turn by returning outside, while maintaining a constant radius throughout from
turn-in all the way to the exit point. With regard this description, one can draw up a mathematical model
depending on the geometric characterization of the bend. To sum up, this safe trajectory allows riders to
change from their current riding style (one where the rider adopts a more prone position on the bike, looking
only a short distance ahead) to one that is less extreme (with a more upright posture, head erect and eyes
looking as far ahead as possible). Taking the “reference” trajectories as a function of their beliefs, we plan
to develop tools that will objectively rate the achieved performances (i.e., by measuring the deviation from
the reference).

Rider state evaluation:

Vulnerability of motorcycle riders is a leading cause of road accident death due to the static and dynamic
instabilities of a PTWYV, which require that the rider performs constantly a highly controlled tasks. One
of the main challenges in motorcyclist safety is the rider state evaluation, which strongly depends on the
individual abilities and the limits of riders skills. These evaluation offered the opportunity to analyze
potentially critical situations in typical riding scenario involving rider posture. To improve the riders’ skill
level and reduce riding errors, safety trainings are the best way to enhance riding behavior. The idea is
to give motorcycle riders useful feedback about their individual riding skills and about the occurrence of
critical situations while riding in real time and thus support self-improvement. The key requirement for
such an application is a procedure to capture the rider posture via a reliable sensors and then to detect
certain behaviors as indicators for riding errors. For this purpose, our perspectives is to use wireless inertial
sensors, which are a well established solution to capture rider motion to estimate the rider skill in a variety
of different traffic situations. Such wireless systems are designed to interact with the human motion and
allow for free body movement. Furthermore, analysis of motion tracking technologies can be alternative to
gold standard optical motion tracking and integration possibilities. Our near perspective is therefore to use
Xsens MTw wireless technology to collect the motions of a motorcycle-rider wearing a motion-capture suit
under the inertial sensor-based wireless network environment.
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Appendix

Preliminaries & Definitions

The simultaneous state and parameter reconstruction problem is closely linked to the problem of observ-
ability, as shown in Zhang and Zhu, 2018. Therefore, we recall some important definitions about strong
observability and strong detectability of systems with unknown parameters.

Consider the following system with z(t) is the state vector, u(t) is the known inputs vector, 6 the unknown
parameters vector and y(t) is the measurements vector:

(A1)

Definition 5 (Moreno, Rocha-Cézatl, and Wouwer, 2014)

For every initial condition x(0), any known input u(t) and any couple of unknown parameters (6,0), the
system (A.1) with two different trajectories x(t) and T(t) is called:

o state and unknown parameters strongly observable: if y(t,z(t),u(t),0)=y(t,z(t),u(t),d) implies that:
x(t) =z(t) and 0 = 0.

e state and unknown parameters strongly detectable: if y(t,z(t),u(t),0)= y(t,2(t),u(t), ) implies that:
z(t) = Z(t) and 0 — 6 as t — oo.

Definition 5 concerns the state and parameters observability or detectability. The unknown parameters
observability (detectability) relates to the possibility of reconstruct the unknown part asymptotically having
as information the known inputs and outputs.

Theoretical analysis of LPV system properties (stability, controllability, observability), often falls into the
framework of LTV systems or of nonlinear ones. In the followning, we will present the most important
system properties definitions for LTI, LTV and LPV systems.

A.0.1 LTI system properties

First, we recall some important definitions about strong observability and strong detectability of linear

systems.
' i(t) = Az(t) + Bu(t) + DF(t) y(t) = Cx(t) (A.2)

where the matrices 4, B, C' are constant of compatible dimensions.

Definition 6 (Trentelman, Stoorvogel, and Hautus, 2012). System (A, D,C) is called strongly observable if
for any initial state zo and any unknown input F, y(t) = 0 for all t > 0 implies that also x = 0. Otherwise,
the system (A, D, C) is called strongly detectable, if for any F and x(0), y(t) = 0 for all t > 0 implies that
z— 0 ast— oo.
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Definition 7 (Strong detectability condition). Let so € C be the invariant zero of the triplet (A, D,C), or,
equivalently, the system (A, D,C') is in the open left-hand complex plan s € C with Re(s) < 0, if:

rank (R(so)) <n+ rank (D) =n+p

where, R(s) is the Rosenbrock matriz of system :

A.0.2 LTV/LPYV system properties
Consider the time-varying system
#(t) = A(a(t) + B(tu(t) y(t) = C(t)a(t) (A.3)

where z(tg) is given, and the matrices A, B, C are of compatible dimensions and with bounded entries.

As far as the observability of LPV systems is concerned, the following theorem, borrowed from (Sename,
Gaspar, and Bokor, 2013 ) and (Silverman and Meadows, 1967) are considered to study on observability
for Linear Time-Varying Systems (LTV) which characterize also the observability of LPV systems. The
following definitions introduce the concepts of observability Gramian and uniform complete observability for
systems with bounded realizations (Kalman, 1960; Silverman and Meadows, 1967).

Definition 8 (Observability Gramian). The observability Gramian associated with the system (A(t), D(t), C(t)
on [to;ts] is defined as
tf - N
Wo(to, tr) = | ®(t,t0)"CT(t)C(t)D(t,t0)dt

to

where ®(t,tg) is the state transition matriz associated with A(t) from to to t.

Definition 9 (Uniform complete observability). The matrices (A(t), D(t),C(t) of the system in (A.3) is
uniformly completely observable (UCO) if there exist positive constants a > 0 and 6 > 0 such that, for all
t >t

aol < Wy(t, t+ 9)

The LTV system (A.3) is observable on [to, 7] if and only if the observability Gramian W (%o, £¢) is invertible.
The following theorem corresponds to an alternative well known result on observability that does not require
the computation of the observability Gramian.

Theorem 8 Batista et al., 2017. Suppose that q is a positive integer such that, for all t > to, C(t) is a q
times continuously differentiable matriz and A(t) is (g — 1) times continuously differentiable matriz. Define

Lo(t)
L) =| (A.4)
Lq(t)
Where
Lo(t) = C(t)
{L?(t) = Lici()A(t) + Lica(t),i=1,--- ,q. (A.5)

Then, the linear system (A.3) is observable on [to,tf] if, for some t, € [to;ts], rank IL(t) = n.
For uniform complete observability of a LTV system with bounded realization, we will consider the following
"folk" result, related to this Theorem.

Theorem 9 Batista et al., 2017. The bounded LTV system (A.3) is Uniformly Completely Observable if
there exists a positive constant o > 0 and an integer ¢ € N such that, for all t > tg,

L(t)"L(t) > oI (A.6)

with L(t) € RY*™, w > n.
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Appendix

Numerical Values of the PTWV

The parameters expressions for the identification algorithm of the two-bodies model are listed in table B.1:

TABLE B.1: Parameters expressions and numerical values

Parameters 6;

01 =mysk , 02 = mye
93:msz+ITZ—|—Ifoin26+IfZCOSQE,

04 = myjk — Crys + (I, — Iy,) sinecose .

05 = myek + I, cose , Og = %—;—l—% , 07 = %—;’sine

fs = mfj2 +mrh2+Im+lfm(20526+lfzsin26 , 09 =mygej+ Ip,sine
. i ir T o
010 = —(mypj+meh+ Rf—jj + %), Q11 = —p% cose , 12 = myeg —nZy

013 = Ifz +77Lf€2 , 014 = —(mfe+ %—;Sine) , 015 = —-K

Numerical values of the physical parameters deduced from 6

I =13m ,my; = 16kg , m, = 190kg , m = my +m, K = 11.7332N.s/rad ,
g =9.81m/s* Iy, = 0.200kg/m? , is, = 0.4000kg/m? , i, = 0.4608kg/m?
a=0.949m , e = 0.0079m , f = —0.1527m , h = 0.509m , Ry = 0.2m ,

Ry, =02m ,n=0.08m , ¢ = 0.4363rad k = 0.9168 , j = 0.2589

lr =0.35m ,lf =0.95m , e =1y + 1, , Z; = —491.25, Cy; = 18592,

Cpo = 1195.2, Cpp = 19209.58, Crg = 960.48 0y = 0.2 , 0 = 0.2

B.1 Matrices expressions and BS numerical value for the two
body-model

This section presents the numerical data of matrices and vectors of the state space representation used for
the design of model-based observers.
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TABLE B.2: Matrices expressions

€ij = €ji

€11 — 1 €22 — 1
es3 =m e3q = mpk
635:mfj+mrh €36 = mye

€44 :mfk2+Irz+lfxsin26+lfzcos2e

e45 = mfjk — Crps + (Ifz — Ifz) sin € cos €

eq6 = mypek + Iy, cose

€55 :mfj2+mrh2+Irx+IfZCOS26+IfZSin2€
es6 = mypej + I, sine

€66 :IfZ—I—mfe2

err =1 egs = 1
as34 — 7_7711)1 aqq4 = _fmfkvz
a4 = lf—y—l—ir—y v asg = 2L sin ev
45 Rf R x 46 Rf T
aq7r =l asg = —ly
as1 = (mgj +mph)g  asy =mgeg —nZy
. % %
ass = — (mgj +meh+ 2 + 5 ) v
_ iy
ase — R, COS €V,
f
agL = myreg —nZy a2 = (mypeg —nZy)sine
ags = — (mfe—i— %—; sine) Vg
ags — % COS €Uy, aege — —-K
_ _ Cre
a7 = —1] arl = ?Uq:
_ 1 :
arg = aC(C’fl cos € + Cpa sin 6) Ug
— f1 _ f1
arg = ———= ary = ——=ly
f af
are = n arr = — Lo
76 — Caf = gf T
agy = —2vy agy = —=rt
Cr1 1r
ags = agy = —5 Uz
Bg=1

TABLE B.3: Motorcycle parameters and numerical values

Numerical values for BikeSim

ez = 250, e3q4 = 11.32 , e35 = 108.65 , ezg = 0.1765 , eqq = 23.73 , e45 = 3.97 , eq6 = 0.66 , e55 = 66.02,
es6 = 0.183 , egg = 0.614 , azq = —250v; , agq = —11.25vz, ags = —3.665v , agg = 0.682vz , ag7 = 0.856
agg = —0.624 | a51 = 1681 , a5y = 42.34 , asg = —175.048vz , as6 = —1.4622v; , ag; = 62.34 , age = 69.45 ,
agq = —1.8685vy , ags = 1.47vz , age = —12.67 , agy = —0.0894 |, ar19 = —5319v;, ar20 = 104503v, ,

arzo = —112430 |, a740 = —84997 , argo = 10051 , ay70 = —Hvz , agig = 3221.8vz , agzg = —100890,

agao = 79098vz , aggg = —Hvg , Cfm = 22408, Cfgo = —1056.4, Cyr19 = 17657, Cro9 = —518.4

Numerical values for scooter

e33 = 221, Cy = 0.19, e34 = 6.97 , e35 = 92.386 , e36 = 0.126 , eqq = 24.73 , e45 = 5.0518 , eqg = 0.492 , e55 = 68.045,
es6 = 0.137 , egg = 0.543 , azq = —221 , agq = —14.64vy, aqgs5 = —3.87vz , ag6 = 0.679v; , agy = 0.95

ags = —0.42 | a5y = 1545 , asy = 40.53 , asqa = 161.4v, , asg = 1.567Tvs , agy = 52.83 , aga = 66.53 ,

age = —0.976v , ags = —1.525v; , agg = —12.67 agy = —0.0489 | a7; = —5282v;, are = 104503v, , a7y = —112042 ,
a7q4 = —70644 , a7 = 10481 , a77 = —bvy , agy = —2592v,, agz = —98283,

agq = 77078vy , aggs = —dug
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PARIS-SACLAY

Titre : Contributions a I'ldentification Paramétrique et a I'Observation des Véhicules a Deux-Roues Motorisés.

Mots clés : Motos (V2RM), Systemes d’aide a la conduite, Identification, Observation, Fonction de risque

Résumé :

Au cours des derniéres années, la mobilité routiere
a été marquée par la croissance considérable du tra-
fic des Véhicules a Deux-Roues Motorisés (V2RM),
qui demeurant désormais le mode de déplacement le
plus dominant et convoité, notamment pour les possi-
bilités qu'il offre d’esquiver les embouteillages de tra-
fic. Cependant, les conducteurs de deux-roues moto-
risés sont considérés comme les usagers de la route
les plus vulnérables. En effet, le risque d’étre tué dans
un accident est 29 fois plus élevé pour un cyclomo-
teur que pour un conducteur de voiture de tourisme.
En plus, la nature instable des V2RM, les rend plus
susceptibles aux pertes de controle. Ce probleme est
d’autant plus important lors du freinage d'urgence ou
lors de la prise de virage. Alors que les systemes
de sécurité passifs et actifs (ABS, ESP, ceintures
de sécurité, airbags, etc.) développés en faveur des
véhicules de tourisme ont amplement contribué a la
diminution des risques sur la route, cependant, le re-
tard dans le développement de ces systemes pour
les motos est considérable. De plus, malgré quelgues
systemes existants, les conducteurs de motos les uti-
lisent mal ou pas du tout. Ceci est di @ une mau-
vaise formation et cela ne contribue donc pas a
I'amélioration de leur sécurité. Par conséquent, il n’est
pas anodin que ce retard, dans le développement des
systemes d’aide a la conduite, résonne avec un re-
tard dans le développement des outils de recherches
théoriques.

Dans ce contexte, I'objectif principal de la these est de
concevoir des systemes d’assistance a la conduite,
ARAS (Advanced Rider Assistance Systems), pour
les V2RM pouvant alerter ces conducteurs en amont
des situations de conduite dangereuses. Cette these
traite de l'identification et de I'observation des V2RM.
Ces dernieres sont fondamentales pour la quantifi-
cation des risques et I'évaluation de la sécurité du
V2RM, qui sont au coeur de nos travaux de recherche.
En réalité, de nombreux défis sont encore ouverts
pour ce qui concerne la conception des systemes
ARAS comme l'accessibilité des états dynamiques
et parametres physiques des V2RM ainsi que la
synthese des indicateurs de risques en visitant tous

les points d’intéréts. Pour cela, nous nous intéressons
alors a proposer des techniques d’estimation, tout en
réduisant le nombre de capteurs et en contournant
la problématique de non-mesurabilité de certains va-
riables. Par ailleurs, la synthése de ces approches
répondant a certaines exigences (modélisation, struc-
ture simple, précision, instrumentation) constitue un
défi supplémentaire.

La premiere partie de these est consacrée aux al-
gorithmes d’identification classiques. Ces techniques
sont congues pour estimer les parameétres physiques
inconnus des modeles paramétriques des V2RM. La
deuxiéme partie concerne des observateurs basés
modeles. Pour cela, un observateur a entrées incon-
nues (UIO) pour reconstruire la dynamique de la di-
rection en tenant compte de la géométrie de la route,
et, un observateur interconnecté (IFO) pour l'esti-
mation de la dynamique longitudinale et latéral, ont
été proposées. Ensuite, nous nous somme penchés
sur des méthodes alternatives aux approches d’iden-
tification, notamment des techniques d’estimations
basées identification capable a la fois d’estimer les
états et les paramétres au méme temps. A cette
occasion, un observateur retardé a entrées incon-
nues pour les systemes avec un degré relatif arbi-
traire (DUIO), et, un observateur de Luenberger adap-
tative (LAO) pour I'estimation des raideurs pneuma-
tiques ont été développées. Les méthodes proposées
nécessitent une combinaison simple de capteurs et
prennent en compte des hypothéses réalistes telles
que la variation de vitesse longitudinale. Tous ces tra-
vaux ont été validés a l'aide de BikeSim et/sur des
données expérimentales. En outre, ce manuscrit in-
troduit un algorithme d’auto-calibration pour I'aligne-
ment des unités de mesure inertielle (IMU). Une telle
méthode d’auto-étalonnage s’applique aux boitiers
télématiques (e-Box) installés sur des véhicules a
deux roues, dont les axes des IMU sont souvent mal
alignés avec le repéere référentielle du véhicule.

La derniere partie de cette these traite des indicateurs
objectifs (comportement sur/sous vireur de la moto et
la distance de sortie de la voie de circulation) pour la
quantification du risque.
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Abstract :

Nowadays, Powered Two-Wheeled Vehicles (PTWV)
are an increasingly popular means of transport in daily
urban and rural displacements, especially for the pos-
sibilities it offers to avoid traffic congestion. However,
riders are considered as the most vulnerable road
users. In fact, the risk of being killed in an accident
is 29 times higher for a motorcycle than for a driver
of four wheeled vehicle. In addition the unstable na-
ture of the PTWV makes them more susceptible to
loss of control. This problem is even more complex
during emergency braking or on cornering. As matter
of fact, passive and active safety systems (Anti-Lock
Braking (ABS), Electronic Stability Control (ESP), seat
belts, airbags) developed in favour of passenger ve-
hicles have largely contributed to the reduction of risks
on the road. However, the delay in the development
of security systems for motorcycles is clear. Moreo-
ver, despite some existing systems, motorcycle riders
use them badly or they don’t at all. Therefore, it is
not trivial that this delay, in the development of Ad-
vanced Rider Assistance Systems (ARAS), coming
from a delay in the development of theoretical and re-
search tools. This thesis fits into the context of desi-
gning ARAS for PTWV that can alert riders upstream
of dangerous driving situations. Indeed, the develop-
ment of ARAS is based on risk indicators computed
from some pertinent dynamics variables. Our work
deals with observation and identification techniques.
These approaches allow to estimate the PTWV dy-
namic states and physical parameters, while reducing
the number of sensors and overcoming the problem of
non-measurable states. These latter are fundamental
for risk quantification and to assess the safety of the
PTWYV, which are the main focus of our research work.
The first part of the thesis concerns classical identi-
fication techniques for estimating the physical para-

meters of PTWV. The second part deals with model-
based observers proposed to estimate the dynamic
states of the PTWV. We proposed an unknown input
observer (UIO) for steering and road geometry esti-
mation and an interconnected fuzzy observer (IFO)
for both longitudinal and lateral dynamics. An alter-
native methods to identification algorithms are obser-
ver based identifier which allow both the parameters
identification and the states estimation. Therefore, a
Luenberger adaptive observer (LAO) for lateral dyna-
mic states and pneumatic stiffness as well as a de-
layed unknown inputs observer (DUIO) with an arbi-
trary relative degree, have been developed.

As matter of fact, all these techniques allow to esti-
mate the vehicle dynamics while reducing the num-
ber of sensors and overcoming the problem of non-
measurable states and parameters. These proposed
methods require a simple combination of sensors and
take into account realistic assumption like the longitu-
dinal speed variation.

Among others, this manuscript introduces a self ca-
libration algorithm for Inertial Measurement Units
(IMUs) alignment. Such a self-calibration method is
focused for telematic boxes (e-Boxes) installed on
two-wheeled vehicles, whose IMUs’ axes often result
not to be aligned with the vehicle reference system.
Finally, objective indicators are setting up for quanti-
fying the risk. These functions were studied for ARAS
purpose.

To highlight the performance of these approaches, we
have acquired data from high-fidelity motorcycle si-
mulator or even with data from real motorcycles. To
conclude, we have drawn up a comparison tables with
the proposed approaches. The results of both the nu-
merical simulations and the performed experimenta-
tions seem to be quite promising.
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